О ПРОИЗВЕДЕНИЯХ УПОРЯДОЧЕННЫХ АВТОМАТОВ. ІІ

Ф. ГЕЧЕГ (Сегед)*)

В первой части работы приведены необходимые и достаточные условия для вложимости автомата Мура в произведение автоматов. Результаты аналогичным путем доказываются и для случая автоматов Мили.

В этой статье мы дадим необходимые и достаточные условия представления автоматов Мили в виде произведения автоматов.

Рассмотрим произвольный упорядоченный автомат $\mathbf{A} = \mathbf{A}(X, A, Y, \delta, \lambda)$ и некоторое множество его допустимых разбиений, удовлетворящее следующим условиям:

- 1. Если для разбиений π_1 , π_2 имеет место $\pi_1 > \pi_2$, то мощность множества $M_{\pi_1(a_1)}^{\pi_2}$ классов по разбиению π_2 , содержащихся в классе $\pi_1(a_1)$, совпадает с мощностью множества $M_{\pi_1(a_2)}^{\pi_2}$ классов по разбиению π_2 , содержащихся в классе $\pi_1(a_2)$, и существуют такие изоморфизмы $\psi_{a_i,a_j}^{1,2} \colon M_{\pi_1(a_i)}^{\pi_2} \to M_{\pi_1(a_j)}^{\pi_2}$, для которых:
- (α) $\psi_{a_l, a_j}^{1, 2}(x) = \psi_{a_j, a_k}^{1, 2^{-1}}(\psi_{a_k, a_i}^{1, 2^{-1}}(x)),^{2}$
- (β) $\psi_{a_j,a_k}^{1,2}(x) = \psi_{a_k,a_l}^{1,2^{-1}}(\psi_{a_l,a_j}^{1,2^{-1}}(x)),$
- $(\gamma) \qquad \psi_{a_k, a_i}^{1, 2}(x) = \psi_{a_i, a_j}^{1, 2^{-1}}(\psi_{a_j, a_k}^{1, 2^{-1}}(x)),$

$$\psi_{a_i,\,a_j}^{1,\,2^{-1}}(x) = \psi_{a_j,\,a_i}^{1,\,2}(x) \quad \text{и} \quad \psi_{a_i,\,a_j}^{1,\,2}(x) = \psi_{a_i',\,a_j'}^{1,\,2}(x), \quad \text{если} \quad a_i \equiv a_i',\,a_j \equiv a_j'(\pi_1).$$

Пусть $\pi_2(a) \in M_{\pi_1(a_i)}^{\pi_2}$, $\pi_2(a') \in M_{\pi_1(a_j)}^{\pi_2}$ и $\pi_1(a_i) \leq \pi_1(a_j)$. Тогда $\pi_2(a) \leq \pi_2(a')$ равносльно тому, что $\psi_{a_i,a_i}^{1,2}(\pi_2(a)) \leq \pi_2(a')$.

2. Если разбиение π_1 не находится в отношении упорядоченности с разбиением π_2 , то для любого фиксированного $a \in A$ все пересечения $\pi_1(a) \cap \pi_2(a')$ ($a' \in A$) обладают одинаковой мощностью.

Множество допустимых разбиений, удовлетворящее условиям 1. и 2., мы назовем множеством со свойством K.

Теорема. Автомат $\mathbf{M} = \mathbf{M}(X_M, M, Y_M, \delta_M, \lambda_M)$ изоморфен некоторому R-произведению автоматов \mathbf{A}_i $(i=1,\ldots,r)$ тогда и только тогда,

^{*)} F. GÉCSEG (Szeged)

¹) Относительно терминологии этой статьи см. [2].

 $^{^{2}}$) Где a_{i}, a_{j}, a_{k} — произвольны из множества A.

чесли он обладает множеством разбиений со свойством K, каждый класс пересечения π которого имеет одну и ту же мощность, можно установить изоморфизм между классами разбиения π , удовлетворящий условиям (α)—(δ), произвольные различные максимальные цепи данных разбиений не содержат общего разбиения кроме π и $\pi_{i_1}(m_{i_1})\cap\ldots\cap\pi_{i_k}(m_{i_k})\neq\varnothing$ для всех различных разбиений $\pi_{i_1},\ldots\pi_{i_k}$, опережающих разбиение π .

Доказательство. Для доказательства необходимости рассмотрим некоторое R-произведение автоматов \mathbf{A}_i ($i=1,\ldots,r$), изоморфное автомату \mathbf{M} . Обозначим этот изоморфизм через χ . Рассмотрим разбиения π_i автомата \mathbf{M} , индуцируемые множествами $P(\mathbf{A}_i)$ ($i=1,\ldots,r$) (см. [2]). Разбиения π_i , получаемые таким образом — допустимы (см. [2]). Покажем, что с помощью этих разбиений можно задавать множество разбиений автомата \mathbf{M} , удовлетворящее условиям теоремы.

Рассмотрим пересечение π разбиений π_i ($i=1,\ldots,r$). Если найдется две максимальной цепи множества $\{\pi_i\}$, содержащие обшее разбиение, отличное от разбиения π , то одну из них оставим без внимания. В так полученном множестве разбиений пусть π_i и π_j такие, что $\pi_i > \pi_j$. Тогда $\mathbf{M}_i > \mathbf{M}_j$. Далее, пусть m и m' такие, что $m \not\equiv m'(\pi_i)$ и $\chi(m) = (a_1,\ldots,a_i,a_{i+1},\ldots,a_j,\ldots,a_r), \chi(m') = (a_1,\ldots,a_i',a_{i+1},\ldots,a_j,\ldots,a_j,\ldots,a_r)$. По определению разбиений, индуцирующихся множеством $P(\mathbf{A}_i)$, мощности множества классов по разбиению π_j , содержащихся в классе $\pi_i(m)$ соотв. $\pi_i(m')$, совпадают с мощностью множества $\prod_{k=i+1}^j A_k$. (Здесь упорядочение составляющих $A_1 \times \ldots \times A_r$ такое,

что множества A_i и A_j будут опережены такими и только такими множествами, которые больши их). Пусть теперь $M_{\pi_i(m_i)}^{\pi_j}$, $M_{\pi_i(m_j)}^{\pi_j}$, $M_{\pi_i(m_k)}^{\pi_j}$ — различны, а m_i , m_i и m_k такие, что

$$\chi(m_i) = (a_1, ..., a_i, a_{i+1}, ..., a_j, ..., a_r),$$

$$\chi(m_j) = (a'_1, ..., a'_i, a_{i+1}, ..., a_j, ..., a_r),$$

$$\chi(m_k) = (a''_1, ..., a''_i, a_{i+1}, ..., a_j, ..., a_r).$$

Отображение $\psi_{m_i,m_j}^{i,j},\psi_{m_j,m_k}^{i,j}$ и $\psi_{m_k,m_t}^{i,j}$ определяются следующим образом:

$$\psi_{m_l, m_j}^{i, j}(\pi_j(m_l)) = \pi_j(m_j); \; \psi_{m_j, m_k}^{i, j}(\pi_j(m_j)) = \pi_j(m_k); \; \psi_{m_k, m_l}^{i, j}(\pi_j(m_k)) = \pi_j(m_l).$$

Пусть $\pi_i(m_i) \leq \pi_i(m_j)$, $\pi_j(m_i^*) \leq \pi_j(m_j^*)$ $(m_i \equiv m_i^*(\pi_i), m_j \equiv m_j^*(\pi_i))$. В этом случае если

$$\chi(m_i^*) = (a_1, ..., a_i, a_{i+1}^*, ..., a_j^*, a_{j+1}, ..., a_r)$$

И

$$\chi(m_J^*) = (a_1', ..., a_i', a_{i+1}^{*'}, ..., a_J^{*'}, a_{j+1}, ..., a_r)$$

T0

$$a_1 \leq a_1'', ..., a_i \leq a_i', a_{i+1}^* \leq a_{i+1}^{*'}, ..., a_j^* \leq a_j^{*'}.$$

Заметим, что по определению допустимого разбиения $\pi_i(m) \ge \pi_i(m')$ тогда и только тогда, если найдутся такие $m_1(\in \pi_i(m))$ и $m_2(\in \pi_i(m'))$, для которых выполняется неравенство $m_1 \ge m_2$. Так как в классе $\psi_{m_i,m_j}^{i,j}(\pi_j(m_i^*))$ содер-

126 Ф. Гечег

жится элемент $m_i^{*'}$, для которого $\chi(m_i^{*'}) = (a_1', ..., a_i', a_{i+1}', ... a_j^*, a_{j+1}, ..., a_r)$, то, очевидно, имеет место $\psi_{m_i,m_j}^{l,j}(\pi_j(m_i^*) \leq \pi_j(m_j^*))$. Аналогично получается обратное утверждение.

Пусть разбиения π_i и π_j не находятся в отношении упорядоченности. Тогда множества $P(\mathbf{A}_i)$ и $P(\mathbf{A}_j)$ не содержат общего элемента. В самом деле, если $\mathbf{A}_k \in P(\mathbf{A}_i) \cap P(\mathbf{A}_j)$, то $\mathbf{A}_k > \mathbf{A}_i$ и $\mathbf{A}_k > \mathbf{A}_j$, откуда $\pi_k > \pi_i$ и $\pi_k > \pi_j$. Это однако противоречит утверждению, что максимальные цени разбиения не содержат общего разбиения — отичного от π . Так как $P(\mathbf{A}_i) \cap P(\mathbf{A}_j)$ пусто, то в каждом классе по разбиению π_i из любого класса по разбиению π_j содержится ΠA_k элементов, где произведение берется для всех $\mathbf{A}_k \not \in P(\mathbf{A}_i) \cup P(\mathbf{A}_j)$. Этим доказана необходимость условия 2.

Надо еще доказать необходимость последного утверждения теоремы. Это однако очевидно, так как разбиение совпадает с тривиальным. Итак, необходимость условий теоремы полностью доказана.

рассмотрим доказательства достаточности автомат $=\mathbf{M}(X_M,M,Y_M,\delta_M,\lambda_M)$ и множество $T=\{\hat{\pi}_1,\ldots,\hat{\pi}_{r-1}\}$ его разбиений, удовлетворяющее условиям теоремы. Обозначим через T_1 множество максимальных элементов множества T. Мы берем все максимальные цепи множества T, причем, если $\pi \in T$, то каждая максимальная цепь рассматрывается без разбиения π . Мы конструируем автоматы $\mathbf{A}_i = \mathbf{A}_i(X_i, A_i, Y_i, \delta_i, \lambda_i)$ для каждого разбиения $\pi_i \in \{T, \pi\}$, подходящее R-произведение которых изоморфен автомату **M**. Пусть $\pi_i \in T_1$. В этом случае автомат A_i определяется так: мпожество X_i входных сигналов совпадает с множеством входных сигналов автомата М, множеством состояний служит множество классов автомата **M** по разбиению π_i , множеством выходных сигналов является множество $Y_i = A_i \times X_i$, функция перехода: $\delta_i(\pi_i(m), x) = \pi_i(\delta_M(m, x))$, функция выходов: $\lambda_i(\pi_i(m), x) = (\pi_i(m), x)$.

Пусть π_{i_j} ($\neq\pi$) произвольное разбиение цепи, пачипающейся с разбиения π_i . Обозначим через A_{i_j} мпожество, мощность которого совпадает с мощностью множества $M^{\pi i_{j-1}(m)}_{\pi i_{j-1}(m)}$, где $\pi_{i_{j-1}}$ — разбиение, опережающее разбиение π_{i_j} . Пусть $\xi^{i_j}_{i_{j-1}(m)}$ — взаимно однозначное отображение множества A_{i_j} на $M^{\pi i_{j-1}(m)}_{\pi i_{j-1}(m)}$. Оно будет изоморфизмом, если мы упорядочим A_{i_j} следующим образом: $\alpha < \alpha'(\alpha, \alpha' \in A_{i_j})$ тогда и только тогда, если $\xi^{i_j}_{i_{j-1}(m)}(\alpha) < \xi^{i_j}_{i_{j-1}(m)}(\alpha')$. Берем изоморфные отображения $\xi^{i_j}_{i_{j-1}(m')}(x) = \psi^{i_{j-1},i_j}_{m,m'}(\xi^{i_j}_{i_{j-1}(m)}(x))$ множества A_{i_j} на множества $M^{\pi i_j}_{\pi i_{j-1}(m')}$.

Теперь для каждого j мы сконструируем автомат $\mathbf{A}_{i_j} = \mathbf{A}_{i_j}(X_{i_j}, A_{i_j}, Y_{i_j}, \delta_{i_j}, \lambda_{i_j})$ множество входных сигналов которого совпадает с множеством выходных сигналов автомата $\mathbf{A}_{i_{j-1}}$. Множеством состояний служит множество A_{i_j} , а множеством выходных сигналов — множество $Y_{i_j} = A_{i_j} \times X_{i_j}$. Функция перехода $\delta_{i_j}(\alpha_{i_j}, x_{i_j}) = \alpha_{i_j}^*$, где элемент $\alpha_{i_j}^*$ определяется так: если $x_{i_j} = (\alpha_{i_{j-1}}, (\dots, (\alpha_{i_1}, (\pi_i(m), x)) \dots))$ и $\xi_{i(m)}^{i_1}(\alpha_{i_1}) = \pi_{i_1}(m_1)$, $\xi_{i_1(m_1)}^{i_2}(\alpha_{i_2}) = \pi_{i_2}(m_2), \dots, \xi_{i_{j-1}(m_{j-2})}^{i_{j-1}}(\alpha_{i_{j-1}}) = \pi_{i_{j-1}}(m_{j-1}), \xi_{i_{j-1}(m_{j-1})}^{i_j}(\alpha_{i_j}) = \pi_{i_j}(m_j)$, то $\alpha_{i_j}^* = \xi_{i_{j-1}}^{i_{j-1}}(\delta_{M}(m_j, x))(\pi_{i_j}(\delta_{M}(m_j, x)))$.

При этом, если $\pi_i \in T_1$, то упорядочение множества состояний совпадает с упорядочением множества классов по разбиению π_i , а в множестве выход-

ных сигналов $(\pi_i(m), x) \ge (\pi_i(m'), x')$ тогда и только тогда, если $\pi_i(m) \ge$

 $\geq \pi_i(m'), x \geq x'.$

Упорядочение множества входных сигналов автомата \mathbf{A}_i , — следующее: $x_{i,j} (=(a_{i_{j-1}},(...,(\alpha_{i_1},(\pi_i(m),x))...))) \ge x_{i,j}' (=(\alpha_{i_{j-1}},(...,(\alpha_{i_1},(\pi_i(m'),x'))...)))$ тогда и только тогда, если $\alpha_{i_{j-1}} \ge \alpha_{i_{j-1}},...,\alpha_{i_1} \ge \alpha_{i_1},...,\pi_i(m) \ge \pi_i(m')$ и $x \ge x'$. Далее, для его выходных сигналов $(\alpha_{i_1},x_{i_j}) \ge (\alpha_{i_j},x_{i_j}')$ тогда и только тогда, если $\alpha_{i_1} \geq \alpha'_{i_1}, x_{i_1} \geq x'_{i_1}$.

Рассмотрим множество A_r , мощность которого совпадает с мощностью некоторого класса $M_{\pi_{l_j}(m_{l_j}),\ldots,\pi_{k_l}(m_{k_l})}$ ($=\pi_{l_j}(m_{l_j})\cap\ldots\cap\pi_{k_l}(m_{k_l})$) по разбиению π (где $\pi_{l_1},\ldots,\pi_{k_l}$ все опережают π) и взаимно однозначное отображение $\xi_{m_{l_j},\dots,m_{k_l}}^{i_l}$ множества A_r на $M_{\pi_{l_j}(m_{l_j}),\dots,\pi_{k_l}(m_{k_l})}$. Мы упорядочим A_r так, чтобы $\xi_{m_{l_j},\dots,m_{k_l}}^{i_j,\dots,k_l}$ было изоморфизмом.

Мы сконструируем автомат $\mathbf{A}_r = \mathbf{A}_r(X_r, A_r, Y_r, \delta_r, \lambda_r)$, принадлежащий к разбиению л. Мпожеством его входных сигналов является множество X_r таких элементов множества $Y_{l_j} \times ... \times Y_{k_l}$, во всех компонентах которых фигурирует одно и то же $x \in X_M$, где $\pi_{i_j}, \ldots, \pi_{k_i}$ операжеют разбиение π . Множество выходных сигналов $Y_r = A_r \times X_r$. Функция перехода: $\delta_i(\alpha_r, x_r) = \alpha_r^*$, где элемент α_r^* определяется так: если

$$x_r = ((\alpha_{i_1}, (..., (\alpha_{i_1}, (\pi_i(m_i), x))...)), ..., (\alpha_{k_1}, (..., (\alpha_{k_1}, (\pi_k(m_k), x)...)))$$

И

$$\xi_{i(m_i)}^{i_1}(\alpha_{i_1}) = \pi_{i_1}(m_{i_1}), \ldots, \xi_{i_{j-1}(m_{i_{j-1}})}^{i_j}(\alpha_{i_j}) = \pi_{i_j}(m_{i_j}), \ldots, \xi_{k(m_k)}^{k_1}(\alpha_{k_1}) = \pi_{k_1}(m_{k_1}), \ldots, \xi_{k(m_{k-1})}^{k_1}(m_{k_1}) = \pi_{k_1}(m_{k_1}), \ldots, \xi_{m_{i_j}}^{k_{i_{j-1}}}(\alpha_{r_j}) = m_r,$$

 $\xi_{\delta_M(m_{t_j}, \lambda), \dots, \delta_M(m_{k_l}, \lambda)}^{i_j, \dots, k_l^{-1}} (\delta_M(m_r, x))$. Функция выходов: $\lambda_r(\alpha_r, x_r) = (\alpha_r, x_r)$.

Упорядочение входных сигналов — следующее:

$$x_r(=((\alpha_{i_1}, (..., (\alpha_{i_1}, (\pi_i(m_i), x)) ...)), ..., (\alpha_{k_1}, (..., (\alpha_{k_1}, (\pi_k(m_k), x)) ...)))) \ge x_r'(=((\alpha'_{i_1}, (..., (\alpha'_{i_1}, (\pi_i(m'_i), x')) ...)), ..., (\alpha'_{k_1}, (..., (\alpha'_{k_1}, (\pi_k(m'_k), x')) ...))))$$

тогда и только тогда, если $\alpha_{i_j} \ge \alpha'_{i_j}, \ldots, \alpha_{i_1} \ge \alpha'_{i_1}, \pi_i(m_i) \ge \pi_i(m'_i), \ldots, \alpha_{k_l} \ge \alpha'_{k_l} \ldots$ $\alpha_k \geq \alpha'_{k_1}, \, \pi_k(m_k) \geq \pi_k(m'_k) \, \, \text{if} \, \, x \geq x'.$

Упорядочение множества Y_r выходных сигналов: $(\alpha_r, x_r) \ge (\alpha'_r, x'_r)$ тогда и только тогда, если $\alpha_r \ge \alpha'_r$, $x_r \ge x'_r$

Покажем, что описанным выше способом получаются упорядоченные автоматы. Пусть $\alpha_{ij} \leq \alpha'_{ij}$ и $x_{ij} = (\alpha_{i_{j-1}}, (..., (\alpha_{i_1}, (\pi_i(m), x)) ...))$. Тогда имеет место $\alpha^*_{ij} = \delta_{ij}(\alpha_{i_j}, x_{i_j}) \leq \delta_{ij}(\alpha'_{ij}, x_{i_j}) = \alpha^{*'}_{ij}$. Действительно $\alpha^*_{ij} = \xi^{ij}_{i_{j-1}(\delta_M(m_j, x))}(\pi_{ij}(\delta_M(m_j, x)))$,

$$\alpha_{ij}^{*'} = \xi_{i_{j-1}(\delta_M)m_{j-1}, x)}^{i^{-1}} (\pi_{i_j}(\delta_M(m'_{i_j}, x))).$$

Tak kak $\pi_{i,i}(m_i) \leq \pi_i(m'_i)$, to $\pi_{i,i}(\delta_M(m_i, x)) \leq \pi_{i,i}(\delta_M(m'_i, x))$.

Остается показать, что из $x_{i_j} \le x_{i_j}'$ вытекает $\alpha_{i_j}^* = \delta_{i_j}(\alpha_{i_j}, x_{i_j}) \le \delta_{i_i}(\alpha_{i_i}, x_{i_j}') = \alpha_{i_j}^{*'}$. Мы определим элемент $\alpha_{ij}^{*\prime}$ следующим образом. Если $\xi_{i(m')}^{l_1}(\alpha_{ij}) = \pi_{i,}(m_1)$, $\xi_{i_1(m'_1)}^{i_2}(\alpha'_{i_2}) = \pi_{i_2}(m'_2), \ldots, \ \xi_{i_{j-2}(m'_{j-2})}^{i_{j-1}(m'_{j-1})} = \pi_{i_{j-1}}(m'_{j-1}), \ \xi_{i_{j-1}(m'_{j-1})}^{i_j}(\alpha_{i_j}) = \pi_{i_j}(m'_j),$

 $\alpha_{l_j}^{\star\prime} = \xi_{l_{J-1}(\delta_M(m_j',x))}^{l-1} \left(\pi_{l_j}(\delta_M(m_j',x)) \right). \text{ Так как } \pi_l(m) \leq \pi_l(m'), \alpha_{l_1} \leq \alpha_{l_1}', \text{ имеет место } \pi_{l_1}(m_1) \leq \pi_{l_1}(m_1'). \text{ Заметим, что } \xi_{l_1(m_1)}^{l_2}(\alpha_{l_2}') = \psi_{m_1,m_1}^{l_1,l_2}(\xi_{l_1(m_1)}^{l_2}(\alpha_{l_2}')). \text{ Ввиду перавенства } \alpha_{l_2} \leq \alpha_{l_2}' \text{ получим } \xi_{l_1(m_1)}^{l_2}(\alpha_{l_2}) \leq \xi_{l_1(m_1)}^{l_2}(\alpha_{l_2}'). \text{ Так по условию 1. имеем: } \psi_{m_1,m_1}^{l_1,l_2}(\xi_{l_1(m_1)}^{l_2}(\alpha_{l_2}')) = \pi_{l_2}(m_2') \geq \pi_{l_2}(m_2). \text{ Продолжая этот метод, получим, что } \pi_{l_j}(m_{l_j}') \geq \pi_{l_j}(m_{l_j}'), \text{ так } \pi_{l_j}(\delta_M(m_{l_j}',x')) \geq \pi_{l_j}(\delta_M(m_{l_j},x)). \text{ В силу условию 1. получается:}$

$$\alpha_{ij}^{*'} = \xi_{l-1}^{i-1}(\delta_{M(m'_{j},x')})(\pi_{ij}(\delta_{M}(m'_{j},x'))) \ge \xi_{l-1}^{i-1}(\delta_{M(m_{j},x)})(\pi_{ij} = \delta_{M}(m_{j},x))) = \alpha_{i,*}^{*}$$

Аналогично доказывается упорядоченность автомата Λ_r .

Рассмотрим теперь R-произведение $\mathbf{A} = \mathbf{A}(X;A,Y,\delta,\lambda)$ автоматов \mathbf{A}_i ($i=1,\ldots,r$), множество входных сигналов которого совпадает с множеством входных сигналов автомата $\mathbf{M} = \mathbf{M}(X_M,M,Y_M,\delta_M,\lambda_M)$, множеством состояний является $A_1 \times \ldots \times A_r$, а множеством выходных сигналов — множество выходных сигналов автомата \mathbf{M} . Упорядочение множества $\{\mathbf{A}_i\}$ ($i=1,\ldots,r$) — следующее: $\mathbf{A}_i > \mathbf{A}_j$ тогда и только тогда, если $\pi_i > \pi_j$.

Функцию φ обратной связи мы определим так:

$$\varphi(\alpha_1, \alpha_2, ..., \alpha_r, x) = (x_1, ..., x_r), x_i = \varphi_i(\alpha_i, \alpha_{i_1}, ..., \alpha_{i_k}, x) \quad (i = 1, ..., r),$$

где комлоненты $\alpha_i, \, \alpha_{i_1}, \, \ldots, \, \alpha_{i_k}$ элемента $(\alpha_1, \, \alpha_2, \, \ldots, \, \alpha_r)$ — элементы автомата \mathbf{A}_i и всех опережающих его автоматов. Если $\pi_i \in T_1$, то $x_i = \varphi_i(\alpha_1, \, x) = x$. Таким образом, если $x_{i_1} = \varphi_{i_1}(\alpha_{i_1}, \, \ldots, \, x), \, \ldots, \, x_{i_k} = \varphi_{i_k}(\alpha_{i_k}, \, \ldots, \, x)$ и $\lambda_{i_1}(\alpha_{i_1}, \, x_{i_1}) = (\alpha_{i_1}, \, x_{i_1}), \, \ldots, \, \lambda_{i_k}(\alpha_{i_k}, \, x_{i_k}) = (\alpha_{i_k}, \, x_{i_k})$, то $x_i = ((\alpha_{i_1}, \, x_{i_1}), \, \ldots, \, (\alpha_{i_k}, \, x_{i_k}))$. Определение функции δ перехода:

$$\delta((\alpha_1, \ldots, \alpha_r), x) = (\delta_1(\alpha_1, x_1), \ldots, \delta_r(\alpha_r, x_r)).$$

Рассмотрим отображение η множества $A_1 \times ... \times A_r$ на $M: \eta((\alpha_1, ..., \alpha_r)) = m$, где $m = \pi_1(m_1) \cap ... \cap \pi_r(m_r)$; здесь $\pi_i(m_i) = \alpha_i$, если $\pi_i \in T_1$, а $\pi_{i_j}(m_{i_j}) = \xi_{i_{j-1}(m_{j-1})}^{i_j}(\alpha_{i_j})$ если $\pi_{i_j}(\notin T_1) \neq \pi_r$ и $\xi_{m_{i_j},...,m_{k_l}}^{i_j,...,k_l}(\alpha_r) = \pi_r(m_r)$. Легко убедиться, что отображение η — изоморфно.

Наконец мы определим функцию λ выходов: $\lambda((a_1, ..., \alpha_r), x) = \lambda_M(m, x)$. Обозначим через ϱ , соотв. σ тождественные отображения множества X, соотв. Y. Тогда $\varepsilon = \varepsilon(\varrho, \eta, \sigma)$ является изоморфным отображением автомата \mathbf{A} на \mathbf{M} .

Литература

[1] В. М. Глушков, Абстрактная теория автоматов, Успехи Мат. Наук, 5 (1961), 3—63.

[2] Ф. Гечег, О произведениях упорядоченных автоматов. I, Acta Sci. Math., 24 (1963), 244—250.

(Поступило 5/II/1963 г.)