Some torsion free rank two groups*)

By JOHN KOEHLER, S. J., in Seattle (Washington, USA)

The first theorem of this paper answers in the affirmative a conjecture of BEAUMONT and PIERCE concerning quotient divisible (q. d.) rank two groups [1, p. 40]. The rest of the paper gives a construction for rank two groups with an infinite type set. The author assumes familiarity with the notation and theorems of [1], which shall be used throughout.

Theorem. If $T = \{\tau_0, \tau_1, ..., \tau_n\}$ is a finite set of distinct types such that $\tau_i \cap \tau_j = \tau_0$ if $i \neq j$ and τ_0 is non-nil, then there exists a quotient divisible group A such that T(A) = T.

Proof. By Theorem 6.3 in [1], A is a q. d. torsion free rank two group if and only if $\Sigma + H(\xi) + H(\eta)$ and $H(\xi) \cap H(\eta)$ are non-nil, where $(A; x_1, x_2) - (\Sigma, X)$ and $(\xi, \eta) \in X$. Now $\tau_0 = [H(\xi) \cap H(\eta)]$ is given as non-nil. Hence the problem reduces to that of finding a group A such that T(A) = T and an independent pair x_1, x_2 such that $(A; x_1, x_2) - (\Sigma, X)$, where Σ is non-nil, and $\Sigma(p) = \infty$ for all but a finite number of primes p such that $0 < h_p(\xi(p)) < \infty$ and $0 < h(\eta(p)) < \infty$ whenever $(\xi, \eta) \in X$.

Let χ_0 be the characteristic such that $\chi_0 \in \tau_0$ and $\chi_0(p) = 0$ or ∞ for all p. Let χ_i' be a characteristic such that $\chi_i' \in \tau_i$, i = 1, ..., n. If $i \neq j$, let $\pi_{ij} = \{p | \chi_i'(p) < \infty, (\chi_i' \cap \chi_j')(p) \neq \chi_0(p)\}$. Each π_{ij} is finite, since $\tau_i \cap \tau_j = \tau_0$. Furthermore, $p \in \pi_{ij}$ if and only if $0 = \chi_0(p) < \chi_i'(p) < \infty$ and $0 < \chi_j'(p)$. For i = 1, ..., n define χ_i by

$$\chi_i(p) = \begin{cases} 0 & \text{if} \quad p \in \bigcup_j \pi_{ij} \\ \chi'_i(p) & \text{otherwise.} \end{cases}$$

Then $\chi_i \in \tau_i$ since $\bigcup_j \pi_{ij}$ is finite and both χ_i and χ'_i are finite on this set. It is easy to check that $\chi_i \cap \chi_j = \chi_0$ if $i \neq j$.

The following sets of primes partition π , $1 \le k \le n$.

$$\pi_{0} = \{ p | \chi_{k}(p) = 0 \text{ for all } k \};$$

$$\pi'_{0} = \{ p | \chi_{k}(p) = \infty \text{ for all } k \} = \{ p | \chi_{0}(p) = \infty \};$$

$$\pi_{k} = \{ p | \infty > \chi_{k}(p) > 0 = \chi_{0}(p) \};$$

$$\pi'_{k} = \{ p | \infty = \chi_{k}(p) > 0 = \chi_{0}(p) \}.$$

^{*)} This paper is adapted from part of the author's doctoral dissertation, written under the direction of R. A. BEAUMONT.

Define
$$\Sigma$$
, ξ , and η by
$$\Sigma(p) = \begin{cases} 0 & \text{if } p \in \pi_0 \cup \pi'_0, \\ \infty & \text{otherwise}; \end{cases}$$

$$\zeta(p) = \begin{cases} 0 & \text{if } p \in \pi'_0, \\ 1 & \text{otherwise}; \end{cases}$$

$$\eta(p) = \begin{cases}
0 & \text{if } p \in \pi'_0, \\
1 & \text{if } p \in \pi_0, \\
k & \text{if } p \in \pi'_k \ (k = 1, ..., n), \\
k\beta(p) & \text{if } p \in \pi_k \ (k = 1, ..., n);
\end{cases}$$

where $\beta(p) = 1 + \sum_{n=0}^{\infty} p^{2^{n}l}$, $l = \chi_k(p)$. Thus if $p \in \pi_k$, $\eta(p)/\xi(p)$ is irrational; $h_k(n(p)) = h_k(\xi(p)) = 0$; and $h_k(\xi(p) - \eta(p)) = h_k(p^l + p^{2l} + p^{4l} + \dots) = l = \chi_k(p)$.

 $h_p(\eta(p)) = h_p(\xi(p)) = 0$; and $h_p(\xi(p) - \eta(p)) = h_p(p^l + p^{2l} + p^{4l} + \dots) = l = \chi_k(p)$. Let A be a rank two group containing independent elements x_1 and x_2 such that $(A; x_1, x_2) - (\Sigma, X)$, $(\xi, \eta) \in X$. Note that $[H(\xi)] = [H(\eta)] = \tau_0$ is non-nil, and that $\Sigma(p) + h_p(\xi(p)) + h_p(\eta(p))$ is 0 if $p \in \pi_0$, and is ∞ otherwise. Hence A is q. d. It remains to show that T(A) = T. To do this, we employ 7. 2, 7. 3, and 7. 4 of

It remains to show that T(A) = T. To do this, we employ 7. 2, 7. 3, and 7. 4 of [1]. The results are illustrated in the following tables, where $0 \neq s \in R$, Δ and ϱ are as defined in 7.2 and 7.3 respectively. The blank places are not needed to calculate T(A).

	$\Sigma(p)$	$\Delta(\eta-s\xi)(p)$	$(H(\xi)\cap H(\eta))(p)$	χ ₀ (p)	$\chi_j(p)$
$p \in \pi_0$	0		0	0	0
$p \in \pi'_{0}$	0		∞	∞	∞
$ \rho \in \pi_k \\ k \ge 1 $	∞	$ \Delta(k\beta(p)-s) \\ =0 $	0	0	$\chi_j(p) < \infty \text{ if } j = k$ 0 if $j \neq k$
p ∈ π' k ≥ 1	∞	$\Delta(k-s)$ $= \infty \text{ if } s=k$ $= 0 \text{ if } s \neq k$	0	0	∞ if $j=k$ 0 if $j\neq k$

In the following table, let $1 \le k \le n$, $l = \chi_k(p)$, and let * indicate that the case under consideration occurs for at most a finite number of primes.

Thus $\Sigma \cap (H(\varrho - s) + \Delta(\eta - s\xi)) + H(\xi) \cap H(\eta)$ is equivalent to χ_k if s = k, k = 1, ..., n, and is equivalent to χ_0 if $s \neq k$. $H(\xi) \sim \chi_0 \sim H(\eta)$. Hence $T(A) = \{\tau_0, \tau_1, ..., \tau_n\} = T$ by 7.4 of [1].

Lemma. Let $r_1, r_2, ..., r_k$ be a set of distinct positive integers and let $n_1, n_2, ...$..., n_k be a set of distinct positive integers which are relatively prime in pairs. Then there exist positive integers $r_{k+1}, x_1, x_2, ..., x_k$ such that $(x_i, n_i) = 1$ and $r_{k+1} = x_i n_i + r_i$, i = 1, 2, ..., k.

Proof. By the Chinese Remainder Theorem, there exist positive integers $y_1, y_2, ..., y_k$ such that the numbers $y_i n_i + r_i$ are all equal to some common value

	$\varrho(p)$	$H(\varrho-s)(p)$		
$p \in \pi_k, p \nmid k$	$n(p)/\xi(p) = k(1+p^1+p^{21}+)$	$h_{P}(k(1+p^{t}+p^{2t}+)-s)$ $=\chi_{R}(p) \text{ if } s=k$ $=\chi_{O}(p) \text{ if } s\neq k, h_{P}(k-s)=0$ $<\infty \text{ if } s\neq k, h_{P}(k-s)\neq 0$		
$p \in \pi_k, p \mid k$	0	$h_{\nu}(-s) < \infty$		
$p \in \pi'_k, \ p \nmid k$	k	$h_{p}(k-s)$ $= \infty \text{ if } s = k$ $= 0 \text{ if } s \neq k, h_{p}(k-s) = 0$ $< \infty \text{ if } s \neq k, h_{p}(k-s) \neq 0$	*	
$p \in \pi'_k, \ p \mid k$	0	$h_p(-s) < \infty$	*.	

 s_{k+1} . All such values will be congruent modulo $N = n_1 n_2 ... n_k$. Let M be the product of all the primes p such that for some index i, $p | n_i$ and $p \nmid y_i$. It is easy to check that, if $x_i = y_i + MN/n_i$, i = 1, ..., k, and $r_{k+1} = x_1 n_1 + r_1$, then the conclusion of the lemma follows.

Construction. Let $T = \{\tau_0, \tau_1, \tau_2, ...\}$ be an infinite type set such that $\tau_i \cap \tau_j = \tau_0$ if $i \neq j$. For i = 0, 1, 2, ..., choose characteristics $\chi_i \in \tau_i$ such that $\chi_i \ge \chi_0$. Somewhat as before, define

$$\pi_{0} = \{ p | \infty > \chi_{0}(p) = \chi_{i}(p) \text{ for all } i \},$$

$$\pi'_{0} = \{ p | \chi_{0}(p) = \infty \},$$

$$\pi'_{k} = \{ p | \infty = \chi_{k}(p) \neq \chi_{0}(p) \}, \qquad k = 1, 2, ...,$$

$$\pi^{*}_{k} = \{ p | \infty > \chi_{k}(p) > \chi_{0}(p) \}, \qquad k = 1, 2, ...;$$

having defined π_0 , define inductively

$$\pi_k = \pi_k^* - (\bigcup_{j \neq k} \pi_j' \cup \bigcup_{j < k} \pi_j), \qquad k = 1, 2, \ldots.$$

 π_0 , π_1 , π_2 , ..., π'_0 , π'_1 , π'_2 , ... partition π . We wish, however, to split the primes further. Let $\pi''_0 = \emptyset$; define inductively $\pi''_k = \bigcup_j (\pi'_j \cap \pi^*_k) - \bigcup_{j < k} \pi''_j$,

$$\pi_{ii} = \pi_i'' \cap \pi_i', \qquad i \neq j.$$

Each π_{ij} is a finite set, and $\pi_{ij} \cap \pi_{kl} \neq \emptyset$ only if i = k and j = l. Let $d(p) = \chi_i(p) - \chi_0(p)$ for each $p \in \pi_{ij}$; define

$$n_{ij} = \prod_{\pi_{ij}} p^{d(p)} \prod_{\pi_{ji}} p^{d(p)},$$

where i < j and where we take the empty product to be 1. Note that n_{1j} , n_{2j} , ... are relatively prime in pairs. Let $r_1 = 1$, $r_2 = x_{12}n_{12} + r_1$, ..., $r_k = x_{ik}n_{ik} + r_{ir}$ where for each k and each i < k, r_k and x_{ik} satisfy the above lemma.

We now redefine χ_k and π_k so that no primes in π_k divide r_k or the x_{ik} , i < k. We do this inductively, leaving χ_0 and π_0 unchanged. Having redefined χ_i and π_i

for i < k, let $p \in \pi_k$, $p | r_k$ or $p | x_{ik}$. Change $\chi_k(p)$ to $\chi_0(p)$; remove p from π_k ; and insert p in π_j , where j is the first index greater than k for which $\infty > \chi_j(p) > \chi_0(p)$. If there is no such j, let p be in π_0 . Under these new definitions, π_0 , π_1 , ..., π'_0 , π'_1 , ... still partition π .

Order the primes in their natural order: $p_1 = 2$, $p_2 = 3$, etc. Define ξ and η as follows:

$$\xi(p) = \begin{cases} 0 & \text{if } p \in \pi'_0, \\ p^{\chi_0(p)} & \text{otherwise}; \end{cases}$$

$$\eta(p) = \begin{cases} 0 & \text{if } p \in \pi'_0, \\ p^{\chi_0(p)} r_k & \text{if } p \in \pi'_k, \\ p^{\chi_0(p_m)}_m \left(m + \sum_{i=0}^{\infty} p^{2i}_m \right) & \text{if } p_m \in \pi_0, \\ p^{\chi_0(p)} r_k \left(1 + \sum_{i=0}^{\infty} p^{2i} \right) & \text{if } p \in \pi_k. \end{cases}$$

Define Σ arbitrarily to satisfy

$$\Sigma(p) = \begin{cases} = 0 & \text{if } \chi_0(p) = \infty, \\ \ge \sup_{\{\chi_i(p) - \chi_0(p)\}} & \text{if } \chi_0(p) \ne \infty. \end{cases}$$

Let $(A; x_1, x_2) \rightarrow (\Sigma, X)$, where $(\xi, \eta) \in X$.

If, as in the preceding theorem, we perform the calculations for $\Theta(s) = \Sigma \cap (H(\varrho - s) + \Delta(\eta - s\xi)) + H(\xi) \cap H(\eta)$ for every s, $0 \neq s \in R$, we obtain the results:

- (1) $\Theta(r_k) \sim \chi'_k$, k = 1, 2, ..., where $\chi'_k(p) = \chi_0(p) + h_p(r_j r_k)$ if $p \in \pi'_j$ and $\chi_k(p) = \chi_0(p)$ for some $j \ge 1$. $\chi'_k(p) = \chi_k(p)$ otherwise.
- (2) $\Theta(s) \sim \chi_0$ if $s \neq r_k$, unless for infinitely many k there are primes p such that
 - (a) $h_p(r_k s) > 0$, where $p \in \pi'_k$, $p \nmid r_k$; or
 - (b) $h_p(r_k\eta(p)/\xi(p)-s) > 0$ where $p \in \pi_k$, $p \nmid r_k$.
 - (3) $H(\xi) = \chi_0$,
 - (4) $H(\eta) \sim \chi_0$ unless for infinitely many k, $h_p(r_k) > 0$ for some $p \in \pi'_k$.

Since each $\chi'_k \ge \chi_k > \chi_0$, it is clear that τ_0 , $[\chi'_1]$, $[\chi'_2]$, ... are all distinct types. Since A is a group and $\tau_0 = H(\xi)$, then $[\chi'_j] \cap [\chi'_k] = \tau_0$ if $j \ne k$. Thus T(A) is infinite, and T(A) = T unless the exceptions noted above occur.

The following corollaries are evident:

Corollary 1. Let $T = \{\tau_0, \tau_1, \tau_2, ...\}$ be an infinite set of types such that $\tau_i \cap \tau_j = \tau_0$ if $i \neq j$. Then there is a set of types $T' = \{\tau_0, \tau_1', \tau_2', ...\}$ such that $\tau_i' \geq \tau_i$ if $i \geq 1$ and $\tau_i' \cap \tau_j' = \tau_0$ if $i \neq j$ and a rank two group A such that $T(A) \supseteq T'$.

Corollary 2. Let $T = \{\tau_0, \tau_1, \tau_2, ...\}$ be an infinite set of types such that $\tau_i \cap \tau_j = \tau_0$ if $i \neq j$ and such that, for only finitely many $i, \chi_i(p) = \infty$ occurs, where $\chi_i \in \tau_i$. Then there is a rank two group A such that $T(A) \supseteq T$.

Corollary 3. In the above construction, if τ_0 is non-nil and if we let $\Sigma(p) = \infty$ whenever $\infty \neq \chi_0 p_0$ for any $\chi_0 \in \tau_0$, then A will be a q. d. group having an infinite type set.

Example. Define $\chi_0, \chi_1, \chi_2, ...$ by $\chi_0(p) = 0 \text{ for all } p,$ $\chi_1(p) = 1 \text{ for all } p,$ $\chi_k(p_{k-1}) = \infty, \ \chi_k(p) = 0 \text{ for all other } p,$

where k > 1, and where the primes are given their natural order. Clearly $[\chi_i] \cap [\chi_j] = [\chi_0]$ if $i \neq j$. However $\chi_1 \cap \chi_k \neq \chi_0$ if k > 1; in fact, it is impossible to find a set of characteristics equivalent to these such that any two intersect to give χ_0 .

Following the construction, we get $\pi_0 = \pi'_0 = \pi'_1 = \pi_k = \emptyset$. If k > 1, $\pi'_k = \{p_{k-1}\}$, $\pi''_k = \emptyset$. $\pi''_1 = \pi$. Thus if k > 1, $\pi_{1k} = \{p_{k-1}\} = \pi'_k$, $n_{1k} = p_{k-1}$, all other n_{ik} are 1. Let $r_1 = 1$, $x_{1k} = 1$, $r_k = x_{1k}n_{1k} + 1 = p_{k-1} + 1$, and $x_{jk} = r_k - r_j$ for 1 < j < k. These numbers satisfy the lemma trivially for each k; also, it is not necessary to redefine any χ_k or π_k .

Define for all primes p_k : $\Sigma(p_k) = \infty$, $\xi(p_k) = 1$, $\eta(p_k) = r_{k+1} = p_k + 1$. Let

 $(A; x_1, x_2) \rightarrow (\Sigma, [(\xi, \eta)]).$

Then $H(\xi) = H(\eta) = \chi_0$. $\Theta(s)$ is easy to compute for all $0 \neq s \in R$. $\Delta(\eta - s\xi)(p_k) = \infty \Leftrightarrow s = r_{k+1} = p_k + 1$. If s = 1, $h_p(\varrho(p) - 1) = h_p(p + 1 - 1) = 1$ for all p. Hence $\Theta(1) = \chi_1$. If $s = r_k$, k > 1, then $\Theta(r_k)(p_{k-1}) = \infty$. For other primes $p \neq p_{k-1}$, $h_p(\varrho(p) - r_k) = h_p(p - p_{k-1}) = 0$. Hence $\Theta(r_k) = \chi_k$. If $s \neq r_k$, $k \ge 1$, then $h_p(\varrho(p) - s) = h_p(p + 1 - s) = h_p(1 - s) = 0$ for all but a finite number of p. Hence $\Theta(s) \sim \chi_0$.

Therefore $T(A) = \{ [\chi_0], [\chi_1], [\chi_2], ... \}$. Thus in this simple example, the construction gives good results.

References

[1] R. A. BEAUMONT and R. S. PIERCE, Torsion Free Groups of Rank Two, Memoirs Amer. Math. Soc., 38 (1961).

[2] L. Fuchs, Abelian Groups (New York, 1960).

(Received August 8, 1963)