Fourier transform in locally compact groups*)

By M. RAJAGOPALAN in New Haven (Conn., U. S. A.)

SEGAL [7] has proved that if *G* is a locally compact abelian group with the dual group \hat{G} then the Fourier transform maps $L^1(G)$ onto $C_0(\hat{G})$ if and only if G is finite. He has mentioned in the same paper that the non-commutative analogue of this result is true but a proof of it has not appeared so far.

In this paper we give some simple proofs to these results. These proofs are based on the following interesting observations:

(1) An extremally disconnected locally compact group which is Hausdorff must be discrete.

(2) Any weakly sequentially complete C^* -algebra must be finite-dimensional.

The second observation is the non-commutative analogue of the well-known result that the space $C_0(S)$ where S is a locally compact Hausdorff space is weakly sequentially complete iff it is finite-dimensional. We also give here a proof to the conjecture of SEGAL in [7] about the Fourier transform of $L^p(G)$ where $1 < p < 2$ and *G* is a locally compact abelian group.

Notations. All the topological spaces occurring in this paper are assumed to be Hausdorff. The symbol $C_0(S)$ where S is a locally compact Hausdorff space will denote the Banach space of all complex-valued continuous functions on *S* vanishing at infinity. If S is compact then we may write $C(S)$ instead of $C_0(S)$. If G is a locally compact group then $M(G)$ will denote the Banach space of all bounded Borel measures with the variation norm. If (X, Σ, μ) is a measure space then $L^p(X)$ where $1 \leq p \leq \infty$ will denote the usual L^p-space and $\|f\|_p$ will denote the L^p-norm of a measurable function f defined on X. For terms not defined here see [1], [3], [4], [5], [6], [9].

Theorem 1. *An extremally disconnected locally compact group G must be discrete.*

Proof. By a known theorem on totally disconnected groups (see [5]) we get that *G* contains a compact open subgroup *H.* Then *H*is also extremally disconnected. We claim that *H* is discrete. If not we can find a decreasing sequence $H_1 \supset H_2 \supset ...$... $\supset H_n \supset \dots$ of compact, open, normal subgroups of *H* such that $\mu(H_n) \to 0$ as $n \rightarrow \infty$, where μ is a Haar measure of *H*. Then $H_0 = \bigcap_{n=1} H_n$ is a compact normal

^{*)} This research was supported by an Air Force Research Grant No. AFOSR 62 — 20.

The paper forms a part of the author's doctoral dissertation submitted to Yale University under the guidance of Prof. C. E. RICKART.

subgroup of H and $\mu(H_0) = 0$. Then the factor group H/H_0 is compact and metrisable by a theorem of KAKUTANI and BIRKHOFF (see [5]). Since H is compact and extremally disconnected and since the canonical map from H onto H/H_0 is open and continuous we have that H/H_0 is also extremally disconnected. Since H/H_0 is compact and metrisable we get that H/H_0 is finite. But then H_0 must be open in H and hence $\mu(H_0) \neq 0$ which is a contradiction. So *H* must be discrete and being compact must be finite. So *G* must be discrete.

Corollary 1. Let G be a locally compact abelian group with the character group \hat{G} . Then the Fourier transform T maps $L^1(G)$ onto $C_0(\hat{G})$ if and only if G is finite.

Proof. First of all we notice that if $T₁$ is a one-to-one, continuous, linear map from a Banach space X_1 onto a Banach space X_2 then the adjoint map T_1^* of T_1 is also a one-to-one and onto map from X_2^{∞} to X_1^{∞} . Now coming to the Corollary, if *T* maps $L^1(G)$ onto $C_0(\hat{G})$ then T^* maps $M(\hat{G})$ onto $L^{\infty}(G)$. By an easy calculation it is seen that *T** coincides with the Fourier transform on *M(G).* So the image of *T** consists of continuous functions on *G.* So every function in *L°°(G)* is equivalent to a continuous function on *G.* Then *G* must be extremally disconnected and hence discrete. Moreover T^* maps $L^1(\hat{G})$ onto $C_0(G)$. So \hat{G} also must be discrete. So both *G* and *G* must be finite. The converse is obvious.

Theorem 2. *A C*-algebra A is weakly sequentially complete if and only if it is finite-dimensional.*

Proof. If *A* is finite-dimensional then it is weakly sequentially complete. Conversely, let A be weakly sequentially complete. Let $B \subset A$ be any commutative, closed and *-closed subalgebra of A. Then, by a theorem of GELFAND on Banach algebras, *B* is isomorphic to the space $C_0(X)$ where X is a locally compact Hausdorff space. Since A is weakly sequentially complete we have that B is also weakly sequentially complete and hence $C_0(X)$ is finite-dimensional. So every closed, *-closed, commutative subalgebra of \overrightarrow{A} is finite-dimensional. In particular the closed subalgebra generated by the element xx^* is finite-dimensional for any $x \in A$. Hence every closed left (or right) ideal of *A* contains minimal self-adjoint idempotents. Moreover, any set of pairwise orthogonal minimal, self-adjoint idempotents of *A* is finite. Then let $e_1, e_2, ..., e_n$ be a maximal set of pairwise orthogonal minimal self-adjoint idempotents of A. Then $e_1 + e_2 + ... + e_n = e$ is a self-adjoint idempotent. We must have that $ex = x$ for all $x \in A$, since otherwise, the set $B = \{ex - x|x \in A\}$ will be a proper closed right ideal of *A* and will contain a minimal self-adjoint idempotent $e_{n+1} \neq 0$ orthogonal to e_1 , e_2 , ..., e_n . Then $e = e_1 + e_2 + \ldots + e_n$ is an identity of A. Then the centre of *A* is a proper closed, *-closed subalgebra *of A* and hence is finitedimensional. So there is a maximal set f_1, f_2, \ldots, f_k of minimal, self-adjoint and pairwise orthogonal, central idempotents $f_1, f_2, ..., f_k$. Clearly $f_1A, f_2A, ..., f_kA$ are closed, *-closed mutually orthogonal minimal two-sided ideals of A and $A = f_1A \oplus f_2A \oplus ... \oplus f_kA$. Let us denote by I_i the ideal f_iA for $i = 1, 2, ..., k$. Then I_i contains a maximal set of minimal, pairwise orthogonal self-adjoint idempotents $e^{i}_{11}, e^{i}_{22}, ..., e^{i}_{n_i n_i}$. Then by adopting the same line of reasoning as that used in the Wedderburn structure theorem for algebras we get that I_i is isomorphic to the matrix algebra of order $n_i \times n_i$ over the complex numbers and hence finite-dimensional. Since I_i is finite-dimensional we get that A is finite-dimensional.

Corollary 2. Let G be a locally compact group with a left Haar measure μ . *For any f* $\in L^1(G)$, let T_f denote the operator in $L^2(G)$ given by $g \rightarrow f \ast g$ for any $g \in L^2(G)$. Let $\| |f|| = \|T_f\|$ for any $f \in L^1(G)$. Then $L^1(G)$ is complete under the norm *¡11-||| if and only if G is finite.*

Proof. Let $\Delta(x)$ be the modular function of G. Let us put $f^*(x) = f(x^{-1}) \Delta(x^{-1})$ for any $f \in L^1(G)$. Then $L^1(G)$ is a Banach algebra with $*$ as involution. Now suppose $L^1(G)$ is complete under the norm |||·|||. Then, from the fact that $|||f||| \le ||f||$, for all $f\in L^1(G)$ we get that $||\cdot||_1$ and $|||\cdot|||$ are equivalent norms on $L^1(G)$. So $L^1(G)$ with the norm $|||\cdot|||$ and convolution as multiplication and $*$ as involution is a weakly sequentially complete C^* -algebra. So $L^1(G)$ must be finite-dimensional. So *G* must be finite.

Now we proceed to give a proof to the following conjecture of SEGAL in [7]:

"If G is a locally compact abelian group with the character group \ddot{G} and $1 < p < 2$ and $1/p + 1/q = 1$ then the Fourier transform will map $L^p(G)$ onto $L^q(\hat{G})$ if and only if *G* is finite." From now onwards all groups will be assumed to be abelian.

Definition 1. Let *G* be a locally compact group with the character group *G.* Let $1 < p < 2$ and $1/p + 1/q = 1$. The group G is said to have (P) if the Fourier transform maps $L^p(G)$ onto $L^q(G)$.

Definition 2. Let *G* be a locally compact group. Then *L{G)* will denote the set of all continuous functions on *G* which vanish outside a compact set.

Lemma 1. *Let G be a locally compact group with the character group G. Lei* $1 < p < 2$ and $1/p + 1/q = 1$. Then G has (P) if and only if there is a constant K such *that* $||Tf||_q \ge K||f||_p$ *for all f* $\in L(G)$. (Here *T* stands for the Fourier transform from $L^p(G)$ into $L^q(\hat{G})$).

Lemma 2. Let G , \tilde{G} , p and q be as in Lemma 1. Then G has (P) if and only if *G has (P).*

Proof. Let G have (P). Let $T: L^p(G) \to L^q(\hat{G})$ be the Fourier transform from $L^p(G)$ into $L^q(G)$. Since T is one-to-one and onto, we have that T^* is also one-to-one and onto. But T^* is only the Fourier transform from $L^p(\hat{G})$ onto $L^q(G)$. So \hat{G} has *(P).* Now the lemma follows by the duality theorem.

Lemma 3. Let G_1 and G_2 be locally compact groups and $1 < p < 2$ and $1/p +$ $+ \frac{1}{q} = 1$. Let $G = G_1 \times G_2$. Then, if G has (P) then both G_1 and G_2 have (P).

Proof. This follows from Lemma I by considering functions of the form $f(x)g(y)$ on $G_1 \times G_2$ where $f(x) \in L(G_1)$ and $g(y) \in L(G_2)$.

Lem ma 4. *Let G be a locally compact group with (P). Then G contains a compact open subgroup.*

Proof. By a theorem in [9], G is of the form $R^n \times G_1$ where R^n is the *n*-dimensional Euclidean space with the usual addition and G_i is a locally compact group with a compact open subgroup *H*. Now *R* does not have (P) . (See [8].) So $n=0$ from Lemma 3. Hence the result.

Lemma 5. Let $1 < p < 2$. Let G be a locally compact group with (P) and $H \subset G$ *a compact subgroup of G. Then G/H also has (P).*

Proof. Let v be the normalized Haar neasure of H. Let μ be a Haar measure on G. Let *0* be a Haar measure on G/H such that $\int f(x)d\mu(x) = \int \int f(tx)d\nu(t)$ $d0(x)$ *G G/H H* holds for all $f(E(G))$. (x stands for the image of x in G/H under the canonical map φ from $G \rightarrow G/H$.) Let ψ be the map from $L(G/H) \rightarrow L(G)$ defined by $\psi(f) = f \circ \psi$ for all $f(E(G/\mu))$. Then $\|\int \|\frac{p}{\mu}\| \leq \|\Psi(f)\|_p$ for all $f(E(G/\mu))$. Let G be the character group of *G*. Let $H^{\perp} = \{ \chi | \chi \in \hat{G}; \chi(x) = 1 \text{ for all } x \in H \}$. Then, since *H* is compact, H^{\perp} is open in \hat{G} . So the restriction of the Haar measure of \hat{G} to H^{\perp} is a Haar measure $\frac{1}{4}$ is open in G. So the restriction of the Haar measure of G to $\frac{1}{4}$ of H^4 . Now $H^4 = (G/H)^4$ and $\int_{G/H} f(x) \chi(x) dx = \int_{G} (\psi(f)) (\lambda) \chi(x) dx$ for any $\chi \in H^4$ and $\tilde{f} \in L(G/H)$. So the result follows from Lemma 1.

Lemma 6. Let G be a compact group and $1 < p < 2$. Let G have (P). Then G is

finite. **Proof.** The dual group \hat{G} of G is discrete. So if $f \in l^q(\hat{G})$ where $1/p + 1/q = 1$

and $g \in l^2(\hat{G})$ then $gf \in l^2(\hat{G})$. Now $L^p(G) \subset L^1(G)$ since G is compact. So every element of $l^2(\hat{G})$ is a Fourier transform of a function in $L^1(G)$. Hence from Theorem A on page 271 of [2], we get that $l^q(\hat{G}) \subset l^2(\hat{G})$. But $q > 2$ since $p > 2$. So $l^q(\hat{G}) = l^2(\hat{G})$. Hence \hat{G} is finite. Then G is finite.

Theorem 3. *Let G be a locally compact abelian group with dual group G. Let* $1 < p < 2$ and $1/p + 1/q = 1$. Then, the Fourier transform maps $L^p(G)$ onto $L^q(\hat{G})$ *if and only if G is finite.*

Proof, Let the Fourier transform map $L^p(G)$ onto $L^q(\hat{G})$. Then G contains a compact open subgroup H. Then G/H has (P) by Lemma 5. Since G/H is discrete, we get from Lemma 6 and 2 that *G/H* is finite. But then *G* must be compact and hence, finite by Lemma 6. Now the converse is obvious.

References

- [1] N. DUNFORD, and J. SCHWARTZ, *Linear Operators*, vol. *I* (New York, 1958).
- [2] S. HELGASON, Topologies of group algebras and a theorem of Littlewood, *Trans. Amer. Math.* Soc., 86 (1957), 269-283.
- [3] L. J. KELLEY, *General Topology* (New York, 1961).
- [4] L. H. LOOMIS, *An introduction to abstract harmonic analysis* (New York, 1953).
- [5] D. MONTGOMERY, and L. ZIPPIN, *Transformation Groups* (New York, 1955).
- [6] C. E. RICKART, *General theory of Banach algebras* (New York, I960).
- [7] I. E. SEGAL, The class of functions which are absolutely convergent Fourier transforms, *Acta. Sci. Math.,* 12 B (1950), 157-162.
- [8] E. C. TITCHMARSH, *Theory of Fowier integrals* (London, 1937).
- [9] A. WEIL, *L'intégration dans les groupes topologiques et ses application* (Paris, 1953).

YALE UNIVERSITY AND BANARAS HINDU UNIVERSITY

(Received May 16, 1963)