Fourier transform in locally compact groups *)

By M. RAJAGOPALAN in New Haven (Conn., U.S.A.)

SEGAL [7] has proved that if G is a locally compact abelian group with the dual group \hat{G} then the Fourier transform maps $L^1(G)$ onto $C_0(\hat{G})$ if and only if G is finite. He has mentioned in the same paper that the non-commutative analogue of this result is true but a proof of it has not appeared so far.

In this paper we give some simple proofs to these results. These proofs are based on the following interesting observations:

(1) An extremally disconnected locally compact group which is Hausdorff must be discrete.

(2) Any weakly sequentially complete C^* -algebra must be finite-dimensional.

The second observation is the non-commutative analogue of the well-known result that the space $C_0(S)$ where S is a locally compact Hausdorff space is weakly sequentially complete iff it is finite-dimensional. We also give here a proof to the conjecture of SEGAL in [7] about the Fourier transform of $L^p(G)$ where 1 and G is a locally compact abelian group.

Notations. All the topological spaces occurring in this paper are assumed to be Hausdorff. The symbol $C_0(S)$ where S is a locally compact Hausdorff space will denote the Banach space of all complex-valued continuous functions on S vanishing at infinity. If S is compact then we may write C(S) instead of $C_0(S)$. If G is a locally compact group then M(G) will denote the Banach space of all bounded Borel measures with the variation norm. If (X, Σ, μ) is a measure space then $L^p(X)$ where $1 \le p \le \infty$ will denote the usual L^p -space and $||f||_p$ will denote the L^p -norm of a measurable function f defined on X. For terms not defined here see [1], [3], [4], [5], [6], [9].

Theorem 1. An extremally disconnected locally compact group G must be discrete.

Proof. By a known theorem on totally disconnected groups (see [5]) we get that G contains a compact open subgroup H. Then H is also extremally disconnected. We claim that H is discrete. If not we can find a decreasing sequence $H_1 \supset H_2 \supset \dots$ $\dots \supset H_n \supset \dots$ of compact, open, normal subgroups of H such that $\mu(H_n) \to 0$ as $n \to \infty$, where μ is a Haar measure of H. Then $H_0 = \bigcap_{n=1}^{\infty} H_n$ is a compact normal

^{*)} This research was supported by an Air Force Research Grant No. AFOSR 62-20.

The paper forms a part of the author's doctoral dissertation submitted to Yale University under the guidance of Prof. C. E. RICKART.

subgroup of H and $\mu(H_0) = 0$. Then the factor group H/H_0 is compact and metrisable by a theorem of KAKUTANI and BIRKHOFF (see [5]). Since H is compact and extremally disconnected and since the canonical map from H onto H/H_0 is open and continuous we have that H/H_0 is also extremally disconnected. Since H/H_0 is compact and metrisable we get that H/H_0 is finite. But then H_0 must be open in H and hence $\mu(H_0) \neq 0$ which is a contradiction. So H must be discrete and being compact must be finite. So G must be discrete.

Corollary 1. Let G be a locally compact abelian group with the character group \hat{G} . Then the Fourier transform T maps $L^1(G)$ onto $C_0(\hat{G})$ if and only if G is finite.

Proof. First of all we notice that if T_1 is a one-to-one, continuous, linear map from a Banach space X_1 onto a Banach space X_2 then the adjoint map T_1^* of T_1 is also a one-to-one and onto map from X_2^* to X_1^* . Now coming to the Corollary, if T maps $L^1(G)$ onto $C_0(\hat{G})$ then T^* maps $M(\hat{G})$ onto $L^{\infty}(G)$. By an easy calculation it is seen that T^* coincides with the Fourier transform on M(G). So the image of T^* consists of continuous functions on G. So every function in $L^{\infty}(G)$ is equivalent to a continuous function on G. Then G must be extremally disconnected and hence discrete. Moreover T^* maps $L^1(\hat{G})$ onto $C_0(G)$. So \hat{G} also must be discrete. So both G and \hat{G} must be finite. The converse is obvious.

Theorem 2. A C^* -algebra A is weakly sequentially complete if and only if it is finite-dimensional.

Proof. If A is finite-dimensional then it is weakly sequentially complete. Conversely, let A be weakly sequentially complete. Let $B \subset A$ be any commutative, closed and *-closed subalgebra of A. Then, by a theorem of GELFAND on Banach algebras, B is isomorphic to the space $C_0(X)$ where X is a locally compact Hausdorff space... Since A is weakly sequentially complete we have that B is also weakly sequentially complete and hence $C_0(X)$ is finite-dimensional. So every closed, *-closed, commutative subalgebra of A is finite-dimensional. In particular the closed subalgebra generated by the element xx^* is finite-dimensional for any $x \in A$. Hence every closed left (or right) ideal of A contains minimal self-adjoint idempotents. Moreover, any set of pairwise orthogonal minimal, self-adjoint idempotents of A is finite. Then let $e_1, e_2, ..., e_n$ be a maximal set of pairwise orthogonal minimal self-adjoint idempotents of A. Then $e_1 + e_2 + ... + e_n = e$ is a self-adjoint idempotent. We must have that ex = x for all $x \in A$, since otherwise, the set $B = \{ex - x | x \in \overline{A}\}$ will be a proper closed right ideal of A and will contain a minimal self-adjoint idempotent $e_{n+1} \neq 0$ orthogonal to $e_1, e_2, ..., e_n$. Then $e = e_1 + e_2 + ... + e_n$ is an identity of A. Then the centre of A is a proper closed, *-closed subalgebra of A and hence is finitedimensional. So there is a maximal set $f_1, f_2, ..., f_k$ of minimal, self-adjoint and pairwise orthogonal, central idempotents $f_1, f_2, ..., f_k$. Clearly $f_1A, f_2A, ..., f_kA$ are closed, *-closed mutually orthogonal minimal two-sided ideals of A and $A = f_1 A \oplus f_2 A \oplus ... \oplus f_k A$. Let us denote by I_i the ideal $f_i A$ for i = 1, 2, ..., k. Then I_i contains a maximal set of minimal, pairwise orthogonal self-adjoint idempotents e_{11}^i , e_{22}^i , ..., $e_{n_in_i}^i$. Then by adopting the same line of reasoning as that used in the Wedderburn structure theorem for algebras we get that I_i is isomorphic to the matrix algebra of order $n_i \times n_i$ over the complex numbers and hence finite-dimensional. Since I_i is finite-dimensional we get that A is finite-dimensional.

Corollary 2. Let G be a locally compact group with a left Haar measure μ . For any $f \in L^1(G)$, let T_f denote the operator in $L^2(G)$ given by $g \rightarrow f * g$ for any $g \in L^2(G)$. Let $|||f||| = ||T_f||$ for any $f \in L^1(G)$. Then $L^1(G)$ is complete under the norm $||| \cdot |||$ if and only if G is finite.

Proof. Let $\Delta(x)$ be the modular function of G. Let us put $f^*(x) = \overline{f(x^{-1})} \Delta(x^{-1})$ for any $f \in L^1(G)$. Then $L^1(G)$ is a Banach algebra with * as involution. Now suppose $L^1(G)$ is complete under the norm $||| \cdot |||$. Then, from the fact that $|||f||| \le ||f||_1$ for all $f \in L^1(G)$ we get that $|| \cdot ||_1$ and $||| \cdot |||$ are equivalent norms on $L^1(G)$. So $L^1(G)$ with the norm $||| \cdot |||$ and convolution as multiplication and * as involution is a weakly sequentially complete C^* -algebra. So $L^1(G)$ must be finite-dimensional. So G must be finite.

Now we proceed to give a proof to the following conjecture of SEGAL in [7]:

"If G is a locally compact abelian group with the character group \hat{G} and 1and <math>1/p + 1/q = 1 then the Fourier transform will map $L^{p}(G)$ onto $L^{q}(\hat{G})$ if and only if G is finite." From now onwards all groups will be assumed to be abelian.

Definition 1. Let G be a locally compact group with the character group \hat{G} . Let 1 and <math>1/p + 1/q = 1. The group G is said to have (P) if the Fourier transform maps $L^{p}(G)$ onto $L^{q}(\hat{G})$.

Definition 2. Let G be a locally compact group. Then L(G) will denote the set of all continuous functions on G which vanish outside a compact set.

Lemma 1. Let G be a locally compact group with the character group \hat{G} . Let 1 and <math>1/p + 1/q = 1. Then G has (P) if and only if there is a constant K such that $||Tf||_q \ge K ||f||_p$ for all $f \in L(G)$. (Here T stands for the Fourier transform from $L^p(G)$ into $L^q(\hat{G})$).

Lemma 2. Let G, \hat{G} , p and q be as in Lemma 1. Then G has (P) if and only if \hat{G} has (P).

Proof. Let G have (P). Let $T: L^{p}(G) \to L^{q}(\hat{G})$ be the Fourier transform from $L^{p}(G)$ into $L^{q}(\hat{G})$. Since T is one-to-one and onto, we have that T^{*} is also one-to-one and onto. But T^{*} is only the Fourier transform from $L^{p}(\hat{G})$ onto $L^{q}(G)$. So \hat{G} has (P). Now the lemma follows by the duality theorem.

Lemma 3. Let G_1 and G_2 be locally compact groups and 1 and <math>1/p + 1/q = 1. Let $G = G_1 \times G_2$. Then, if G has (P) then both G_1 and G_2 have (P).

Proof. This follows from Lemma 1 by considering functions of the form f(x)g(y) on $G_1 \times G_2$ where $f(x) \in L(G_1)$ and $g(y) \in L(G_2)$.

Lemma 4. Let G be a locally compact group with (P). Then G contains a compact open subgroup.

Proof. By a theorem in [9], G is of the form $\mathbb{R}^n \times G_1$ where \mathbb{R}^n is the *n*-dimensional Euclidean space with the usual addition and G_1 is a locally compact group with a compact open subgroup H. Now R does not have (P). (See [8].) So n=0 from Lemma 3. Hence the result.

Lemma 5. Let $1 . Let G be a locally compact group with (P) and <math>H \subset G$ a compact subgroup of G. Then G/H also has (P). Proof. Let v be the normalized Haar neasure of H. Let μ be a Haar measure on G. Let θ be a Haar measure on G/H such that $\int_{G} f(x) d\mu(x) = \int_{G/H} \left[\int_{H} f(tx) dv(t) \right] d\theta(x)$ holds for all $f \in L(G)$. (\tilde{x} stands for the image of x in G/H under the canonical map φ from $G \to G/H$.) Let ψ be the map from $L(G/H) \to L(G)$ defined by $\psi(\tilde{f}) = \tilde{f} \circ \varphi$ for all $\tilde{f} \in L(G/H)$. Then $\|\tilde{f}\|_{p} = \|\psi(\tilde{f})\|_{p}$ for all $\tilde{f} \in L(G/H)$. Let \hat{G} be the character group of G. Let $H^{\perp} = \{\chi | \chi \in \hat{G}; \chi(x) = 1 \text{ for all } x \in H\}$. Then, since H is compact, H^{\perp} is open in \hat{G} . So the restriction of the Haar measure of \hat{G} to H^{\perp} is a Haar measure of H^{\perp} . Now $H^{\perp} = (G/H)^{\uparrow}$ and $\int_{G/H} \tilde{f}(\tilde{x})\chi(\tilde{x}) d\tilde{x} = \int_{G} (\psi(f)) (x)\overline{\chi(x)} dx$ for any $\chi \in H^{\perp}$ and $\tilde{f} \in L(G/H)$. So the result follows from Lemma 1.

Lemma 6. Let G be a compact group and 1 . Let G have (P). Then G is

Lemma 6. Let G be a compact group and 1 . Let G have (P). Then G is finite.

Proof. The dual group \hat{G} of G is discrete. So if $f \in l^q(\hat{G})$ where 1/p + 1/q = 1and $g \in l^2(\hat{G})$ then $gf \in l^2(\hat{G})$. Now $L^p(G) \subset L^1(G)$ since G is compact. So every element of $l^2(\hat{G})$ is a Fourier transform of a function in $L^1(G)$. Hence from Theorem A on page 271 of [2], we get that $l^q(\hat{G}) \subset l^2(\hat{G})$. But q > 2 since p > 2. So $l^q(\hat{G}) = l^2(\hat{G})$. Hence \hat{G} is finite. Then G is finite.

Theorem 3. Let G be a locally compact abelian group with dual group \hat{G} . Let 1 and <math>1/p + 1/q = 1. Then, the Fourier transform maps $L^p(G)$ onto $L^q(\hat{G})$ if and only if G is finite.

Proof. Let the Fourier transform map $L^p(G)$ onto $L^q(\hat{G})$. Then G contains a compact open subgroup H. Then G/H has (P) by Lemma 5. Since G/H is discrete, we get from Lemma 6 and 2 that G/H is finite. But then G must be compact and hence finite by Lemma 6. Now the converse is obvious.

References

- [1] N. DUNFORD, and J. SCHWARTZ, Linear Operators, vol. J (New York, 1958).
- [2] S. HELGASON, Topologies of group algebras and a theorem of Littlewood, Trans. Amer. Math. Soc., 86 (1957), 269-283.
- [3] L. J. KELLEY, General Topology (New York, 1961).
- [4] L. H. LOOMIS, An introduction to abstract harmonic analysis (New York, 1953).
- [5] D. MONTGOMERY, and L. ZIPPIN, Transformation Groups (New York, 1955).
- [6] C. E. RICKART, General theory of Banach algebras (New York, 1960).
- [7] I. E. SEGAL, The class of functions which are absolutely convergent Fourier transforms, Acta. Sci. Math., 12 B (1950), 157-162.
- [8] E. C. TITCHMARSH, Theory of Fourier integrals (London, 1937).
- [9] A. WEIL, L'intégration dans les groupes topologiques et ses application (Paris, 1953).

YALE UNIVERSITY AND BANARAS HINDU UNIVERSITY

(Received May 16, 1963)