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Spectral operators, hermitian operators, 
and bounded groups1) 

By G. LUMER in Grenoble '(France) 

The theory of spectral operators on a Banach space, developped by N, DUN-
TO ED and others, extends the classical spectral theory of hermitian and normal 
operators on a Hilbert space. In [12], on the other hand, there was introduced a 
notion of semi-inner-product compatible with any Banach space structure, that 
leads in particular to a natural concept of hermitian operator on a Banach space2). 
Because of general characteristics of both developments it would seem natural 
to think that there exists a strong connection between spectral and hermitian oper-
ators in general. That this is the case, was proved recently by E. B B R K S O N [3], 
who kindly communicated his results to us. In particular, he shows that any spectral 
operator of scalar type, [6], is of the form R + iJ, where RJ=JR, and there exists 
an equivalent renorming of the underlying space such that R and J become her-
mitian. The results of [3], satisfactory from a descriptive point of view, have however 
the inconvenient of involving a renorming, as just described. Our first step, in part 
/, is to derive a necessary and sufficient condition, in terms of the boundedness of 
certain associated groups, for a commutative family of operators to be "hermitian-
equivalent", in the sense that there exists an equivalent renorming of the underly-
ing space under which all members of the given family become hermitian. The 
result shows in particular that if one starts with a Hilbert space, and a commuting, 
hermitian-equivalent, family of operators, then an appropriate renorming can be 
found which gives again a Hilbert space, thus hermitian operators in the classical 
sense. One also derives easily that given a finite collection of families of operators 
on a same Banach space (everything commuting), that are separately hermitian-
equivalent, then they are jointly (i. e., their union is) hermitian-equivalent. An 
immediate consequence is an extension (also a short new proof) of a result of 
WERMER on commuting spectral measures. We have occasion to use this extension, 
in part 111. 

Our main results are in part II, where we discuss infinite collections of commut-
ing families (in particular single elements), which are separately hermitian-equivalent. 
Here a necessary and sufficient condition is given, in terms of closure properties, 
for such a collection to be hermitian-equivalent. We derive, in particular, that if 
the uniformly closed algebra generated by a boolean algebra of projections on a 
reflexive Banach space, consists of spectral operators of scalar type, then the boolean 

This research was supported by National Science Foundation Grant G 24502. 
2) This concept turns out to coincide with one introduced differently in [16]. See [12], p. 39. 
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algebra is uniformly bounded. Thus, one obtains converses of well-known results, 
of DUNFORD. This is of some general interest as it supports the idea that the quite 
restrictive hypothesis of uniform boundedncss made by DUNFORD on the admissible 
spcctral measures, is necessary for a satisfactory theory along his lines. 

Remarks and counter-cxamplcs are collected in part III. The latter are given 
to clarify the situation conccrning the hypothesis of [3]. They show for instance 
that the charactcrization of spectral operators of scalar type, proved for reflexive 
spaces, really fails if rcflcxivity is omitted. It is also seen that, even on reflexive 
spaces, products of commuting hennitian operators are not necessarily hermitian. 

Terminology and notations. In what follows, the term Banach space always 
means complex Banach space. Operator means bounded linear transformation. 
If. T is an operator on a Banach space, we put 

exp T = 2 ' T"jn\. 
h=0 

Basic definitions, and properties concerning semi-inner-product spaces and her-
mitian operators, are reviewed in the next section, in order to make the paper 
more self-contained. The reader familiar with these notions may conseqently omit 
the first section of I . 3 ) 

I . Hermitian operators and bounded groups 

1. Hermitian operators on a Banach space. We collect here basic definitions 
and facts, almost all taken from [12] and [13]. 

D e f i n i t i o n 1. A complex vector space X is called a semi-inner-product space, 
if to each pair of vectors x, ydX corresponds a complex number [x, y], called their 
semi-inner-product, and the following holds: 

[x, y] is linear in x 
(1) [x, x] is real > 0 , for x =/ 0 

|[x,y]\2^[x,x][y, y]. 

A semi-inner-product space can always be normed, setting ||x|| = ([x, x])*, 
[12]. Conversely it is shown in [12] that every normed space X admits at least one 
(in general infinitely many) semi-inner-product structures compatible with its norm, 
in the sense that ||x||2 = [x, x]. I f X is a Hilbert space, the usual inner-product is 
the only semi-inner-product compatible with the norm of X. 

If an operator TOD a semi-inner-product space X (T being bounded in the 
sense of the induced norm) has the property that [Tx, x] is real valued for all x£X, 
then this situation is unchanged by replacing the given semi-inner-product by another 
one inducing the same norm, [12] p. 37. Hence no ambiguity is introduced in the 
following 

3) Reference [8] may be used for general functional analysis results and terminology used 
below without explanation. 
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D e f i n i t i o n 2. An operator J on a Banach space is called hermitian if [Tx, x] 
is real valued for all x£X, and some semi-inner-product on X compatible _with 
its norm. 

• If X is a Hilbert space, this coincides, naturally, with the usual concept. It is 
shown that an operator T is hermitian if and only if ||/+/ir|| = 1+o( i ) , t real, 
where / denotes the identity operator, [12]. We also mention the case of unbounded 
hermitian transformations, although we shall later deal; essentially, with bounded 
transformations only. 

D e f i n i t i o n 3. A linear transformation T, with domain D, on a semi-inner-
product space X, is called hermitian if [Tx, x] is real valued for all x£D. 

Unlike the case of operators, the hermitian character of a general linear trans-
formation may be altered by replacing the given semi-inner-product by another 
inducing the same norm, even if Tis closed and densely defined, [13] p. 688. However 
this cannot happen if T is the infinitesimal generator of a strongly continuous 
semi-group of operators. The latter happens for instance if T is spectral, [1], and 
{13], theorem 3. 2. 

D e f i n i t i o n 4. Let T be a linear transformation on a semi-inner-product 
space X, with domain D. Then the numerical range of T, W(T), is the set of complex 
numbers defined by 

<2) W{T) = {[Tx,x\:xiD,[x,x} = 1}. 

2. Hermitian-equivalent operators. What is meant by a hermitian-equivalent 
family of operators, has been discussed in the introduction. One might notice that 
in the case of a single operator on a Hilbert space, hermitian-equivalent coincides 
with what is often called "symmetrizable". 

D e f i n i t i o n 5. Let F be any commutative family of operators on a Banach 
space. We denote by S(F) the real-linear span of F. The exponential group assotiated 
to F, G{F), is then defined as follows ' / 

(3) ' G(F) — {exp (T: T£S(F)}. 

T h e o r e m 6. Let F be a commutative family of operators on a Banach space 
X. Then F is hermitian-equivalent if and only if its associated exponential group is 
uniformly bounded. Furthermore, if X is a Hilbert space, and F is hermitian-equivalent, 
then the renorming may be chosen so as to obtain again a Hilbert space. 

P r o o f . First we show that an operator T on X is hermitian, if and only if 
1|exp itT|| = 1, for t real. In fact, if this condition is satisfied, then by theorem 3. 1 
of [13] follows that both iT and —¡Tare dissipative operators, [13] p. 680, hence 
W(T) is real and T hermitian. Conversely, T hermitian implies that iT and — iT 
are dissipative, and the conclusion follows using theorem 2. 1 of [13]. 

If F is a commutative, hermitian-equivalent, family of operators on X, denote 
by T' the operator into which an operator Ton Xis carried by the equivalent renorm-
ing; let F' denote the family corresponding in that way to F. Then there exists, 
naturally, a constant K such that ||T|| ^K\\T'\\ for T£F. Since F' consists of her-
mitian operators the same holds for S(F'); thus, by what we just saw above, the 
exponential group G(F') is uniformly bounded by 1. Hence G(F) is bounded by K. 
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The converse uses the fact that given a uniformly bounded commutative group 
G of operators on a Banach space X, there exists an equivalent renorming of X, 
carrying G into a group of unitary, i. e. norm-preserving operators (of X onto X); 
if X is a Hilbert space, its renorming may be chosen so as to obtain again a Hilbert 
space. See S Z . - N A G Y [15] and DIXMIER [4]. 

Thus, in the situation that interests us specifically, i. e. if F is a commutative 
family of operators on X, for which G(F) is uniformly bounded, then, after equiva-
lent renorming, all elements of G(F) will have norm 1. In particular for any T£ F, 
we have for T', in the new norm || ||', 

(4) ||exp itT'\\' = l (t real). 

From what we saw earlier, (4) implies that T is hermitian. 
Finally notice that if X is a Hilbert space, and F is hermitian-equivalent, then 

by the first part of the argument we know that G(F) is uniformly bounded, and 
under this circumstance we have seen that (although there may exist other renorm-
ings) there is always a renorming which gives again a Hilbert space, and is other-
wise as desired. This completes the proof. 

C o r o l l a r y 7. Suppose F{ (/=1, 2, ..., ri) are finitely many commutative fami-
lies of operators on a Banach space X, each of them hermitian-equivalent; then if 

n 
U Fi is commutative it is hermitian-equivalent. JfX is a Hilbert space, then the corres-

i= i 
ponding renorming may be chosen so as to obtain again a Hilbert space. 

P r o o f . The hypothesis implies that every C(/-',) is uniformly bounded, say 

by Kit in virtue of the preceding theorem. Since everything commutes, G | U = 
n C n \ n 

= JjG(Ft). Hence G\ U FA is uniformly bounded, by JJ Kt, and it follows that 
¡=1 M=1 ' i= 1 

n 
U Ft is Hermitian-equivalent. 
i= 1 

3. Spectral operators. We had mentioned in the introduction a recent result of 
E. BERKSON [3] connecting spectral operators of scalar type, [6], [7], with hermi-
tian operators. Theorems I and II below, are taken from [3]: 

T h e o r e m I.4) Let S be a spectral operator of scalar type, on a Banach space 
X, and with spectral measure E = {E(a)}. Then E is hermitian-equivalent. S admits 
the decomposition S = R + iJ, RJ=JR, and the family {R"Jm: n,m — 0, 1, 2, . . .} is 
hermitian-equivalent. 

") It might be noticed that the result from [3] we mainly use (i. e. the one mentioned in 
the introduction, and used in part II) , can be derived from results above as follows: Let 
R e X, as a function on the spectrum a of the scalar spectral operator S, be denoted by r. Set 

R=Jr dE(X). Since for t real, |exp ///-j = 1 on a, it follows from theorem 7, [6], that 
<T 

llexp itR\\^v(E), independently of t. A similar argument for j=lmX, and application of 
theorem 6, corollary 7, finish the proof. 
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T h e o r e m II . If X is reflexive, and S an operator on X, then the existence of 
a decomposition as in theorem I, is necessary and sufficient for S to be a spectral 
operator of scalar type. 

By means of theorem 6, readily derives from the above theorems results not. 
depending on equivalent renormings. We explicit the following: 

Theorem 8. If S is a spectral operator of scalar type on a Banach space, then 
S = R + iJ, where RJ = JR, and G({RnJm\ n, m = 0 , 1,2, . . . }) is uniformly bounded.. 

In [3] it was shown that a decomposition like that of theorem I is unique. As 
a simple application of preceding results we derive uniqueness under less assumptions. 

P r o p o s i t i o n 9. If S is a spectral operator of scalar type on a Banach space 
X, and S = R + iJ, where RJ=JR, and R and J are hermitian-equivalent, then 
R= J Re X dE(X), J = J I m X dE(X), £(/.) denoting the spectral measure correspond-
ing to S. 

P r o o f . If we write R0,J0, for the integrals that appear in the statement of' 
the proposition, it follows from theorem 1 that R0 + iJ0 certainly supplies a decompo-
sition of S with the same properties as R + iJ. Since R and / commute with S, 
D U N F O R D ' S extension of the Fuglede theorem, and the definition of R0 and J0 
imply that R, J, R0, J0 is a commutative family, which by corollary 7 is hermitian-
equivalent. Consequently, after equivalent renorming, we get R' — Ro + i(J'— Jo) = 0 , 
where R' — Ro and J' —J'o are hermitian. The latter facts readily imply that for 
x f X, [(R'-Ro)x, x] = 0 and [(J'-Jo)x, x] = 0, and by theorem 5 of [12], we 
conclude R'-R¿= 0, / ' - / 6 = 0 . Thus R = R0,J=J0. 

R e m a r k 10. If S is a spectral operator of scalar type on X, then S = R + if 
as described in theorem I. If now, X is a Hilbert space, and since R and / are her-
mitian-equivalent, theorem 6 tells us that this equivalence can be realized so as to 
obtain again a Hilbert space. This implies by a well-known argument that there 
exists on the Hilbert space X an invertible hermitian operator A such that ASA 
is a normal operator (in the usual sense, of course). This is a result of WERMER [17] . . 
In fact an extended version of WERMER'S results on commuting spectral measures 
follows easily along the same lines. We make this explicit in the next section. 

4. Commuting spectral measures. Wermer's theorem. For sake of simplicity, 
we call an operator T on a Banach space normal, if T = R + iJ, where R and / 
are hermitian, and RJ—JR. The meaning of the term spectral measure, in this 
section, will be the same as in [17], except the space considered is an arbitrary Banach 
space, instead of a Hilbert space. 

T h e o r e m 11. Let {E^a)) and {£'2(i?)} be two commuting spectral measures 
on the Banach space X, in the sense that 

(5) E1(<j)E2(ri) = E2(>i)E1(o) for all a,tj. 

Then {Ex(o)) U {E1(r})) is hermitian-equivalent. If Tt and T2 are spectral operators 
on X, there exists an equivalent renorming of X, under which the scalar parts of 7',, T2, 
go into normal operators, provided 7", and T2 commute. If X is a Hilbert space the 
renorming may chosen so as to obtain again a Hilbert space. 
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P r o o f . Theorem I, or better, the underlying argument (since here the spectral 
measures are not immediately given as attached to certain operators) implies that 
{£(<T)} and {E(t])} are each hermitian-equivalent; since they commute the rest 
follows from corollary 7, and the decomposition of the scalar parts into "real" 
and "imaginary" parts, as before. 

The results of [17] follow immediately from the above theorem, when X is a 
Hilbert space.5) 

C o r o l l a r y 12. If S , , S2, are spectral operators of scalar type on a Banach 
space, then S, -f .S2 becomes normal under some appropriate equivalent renorming 
of the underlying space. 

We shall use this fact later to show that it is not always true that the product 
of hermitian operators is hermitian, even if the space is reflexive. 

II. Closure properties and boundedness of boolean algebras of projections 

5. Equivalence and closure. In a sense, corrollary 7 represents the elementary 
•case of what we want to do here, namely to determine under what circumstance 
an infinite commutative collection of elements, or families, which are separately 
hermitian-equivalent, is hermitian-equivalent. An answer, in terms of a closure 
property is supplied by the following 

T h e o r e m 13. A necessary and sufficient condition for a commutative family 
of operators on a Banach space to be hermitian-equivalent, is that the uniform closure 
of its real-linear span consists of (individually) hermitian-equivalent operators. 

P r o o f . Let X denote the Banach space, F the family considered above. Since 
real-linear combinations, and uniform limits, of hermitian operators are again 
hermitian, the necessity of the condition is immediately verified. Next, we prove 
the sufficiency. 

For any operator T on X, we define 

M(T) = sup {||exp itT\\: /real}. 

In general M(T) may be + but theorem 6 tells us that if T is hermitian-equivalent, 
then M(T) is finite. Now, given any real number M0, we denote by A the algebra 
•of all operators oh X, and define 

B{M0) = {TiA-.M(T)^M0). 

The first step will be to show, using merely the fact that F is a commutative subset 
of A, that the uniform closure of Ff)B(M0) is contained in B(M0). In fact, let us 
consider a sequence, with elements Tn£Fr\B(M0) ( « = 1 , 2 , . . . ) and such that 
l i r - r j - 0 , for some T£A. We wish to show that T£B(M0). By definition, one 
has for any T£ A the expansion 

exp tT = 2 tnT"ln\, 
n= 0 

5 ) A particular case was obtained earlier by LORCH [ I I ] ; see also [14] theorem 55,'and [4]. 
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however, one may also use TAYLOR'S formula with integral remainder, and thus 
obtain, in our context, 

N tm 
2 ~r(i(T-Tn))m+ (6) 

+ 

exp ( 7 ( 7 - T„) 

j (t-sy 
N\ 

= o m l 

(i(T-Tn)Y+1 exp is(T- Tn) ds. 

Naturally, T commutes with all elements of F, and consequently, for 

||exp is(T— 7),)|| =5 ||exp«r|| ||exp( -/ j r j 3= M0 sup {||exp isT\\: =.K, 

where K, depends on t only. Hence, one obtains for the remainder term the estimate 

(7) 

1 

S (t-sY 
N\ (;i(T- T„)Y + 1 exp is(T- T„) ds 

\t i/v+i 
-s K 1 II T T I I 1 

- A ' m 11 J l 

Suppose that n is taken sufficiently large to insure that \\T—T„\\ g 1. Then, for 
fixed t, N may be chosen, in virtue of (7), independently of n, so as to insure that 
the remainder term is in norm <e/2, for any e=>0 given a priori. Next, one may 
choose n large enough, so that 

2 r(i(T-Tn)Ylm\ 
N 

2 № 
m= 1 

\T— Tn\\m/m\<e/2. 

With this choice of n, we have from (6) that ||exp it(T— rn)|| < 1 +s. Thus 

||exp itT\\ = ||exp it(T— Tn) exp itTn\\ < ( 1 + e ) M 0 . 

Since e is arbitrary, we have ||exp /77" || ^ M0. Since t was arbitrary, we have proved 
that T€B(M0). 

Now let Y= S(F) denote the closure of the real-linear span, in the uniform 
topology. Y is commutative, since F is. Taking M0 = 1, 2, . . . ,« , . . . ;set Y„ = YC\B(ri). 
Then by what we have proved above, Y„ is uniformly closed in Y. If it is assumed 

that Yconsists of hermitian-equivalent elements, then Y= U Y„, and by the Baire— 
n= 1 

Banach category theorem, there exists an n0 such that Y„0 contains a non-trivial 
sphere Z. Let T0 denote the center of that sphere. Then every operator Td Y is of 
the form 
(8) T = -rT0 + rT', T'£Z, r real isO. 

To complete the proof, observe that clearly for any pair of commuting operators 
TX,T%, and any real number t, one has 

(9) M(tTY, ^ M(T,\ M(Ty + T2) M(T. M(T2). 

It follows from (8) and (9) that for any Y, M(T)^M(T0)n0. But this says in 
particular that G(F) is uniformly bounded, hence, theorem 6, F is hermitian-
equivalent. 

A 6 
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6. The boundedness of boolean algebras of projections. In order to discuss, 
below, a necessary and sufficient condition for a boolean algebra of projections 
to be uniformly bounded, we need an important property of hermitian operators 
contained in the following » 

Lemma 14. Suppose T is a hermitian operator on a Banach space X. Let ||Г||„ 
denote the spectral norm of T, i.e. sup {|A|: A € spectrum (Г)} . Then ЦГЦ ̂ 4||Г||_. 

Proof . Considering the equivalence of concepts established in [12] p. 39, 
Hilfssatz 3* of [17] tells us that under the above assumptions, if a and b denote 
the extremities ( a ^ b ) of the smallest closed interval containing the (real valued) 
spectrum of T, we have 

a = - lim {(||/— tT\\ — I)//}, b = lim {(Ц/ + /Щ - I)//}. 
I - . + 0 I - + 0 

It was shown in [12], lemma 12, that for any operator T one has 

sup {Re A: A 6 fV(T)} = lim {(||/+ tT\\ - I)ft} 
(-. + 0 

where W(T) denotes the numerical range of T (see definition 4). Thus a and b are 
also the extremities of the smallest closed interval containing the (real valued) 
numerical range of the hermitian operator T. If | W(T)\ =sup {[|A||: A 6 W(T)}, 
we have, consequently, for a hermitian operator, | W(T)\ = ЦГЦ». But again, it 
was shown in [12], theorem 5, that, for any operator, \\T\\ W(T)\ (for this, it 
is essential that the space be a complex Banach space). Hence we have, finally, 

п л о и л и 
L e m m a 1 5. IfTis an operator on X, and admits the decomposition T = R + iJ, 

where RJ = JR, and R and J are hermitian-equivalent, then J—О if and only if the 
spectrum of T is real valued. 

P r o o f . The "only if part" is obvious. Suppose the spectrum is real. Because 
of corollary 7 we may suppose without loss of generality that R and J are actually 
hermitian. Let A be any maximal commutative subalgebra of the algebra of all 
operators on X, containing R and J, hence T. Then the spectra of R, J, T, are the 
same as operators or as elements of A. Consider the Gelfand representation of 
A ([10], chap. IV). If m is any point of the maximal ideal space, we have T(m) — 
— R(m) + iJ(m). But R(m) and J(m) are necessarily real valued. Hence J(m) is 
identically 0 and by lemma 14, Ц/Ц =|И1~ = 0-

We turn now our attention to commutative families of projections on arbitrary 
Banach spaces. 

T h e o r e m 16. If every operator in the uniform closure of the real-linear span 
of a commutative family E = {Ea} of projections on a Banach space is hermitian-
equivalent, then E is uniformly bounded. 

P r o o f . By theorem 13, E is hermitian equivalent. Under the corresponding 
renorming each E„^E goes into a hermitian projection E'„, and there is a constant 
К such that \\E„\\ ^K\\E'n\\, for all a. Since all spectra consist at most of the points 
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0 and 1, it folows from lemma 14 that ¡¡£¿11 ^ 4 , uniformly. Hence ¡¡£„¡1 for 
all £ „ € £ . 

In what follows, we shall mean by the expression boolean algebra of projections 
on the Banach space X, a family of projections on X having all the algebraic proper-
ties of a spectral measure as defined by D U N F O R D [6]. 

T h e o r e m 17. Let E be a boolean algebra of projections on a Banach space 
X. Then a necessary and sufficient condition for that the adjoint of every operator 
in the uniformly closed algebra generated by. E, be spectral of scalar type, is that E 
be uniformly bounded. 

Proof . The " i f part" is a well-known result of D U N F O R D [6], section 4 . We 
prove the converse. Most of the work has already been done above. By the hypothe-
sis, the adjoint T* of every operator in the uniform closure S(E) of S(E) is spectral 
of scalar type, hence of the form R + iJ, where RJ—JR, and R and J are hermitian-
equivalent, by theorem I. A priori R and J need not be adjoint of operators on X, 
but we shall show that / is necessarily O, so that T* = R. In fact, it is clear that the 
spectrum of every operator in S(E) is real, and because of the commutativity, the 
same will then hold for any T£S(E). (This is in the litterature, and follows also 
easily from a Gelfand representation argument as above). Hence lemma 15 implies 
J = 0. Hence T* is hermitian-equivalent; thus G ( { T * } ) is uniformly bounded, 
which implies in turn that C ( { £ } ) is uniformly bounded (same bound); and finally, 
that T itself is hermitian-equivalent, always by theorem 6. Now it suffices to invoke 
theorem 16, to complete the proof. 

C o r o l l a r y 18. Let E be a boolean algebra of projections on a reflexive Banach 
space X. Then a necessary and sufficient condition for that the uniformly closed algebra 
generated by E should consist of spectral operators of scalar type, is that E be uniformly 
bounded. 

111. Remarks and counter-examples 

7. Remarks. One should notice that the results of section 6 imply that for a 
boolean algebra £ , of projections on a Banach space, the following are all equivalent: 

(i) The uniform closure of the real-linear span of £ consists of hermitian-
equivalent operators. 

(ii) The uniform closure of the real-linear span of £ consists of operators 
whose adjoint is spectral. 

(iii) £ is uniformly bounded. 
Under the circumstances, one might be easily led to believe that every hermitian 

operator is spectral. This is false, however, as we shall see later. On general Banach 
spaces, hermitian-equivalent and scalar type spectral operators, preserve each a 
somewhat different subset of the properties they share on Hilbert space. Thus, the 
sum of hermitian-equivalent operators is hermitian-equivalent, while the sum of 
scalar type spectral operators is not necessarily of the same kind; on the other hand 
at least powers of a scalar spectral operators are again scalar spectral, while we shall 
see later that the similar statement for hermitian operators is false. The following 
may perhaps shed some further light on the connection between spectral and her-
mitian operators (see also theorem I I ) : 
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P r o p o s i t i o n 19. A necessary and sufficient condition for that the real-algebra 
generated by an operator T of real spectrum, on some Banach space X, and the iden-
tity operator I, be hermitian-equivalent, is that there exist a constant K, such that 

for any polynomial p(z) of the complex variable z, one has \\p(T)\\ ^ KWpiT)]]^, 
where \\T\\„ denotes sup{|/?(z)|: z £ spectrum T}. 

P r o o f . The necessity of the condition follows from lemma 14, and the spectral 
mapping theorem. Let q(z) be any polynomial with real coefficients^ then 
|exp iq(z)\ — 1, on the spectrum of T. Approximating exp iq(z), uniformly on the 
spectrum of T, by partial sums of the expansion, we conclude that ||exp iq(T)\\ s i . 
The rest follows from theorem 6. 

Naturally the existence of a constant like AT above, is fundamental in the spectral 
theory. 

8 . Examples. In [9] , S . KAKUTANI gives an example o f cummuting spectral 
operators of scalar type, 7" and T', on some Banach space, whose sum is not spectral. 
On the other hand, it is easy to check, by direct computation (based on the fact 
that Tis hermitian if and only if ||/+/'iT|| = 1 + o ( 0 , i real), that T+T' is hermitian. 
Thus not every hermitian operator is spectral. In fact, a similar computation will 
show that T"T'"' is hermitian for n,m — 0, 1,2, . . . . Since T and 7" commute it 
follows that ( T + T'y is hermitian for n = 1, 2, ... Hence setting R = T+T',J = 0, 
the hypotheses of theorem II are satisfied, except for the fact that the underlying 
space constructed in [9] is not reflexive. Since here R + iJ is not spectral, it turns 
out that reflexivity is indeed not a superfluous hypothesis in theorem II. 

One might still wonder if R hermitian implies 7?" hermitian, for all positive 
integers n, in general, or at least on a reflexive space. However C . A . M C C A R T H Y 
has shown recently6), that there exist commuting spectral operators T and 7" (which 
one may assume to have real spectra), on a reflexive Banach space X, and such that 
T+T' is not spectral. His method does not allow the same direct computational 
approach as above, but corollary 12 tells us that T+T' = R + iJ, where R and J 
commute and are hermitian-equivalent. Lemma 15 implies that J = 0, since the 
spectrum of T+T' is real valued (T and T' commuting, and having real spectra). 
Since X is reflexive, and we know that T+ T' — R is not spectral, it follows from 
theorem II that R" (« = 1,2, ...) are not all hermitian-equivalent. Since R is, we 
conclude the existence of a hermitian operator whose powers are not all hermitian. 
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