Some torsion free rank two groups*)

By JOHN KOEHLER, S. J., in Seattle (Washington, USA)

The first theorem of this paper answers in the affirmative a conjecture of Beaumont and Pierce concerning quotient divisible (q. d.) rank two groups [1, p. 40]. The rest of the paper gives a construction for rank two groups with an infinite type set. The author assumes familiarity with the notation and theorems of [1], which shall be used throughout.

Theorem. If $T=\left\{\tau_{0}, \tau_{1}, \ldots, \tau_{n}\right\}$ is a finite set of distinct types such that $\tau_{i} \cap \tau_{j}=\tau_{0}$ if $i \neq j$ and τ_{0} is non-nil, then there exists a quotient divisible group A such that $T(A)=T$.

Proof. By Theorem 6.3 in [1], A is a q. d. torsion free rank two group if and only if $\Sigma+H(\xi)+H(\eta)$ and $H(\xi) \cap H(\eta)$ are non-nil, where $\left(A ; x_{1}, x_{2}\right) \rightarrow(\Sigma, X)$ and $(\xi, \eta) \in X$. Now $\tau_{0}=[H(\xi) \cap H(\eta)]$ is given as non-nil. Hence the problem reduces to that of finding a group A such that $T(A)=T$ and an independent pair x_{1}, x_{2} such that $\left(A ; x_{1}, x_{2}\right) \rightarrow(\Sigma, X)$, where Σ is non-nil, and $\Sigma(p)=\infty$ for all but a finite number of primes p such that $0<h_{p}(\xi(p))<\infty$ and $0<h(\eta(p))<\infty$ whenever $(\xi, \eta) \in X$.

Let χ_{0} be the characteristic such that $\chi_{0} \in \tau_{0}$ and $\chi_{0}(p)=0$ or ∞ for all p. Let χ_{i}^{\prime} be a characteristic such that $\chi_{i}^{\prime} \in \tau_{i}, i=1, \ldots, n$. If $i \neq j$, let $\pi_{i j}=\left\{p \mid \chi_{i}^{\prime}(p)<\infty\right.$, $\left.\left(\chi_{i}^{\prime} \cap \chi_{j}^{\prime}\right)(p) \neq \chi_{0}(p)\right\}$. Each $\pi_{i j}$ is finite, since $\tau_{i} \cap \tau_{j}=\tau_{0}$. Furthermore, $p \in \pi_{i j}$ if and only if $0=\chi_{0}(p)<\chi_{i}^{\prime}(p)<\infty$ and $0<\chi_{j}^{\prime}(p)$. For $i=1, \ldots, n$ define χ_{i} by

$$
\chi_{i}(p)= \begin{cases}0 & \text { if } \\ \chi_{i}^{\prime}(p) & p \in \bigcup_{j} \pi_{i j} \\ \text { otherwise }\end{cases}
$$

Then $\chi_{i} \in \tau_{i}$ since $\bigcup_{j} \pi_{i j}$ is finite and both χ_{i} and χ_{i}^{\prime} are finite on this set. It is easy to check that $\chi_{i} \cap \psi_{j}=\chi_{0}$ if $i \neq j$.

The following sets of primes partition $\pi, 1 \leqq k \leqq n$.

$$
\begin{aligned}
\pi_{0} & =\left\{p \mid \chi_{k}(p)=0 \text { for all } k\right\} ; \\
\pi_{0}^{\prime} & =\left\{p \mid \chi_{k}(p)=\infty \text { for all } k\right\}=\left\{p \mid \chi_{0}(p)=\infty\right\} ; \\
\pi_{k} & =\left\{p \mid \infty>\chi_{k}(p)>0=\chi_{0}(p)\right\} ; \\
\pi_{k}^{\prime} & =\left\{p \mid \infty=\chi_{k}(p)>0=\chi_{0}(p)\right\}
\end{aligned}
$$

[^0]Define Σ, ξ, and η by

$$
\begin{gathered}
\Sigma(p)= \begin{cases}0 & \text { if } \quad p \in \pi_{0} \cup \pi_{0}^{\prime} \\
\infty & \text { otherwise }\end{cases} \\
\xi(p)= \begin{cases}0 & \text { if } \quad p \in \pi_{0}^{\prime} \\
1 & \text { otherwise }\end{cases} \\
\eta(p)=\left\{\begin{array}{lll}
0 & \text { if } & p \in \pi_{0}^{\prime} \\
1 & \text { if } & p \in \pi_{0} \\
k & \text { if } & p \in \pi_{k}^{\prime}(k=1, \ldots, n) \\
k \beta(p) & \text { if } & p \in \pi_{k} \quad(k=1, \ldots, n)
\end{array}\right.
\end{gathered}
$$

where $\beta(p)=1+\sum_{n=0}^{\infty} p^{2 n t}, l=\chi_{k}(p)$. Thus if $p \in \pi_{k}, \eta(p) / \xi(p)$ is irrational; $h_{p}(\eta(p))=h_{p}(\xi(p))=0 ;$ and $h_{p}(\xi(p)-\eta(p))=h_{p}\left(p^{l}+p^{2 l}+p^{4 l}+\ldots\right)=l=\chi_{k}(p)$.

Let A be a rank two group containing independent elements x_{1} and x_{2} such that $\left(A ; x_{1}, x_{2}\right) \cdots(\Sigma, X),(\xi, \eta) \in X$. Note that $[H(\xi)]=[H(\eta)]=\tau_{0}$ is non-nil, and that $\Sigma(p)+h_{p}(\xi(p))+h_{p}(\eta(p))$ is 0 if $p \in \pi_{0}$, and is ∞ otherwise. Hence A is q. d.

It remains to show that $T(A)=T$. To do this, we employ 7.2,7.3, and 7.4 of [1]. The results are illustrated in the following tables, where $0 \neq s \in R, \Delta$ and ϱ are as defined in 7.2 and 7.3 respectively. The blank places are not needed to calculate $T(A)$.

	$\Sigma(p)$	$\Delta(\eta-s \xi)(p)$	$(H(\xi) \cap H(\eta))(p)$	$\chi_{0}(p)$	$\%_{j}(p)$
$p \in \pi_{0}$	0	0	0	0	
$p \in \pi_{0}^{\prime}$	0	∞	∞	∞	
$p \in \pi_{k}$ $k \geqq 1$	∞	$\Delta(k \beta(p)-s)$ $=0$	0	0	$\gamma_{j}(p)<\infty$ if $j=k$ 0 if $j \neq k$
$p \in \pi^{\prime}$ $k \geqq 1$	∞	$\Delta(k-s)$ $=\infty$ if $s=k$ $=0$ if $s \neq k$	0	0	∞ if $j=k$ 0 if $j \neq k$

In the following table, let $l \leqq k \leqq n, l=\chi_{k}(p)$, and let $*$ indicate that the case under consideration occurs for at most a finite number of primes.

Thus $\Sigma \cap(H(\varrho-s)+\Delta(\eta-s \xi))+H(\xi) \cap H(\eta)$ is equivalent to χ_{k} if $s=k$, $k=1, \ldots, n$, and is equivalent to χ_{0} if $s \neq k . H(\xi) \sim \chi_{0} \sim H(\eta)$. Hence $T(A)=$ $=\left\{\tau_{0}, \tau_{1}, \ldots, \tau_{n}\right\}=T$ by 7.4 of [1].

Lemma. Let $r_{1}, r_{2}, \ldots, r_{k}$ be a set of distinct positive integers and let n_{1}, n_{2}, \ldots \ldots, n_{k} be a set of distinct positive integers which are relatively prime in pairs. Then there exist positive integers $r_{k+1}, x_{1}, x_{2}, \ldots, x_{k}$ such that $\left(x_{i}, n_{i}\right)=1$ and $r_{k+1}=$ $=x_{i} n_{i}+r_{i}, i=1,2, \ldots, k$.

Proof. By the Chinese Remainder Theorem, there exist positive integers $y_{1}, y_{2}, \ldots, y_{k}$ such that the numbers $y_{i} n_{i}+r_{i}$ are all equal to some common value

	$\varrho(p)$	$H(o-s)(p)$	
$p \in \pi_{k}, p \nmid k$	$\begin{aligned} & \eta(p) / \xi(p)= \\ & k\left(1+p^{1}+p^{21}+\ldots\right) \end{aligned}$	$\begin{aligned} & h_{p}\left(k\left(1+p^{1}+p^{2 t}+\ldots\right)-s\right) \\ & \quad=\chi_{k}(p) \text { if } s=k \\ & \quad=\chi_{0}(p) \text { if } s \neq k, h_{p}(k-s)=0 \\ & \quad<\infty \quad \text { if } s \neq k: h_{p}(k-s) \neq 0 \end{aligned}$	*
$p \in \pi_{k}, p \mid k$	0	$h_{\mu}(-s)<\infty$	*
$p \in \pi_{k}^{\prime}, p^{\chi} k$	k	$\begin{aligned} & h_{p}(k-s) \\ & \quad=\infty \text { if } s=k \\ & \quad=0 \text { if } s \neq k, h_{p}(k-s)=0 \\ & \quad<\infty \text { if } s \neq k, h_{p}(k-s) \neq 0 \end{aligned}$	*
$p \in \pi_{k}^{\prime}, p \mid k$	0	$h_{p}(-s)<\infty$	*.

s_{k+1}. All such values will be congruent modulo $N=n_{1} n_{2} \ldots n_{k}$. Let M be the product of all the primes p such that for some index $i, p \mid n_{i}$ and $p \nmid y_{i}$. It is easy to check that, if $x_{i}=y_{i}+M N / n_{i}, i=1, \ldots, k$, and $r_{k+1}=x_{1} n_{1}+r_{1}$, then the conclusion of the lemma follows.

Construction. Let $T=\left\{\tau_{0}, \tau_{1}, \tau_{2}, \ldots\right\}$ be an infinite type set such that $\tau_{i} \cap \tau_{j}=\tau_{0}$ if $i \neq j$. For $i=0,1,2, \ldots$, choose characteristics $\%_{i} \in \tau_{i}$ such that $\%_{i} \geqq \%$. Somewhat as before, define

$$
\begin{aligned}
& \pi_{0}=\left\{p \mid \infty>\chi_{0}(p)=\chi_{i}(p) \text { for all } i\right\}, \\
& \pi_{0}^{\prime}=\left\{p \mid \chi_{0}(p)=\infty\right\}, \\
& \pi_{k}^{\prime}=\left\{p \mid \infty=\chi_{k}(p) \neq \chi_{0}(p)\right\}, \quad k=1,2, \ldots, \\
& \pi_{k}^{*}=\left\{p \mid \infty>\chi_{k}(p)>\psi_{0}(p)\right\}, \quad k=1,2, \ldots ;
\end{aligned}
$$

having defined π_{0}, define inductively

$$
\pi_{k}=\pi_{k}^{*}-\left(\bigcup_{j \neq k} \pi_{j}^{\prime} \cup \bigcup_{j<k} \pi_{j}\right), \quad k=1,2, \ldots
$$

$\pi_{0}, \pi_{1}, \pi_{2}, \ldots, \pi_{0}^{\prime}, \pi_{1}^{\prime}, \pi_{2}^{\prime}, \ldots$ partition π. We wish, however, to split the primes further. Let $\pi_{0}^{\prime \prime}=\varnothing$; define inductively $\pi_{k}^{\prime \prime}=\bigcup_{j}\left(\pi_{j}^{\prime} \cap \pi_{k}^{*}\right)-\bigcup_{j<k} \pi_{j}^{\prime \prime}$,

$$
\pi_{i j}=\pi_{i}^{\prime \prime} \cap \pi_{j}^{\prime}, \quad i \neq j .
$$

Each $\pi_{i j}$ is a finite set, and $\pi_{i j} \cap \pi_{k l} \neq \approx$ only if $i=k$ and $j=l$.
Let $d(p)=\chi_{i}(p)-\chi_{0}(p)$ for each $p \in \pi_{i j}$; define

$$
n_{i j}=\prod_{\pi_{i j}} p^{d(p)} \prod_{\pi_{j i}} p^{\mu(p)}
$$

where $i<j$ and where we take the empty product to be 1 . Note that $n_{1 j}, n_{2 j}, \ldots$ are relatively prime in pairs. Let $r_{1}=1, r_{2}=x_{12} n_{12}+r_{1}, \ldots, r_{k}=x_{i k} n_{i k}+r_{i}$, where for each k and each $i<k, r_{k}$ and $x_{i k}$ satisfy the above lemma.

We now redefine γ_{k} and π_{k} so that no primes in π_{k} divide γ_{k} or the $x_{i k}, i<k$. We do this inductively, leaving $\%_{0}$ and π_{0} unchanged. Having redefined $\%_{i}$ and π_{i}
for $i=k$, let $p \in \pi_{k}, p \mid r_{k}$ or $p \mid x_{i k}$. Change $\chi_{k}(p)$ to $\chi_{0}(p)$; remove p from π_{k}; and insert p in π_{j}, where j is the first index greater than k for which $\infty>\chi_{j}(p)>\chi_{0}(p)$. If there is no such j, let p be in π_{0}. Under these new definitions, $\pi_{0}, \pi_{1}, \ldots, \pi_{0}^{\prime}, \pi_{1}^{\prime}, \ldots$ still partition π.

Order the primes in their natural order: $p_{1}=2, p_{2}=3$, etc. Define ξ and η as follows:

$$
\begin{gathered}
\xi(p)= \begin{cases}0 & \text { if } \quad p \in \pi_{0}^{\prime}, \\
p^{x_{0}(p)} & \text { otherwise; }\end{cases} \\
\eta(p)= \begin{cases}0 & \text { if } p \in \pi_{0}^{\prime}, \\
p^{x_{0}(p)} r_{k} & \text { if } p \in \pi_{k}^{\prime}, \\
p_{m}^{x_{0}(p m)}\left(m+\sum_{i=0}^{\infty} p_{m}^{2^{i}}\right) & \text { if } \quad p_{m} \in \pi_{0}, \\
p^{z_{0}(p) r_{k}\left(1+\sum_{i=0}^{\infty} p^{2^{i}}\right)} & \text { if } \quad p \in \pi_{k} .\end{cases}
\end{gathered}
$$

Define Σ arbitrarily to satisfy

$$
\Sigma(p)= \begin{cases}=0 & \text { if } \quad \chi_{0}(p)=\infty, \\ \geqq \sup _{i}\left\{\chi_{i}(p)-\chi_{0}(p)\right\} & \text { if } \quad \chi_{0}(p) \neq \infty .\end{cases}
$$

Let $\left(A ; x_{1}, x_{2}\right) \rightarrow(\Sigma, X)$, where $(\xi, \eta) \in X$.
If, as in the preceding theorem, we perform the calculations for $\Theta(s)=$ $=\Sigma \cap(H(\varrho-s)+\Delta(\eta-s \xi))+H(\xi) \cap H(\eta)$ for every $s, 0 \neq s \in R$, we obtain the results:
(1) $\Theta\left(r_{k}\right) \sim \chi_{k}^{\prime}, k=1,2, \ldots$, where $\chi_{k}^{\prime}(p)=\chi_{0}(p)+h_{p}\left(r_{j}-r_{k}\right)$ if $p \in \pi_{j}^{\prime}$ and $\chi_{k}(p)=\chi_{0}(p)$ for some $j \geqq 1 . \chi_{k}^{\prime}(p)=\chi_{k}(p)$ otherwise.
(2) $\Theta(s) \sim \chi_{0}$ if $s \neq r_{k}$, unless for infinitely many k there are primes p such that
(a) $h_{p}\left(r_{k}-s\right)>0$, where $\left.p \in \pi_{k}^{\prime}, p\right\} r_{k}$; or
(b) $h_{p}\left(r_{k} \eta(p) / \xi(p)-s\right)>0$ where $p \in \pi_{k}, p \nmid r_{k}$.
(3) $H(\xi)=\%_{0}$,
(4) $H(\eta) \sim \chi_{0}$ unless for infinitely many $k, h_{p}\left(r_{k}\right)>0$ for some $p \in \pi_{k}^{\prime}$.

Since each $\chi_{k}^{\prime} \geqq \chi_{k}>\chi_{0}$, it is clear that $\tau_{0},\left[\chi_{1}^{\prime}\right],\left[\chi_{2}^{\prime}\right], \ldots$ are all distinct types. Since A is a group and $\tau_{0}=H(\xi)$, then $\left[\chi_{j}^{\prime}\right] \cap\left[\chi_{k}^{\prime}\right]=\tau_{0}$ if $j \neq k$. Thus $T(A)$ is infinite, and $T(A)=T$ unless the exceptions noted above occur.

The following corollaries are evident:
Corollary 1. Let $T=\left\{\tau_{0}, \tau_{1}, \tau_{2}, \ldots\right\}$ be an infinite set of types such that $\tau_{i} \cap \tau_{j}=\tau_{0}$ if $i \neq j$. Then there is a set of types $T^{\prime}=\left\{\tau_{0}, \tau_{1}^{\prime}, \tau_{2}^{\prime}, \ldots\right\}$ such that $\tau_{i}^{\prime} \geqq \tau_{i}$ if $i \geqq 1$ and $\tau_{i}^{\prime} \cap \tau_{j}^{\prime}=\tau_{0}$ if $i \neq j$ and a rank wo group A such that $T(A) \supseteqq T^{\prime}$.

Corollary 2. Let $T=\left\{\tau_{0}, \tau_{1}, \tau_{2}, \ldots\right\}$ be an infinite set of types such that $\tau_{i} \cap \tau_{j}=\tau_{0}$ if $i \neq j$ and such that, for only finitely many $i, \chi_{i}(p)=\infty$ occurs, where $\chi_{i} \in \tau_{i}$. Then there is a rank two group A such that $T(A) \supseteqq T$.

Corollary 3. In the above construction, if τ_{0} is non-nil and if we let $\Sigma(p)=\infty$ whenever $\infty \neq \chi_{0} p_{0}$ for any $\chi_{0} \in \tau_{0}$, then A will be a q. d. group having an infinite type set.

Example. Define $\chi_{0}, \chi_{1}, \chi_{2}, \ldots$ by

$$
\begin{aligned}
& \chi_{0}(p)=0 \text { for all } p \\
& \chi_{1}(p)=1 \text { for all } p \\
& \chi_{k}\left(p_{k-1}\right)=\infty, \chi_{k}(p)=0 \text { for all other } p
\end{aligned}
$$

where $k>1$, and where the primes are given their natural order. Clearly $\left[\chi_{1}\right] \cap\left[\chi_{j}\right]=$ $=\left[\chi_{0}\right]$ if $i \neq j$. However $\chi_{1} \cap \chi_{k} \neq \chi_{0}$ if $k>1$; in fact, it is impossible to find a set of characteristics equivalent to these such that any two intersect to give χ_{0}.

Following the construction, we get $\pi_{0}=\pi_{0}^{\prime}=\pi_{1}^{\prime}=\pi_{k}=\varnothing$. If $k>1, \pi_{k}^{\prime}=\left\{p_{k-1}\right\}$, $\pi_{k}^{\prime \prime}=\varnothing . \pi_{1}^{\prime \prime}=\pi$. Thus if $k>1, \pi_{1 k}=\left\{p_{k-1}\right\}=\pi_{k}^{\prime}, n_{1 k}=p_{k-1}$, all other $n_{i k}$ are 1. Let $r_{1}=1, x_{1 k}=1, r_{k}=x_{1 k} n_{1 k}+1=p_{k-1}+1$, and $x_{j k}=r_{k}-r_{j}$ for $1<j<k$. These numbers satisfy the lemma trivially for each k; also, it is not necessary to redefine any γ_{k} or π_{k}.

Define for all primes $p_{k}: \Sigma\left(p_{k}\right)=\infty, \xi\left(p_{k}\right)=1, \eta\left(p_{k}\right)=r_{k+1}=p_{k}+1$. Let $\left(A ; x_{1}, x_{2}\right) \rightarrow(\Sigma,[(\xi, \eta)])$.

Then $H(\xi)=H(\eta)=\chi_{0} . \Theta(s)$ is easy to compute for all $0 \neq s \in R . \Delta(\eta-s \xi)\left(p_{k}\right)=$ $=\infty \Leftrightarrow s=r_{k+1}=p_{k}+1$. If $s=1, h_{p}(\varrho(p)-1)=h_{p}(p+1-1)=1$ for all p. Hence $\Theta(1)=\chi_{1}$. If $s=r_{k}, k>1$, then $\Theta\left(r_{k}\right)\left(p_{k-1}\right)=\infty$. For other primes $p \neq p_{k-1}$, $h_{p}\left(\varrho(p)-r_{k}\right)=h_{p}\left(p-p_{k-1}\right)=0$. Hence $\Theta\left(r_{k}\right)=\chi_{k}$. If $s \neq r_{k}, k \geqq 1$, then $h_{p}(\varrho(p)-s)=h_{p}(p+1-s)=h_{p}(1-s)=0$ for all but a finite number of p. Hence $\boldsymbol{\Theta}(s) \sim \chi_{0}$.

Therefore $T(A)=\left\{\left[\chi_{0}\right],\left[\chi_{1}\right],\left[\chi_{2}\right], \ldots\right\}$. Thus in this simple example, the construction gives good results.

References

[1] R. A. Beaumont and R. S. Pierce, Torsion Free Groups of Rank Two, Memoirs Amer. Math. Soc., 38 (1961).
[2] L. Fuchs, Abelian Groups (New York, 1960).

[^0]: *) This paper is adapted from part of the author's doctoral dissertation, written under the direction of R. A. Beaumont.

