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Logical dependence of certain chain conditions in lattice theory 
By SERGIU RUDEANU in Bucharest (Roumania) 

Introduction 

The purpose of this paper is to determine all logical implications that exist 
between certain chain conditions occurring in lattice theory. 

We recall first some basic notions. A subset C of a partially ordered set P is 
called a chain of P, if C is totally ordered with respect to the ordering of P (if x, y£C, 
then x, y are comparable, that is either x <_y, or x=y, or x>-y). A chain CQP is 
said to be maximal, if it has the following property: a£L comparable with all c £ C, 
implies a£C. A bounded chain is a chain C with least and greatest element: there 
exist a,b€.C, such that a^cSb for every c6 C: A finite chain is a chain having 
a finite number of elements; all finite chains are bounded. Let us denote by x<y 
the fact that y covers x, that is: x -<y and there is no element z such that x<z y. 
Then a finite maximal chain C can be written in the form x0<x1<...<x„; the 
number n is called the length of C. By definition, two maximal chains C, C have 
the same length if either both C, C are infinite, or C, C have the same finite length 
n. A partially ordered set P i s said be of finite length, if there is a natural number 
n, such that every maximal chain C of P has a length s n. P is said to be of locally 

finite length, if for every a, b£P, with a < 6 , the segment [a, b] = {x\x£L, a^x^b} 
is of finite length. 

As concerns the existence of maximal chains, we recall here that the following 
property is equivalent to the axiom of choice: every chain of a partially ordered set 
is contained in a maximal chain (see, for instance, [1]). 

Now, let £ be a lattice whose operations are denoted by u , n . We shall con-
sider the following properties: 

M. For every a,b,c£L, a^c implies a u ( ¿ n c ) = ( a u i ) o c . 
S. For every a,b,x£L such that anb-^x^a, there is an element t£L, such 

that a nb and ( x u / ) n a = x. 
F t . The lattice L is of finite length. 
F 2 . The latticé L is of locally finite length. 
F 3 . All bounded chains of L are finite. 
J j . For every a,b£L with a<b, all maximal chains of [a, b] have the same 

length. 
J2• For every a, b£L with' a<b, all finite maximal chains of [a, b] have the 

same length. 

14 A 
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C t . For every a,bZL,anb-<a implies b<a\jb. 
C 2 . For every a,b^L, anb<a,b*) implies a,b<a\jb. 

A lattice L satisfying property M, respectively S, is called modular, respectively 
semi-modular. According to G . SZASZ [11 ] , property J , is the Jordan—Dedekind chain 
condition; in G . BIRKHOFF 'S book [1] , this denomination is reserved to property J 2 ; 
in R . CROISOT'S terminology [4] , the Jordan—Dedekind chain condition is the 
logical conjunction of and F 3 (or, of J2 and F3). Properties Q and C2 may be 
called covering conditions [1]; C t is also called „die Nachbarbedingung" [11]. 

The above properties are not independent. For instance, it is easily seen that 
Ft=>-F2=>-F3; Jt=>-J2; C!=>C2 a. s. o.; other less trivial logical implications are 
given in [1], [4], [11]. In this paper, we shall determine all logical implications be-
tween M, ..., C 2 . 

In general, a system E of properties being given, the determination of all possible 
logical implications between the properties belonging to £**), is called the complete 
existential theory of E. This notion is due to E . H. M O O R E [9]. The complete exis-
tential theory of a system E, offers us a (complete) set of new results and a definitive 
systematization of them. Studies concerning the complete existential theory of 
certain axiom systems occurring in the theory of partially ordered sets, were made 
b y A . H . D I A M O N D [2], L . L . D I N E S [3] , R . CROISOT [4], E . V . H U N T I N G T O N [5] , 
[6], [7] (paper [7] contains detailed explanations about the significance of this notion), 
H . M . M A C N E I L L E [8] , I . ROSENBAUM [10] , J . S . TAYLOR [12] , [13 ] , a n d W . E . V A N 
DE W A L L E [14 ] . 

In the sequel we shall study the complete existential theory of the system 

(1) E = {M, S, F 1 ; F 2 , F 3 , J l 5 J 2 , C „ C2}. 

This problem was suggested us by D. VAIDA. 

§1 
We shall first establish some lemmas, 
L e m m a 1. If F 3 and C j , then F 2 and Jx. 
P r o o f . Let L be a lattice satisfying F 3 and C t ; and let a,b£L, with a<b. 

We must prove that all maximal chains of [a, b] have the same finite length. By 
F 3 , [a, b] includes a finite maximal chain; taking into account Theorem 1 from 
[4], p. 88, we obtain the desired conclusion. 

L e m m a 2. If C x , then J t . 
P r o o f . Let L be a lattice satisfying C 1 ( and let a,b£L, with a<b. If [a, b] 

includes a finite maximal chain, then, reasoning as in Lemma 1, we conclude that 
all maximal chains of [a, b] have the same (finite) length. If [a, b] has no finite maximal 
chain, then all maximal chains of [a, b] are infinite. In both cases, Jx is verified. 

*) x<y, z means x<y and x<z; similarly for t,u<v. 
**) We consider the most general type of implications A=>B, that is, A and B are logical 

functions of the properties of £ (expressed by means of logical conjunction, disjunction, negation). 
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L e m m a 3.7/" F 3 and J 1 ( then F 2 . 

P roof . Let L be a lattice satisfying F 3 , but not F 2 ; we shall prove that L does 
not satisfy J , . According to the hypothesis, L includes a segment [a, b] of infinite 
length, although all maximal chains of [a, b] are finite. This means that for every 
natural number n, there exists a maximal chain of [a, b], whose length is >/?; thus 
J j is not verified. 

L e m m a 4. If F2 and C2, then S. 

P roo f . Let L be a lattice satisfying F2 and C 2 , and let a, b, x£L, such that 
(2) a. 

By F 2 , the segment [a nb, x] has a finite length n, and [a nb, b] is also of finite 
length. Hence there is an element t£L, such that 
(3) anb<t^b\ 
we shall prove that 

(4) x = (x <Jt) na. 

We remark first that (2) and (3) imply 
(5) a nb = x nt 
and 
(6) 

( x u i = ( x u i ) n a would imply i ^ x u i ^a, hence t^anb, a contradiction). 
Now, relation (4) is an immediate consequence of (6) and 

(7) x - < x u t\ 

therefore, it is sufficient to prove (7). We shall do this by recurrence on the length 
n of [a nb, x]. 

If « = 1, then anb<x; taking into account (5) and (3), we deduce xnt<x, t. 
By C 2 , we obtain (7). 

Now, supposing the assertion true for n — 1, we shall prove it for « > 1 . In 
fact, F2 implies the existence of an element y € L such that 

(8) anb<y-<x, 

the segment [a nb, y] being of length n — 1. Relation (8) and the inductive hypothesis 
imply respectively 
(9) y ^ x n ( y v j t ) ^ y \ j t 
and 
(10) y<yvt. 

Since x n ( j u i ) y\Jt (otherwise t^y<ut^x<a, hence t^anb, a contra-
diction), relations (9) and (10) imply 

(11) y = xn(yut). 
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Relations (11). (8) and (10) show that xr\(yvt)<x,yKjt. Hence, by C 2 , we 
obtain 

x,yut-<xu(yut) = xu t, 
completing the proof. 

L e m m a 5. If C2, then J 2 . 

P r o o f . Let L be a lattice satisfying C 2 , and let 

(12) a — x0<xi<...<xn = b, 

(13) a = y0<y1 <...< ym = b 

be two finite maximal chains, having the.same end elements; we must prove that 
n = m. 

If n — 1, then a<b, hence m = 1. We suppose the assertion true for n — 1 and 
we shall prove it for n. 

If Xy—yL the maximal chains xt <x2 -<... <x„ = b and = y i < y 2 < ••• 
••• <y,n — b have the same length, according to the inductive hypothesis, that is, 
n — 1 = m — 1. 

If Xy^yt, then xt nyt = a<xl,yi. By C 2 , we have 

(14) X i , y l < X l U y l = U l . 

If there exists a finite maximal chain between a^ and b, then the equality 
n=m is immediately deduced, as in [4], Lemma 1, pp. 64—65. But such a chain 
can be constructed as follows. 

We define 

{XfU if X/^Mj-! 

if 0 = 2, 3, . . . , « — 1); 
and we remark that 
(16) xi,ui-i<ui (/ = 2, ..., n — 1). 

Indeed, if x2?iul, then n u i = xl<x2,u1 and by C 2 , 
X2 , Uy -< X2 UWj — u2. 

If x2=u1, then u2 —x3 > x2=ui. The proof of (16) is easily completed by recur-
rence. 

Now, the maximal chain between wt and b will be ui<u2<...<un-x\ it is 
sufficient to prove that u„-l=bn. 

If x„-l=un_2l then u„_l=xn=b. If x„_! ^ u „ _ 2 , then u«„_ 2 = 
= u„_i^b. But x„..1<b and V i ^ V i U w „ _ 2 (otherwise, x„_2-<w„_2 
and x „ _ 2 < x „ - l would imply w„_ 2 =x„_ 1 ( a contradiction), therefore w„_j =b, 
completing the proof. §2 

In the sequel, for every A, B£Z we shall denote by AB and Aw B the logical 
conjunction and disjunction, respectively, of A, B and by A the negation of A. The 
complete existential theory of Z will be made by means of Venn diagrams. This 
is possible on account on the equivalence between the implication 

(17) A=>B 
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and the relation 
(18) AB = 0. 

The last equality means that, when considering a Venn diagram, the region corres-
ponding to property AB (A and not B) is void. On the other hand, a relation of the 
form 
(19) AB = 0 

(expressed in terms of Venn diagrams) is equivalent to the implication 

(20) A=>B, 

if we take into account that 
(21) A = A . 

Thus, the problem of studying the complete existential theory of I , is equivalent 
to the following:*) 

Consider the Venn diagram of the 9 properties belonging to S; there are 29 

possible elementary regions**). Determine which of these regions are void, and 
which are not. 

To solve this problem, we notice first that 

(22) M=>S, but S=|>M, 

(23) F 1 = > F 2 ^ F 3 , but F3=i>F2=l>F i ; F j ^ F i , 

(24) Ji=>J2 , but J2=I>J1; 

(25) C ^ C j , but C2=l^C1 ; 

(see, for instance, [1], [4], or [11]). This means that the non-void elementary regions 
of the system 1 ' = {M, S} are 

(26) MS = M, MS, M S = S, 

and the non-void elementary regions of the system h"— {F t , F 2 , F 3} are 

(27) Fi F 2 F 3 = Fi , Fi F 2 F 3 = Fi F2, Fi F2 F 3 = F 2 F3, Fi F2 F 3 = F 3 . 

Now, the elementary regions of the system 

(28) Z1 = r u r = { M , S f , F 1 , F 2 , F 3 } 

are obtained by forming the meet of each region (26) with each region (27). 
But F 3 Ci =>F2J! =>F2, by Lemma 1, and 

(29) S=>C1( 

(see, for instance, [11], p. 157, Theorem 50), therefore F3S=>F2 , hence F 2 F 3 S = 0 . 

*) For a detailed proof of this equivalence, see, for instance, [7]. 
**) An elementary region is a region corresponding to a complete elementary conjunction 

of M, S , . . . , C 2 , for instance M S F ^ a F s J i r i C ! ^ . 
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The other meets of the regions (26) and (27), indicated in Fig. I, are non-void. More 
precisely, the fact that the 
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Fig. I 

regions M F 1 ; MF X F 2 , M F 3 , M S F1 } M S F ^ , MSF 3 , SF 2 F 3 are non-void, is shown 
respectively by the lattices in Fig. 1, 2, ..., 6, 11 (the lattice in Fig. 2, which appears 
also as a sublattice in Fig. 3, 5, 6, 9, 10, 13, 14, 16, is a lattice isomorphic to the 
chain of natural numbers). The fact that the regions S F ^ S F j F j are non-void, is 
shown by any of the lattices in Fig. 7, 8, respectively by any of the lattices in Fig. 
9, 10. Finally, the fact that the region SF 3 is non-void, is shown by any of the 
lattices in Fig. 12, ..., 17 (in Fig. 12, 13, 15 the dual of the lattice in Fig. 2 appears 
as a sublattice). Thus we have proved 

L e m m a 6. The complete existential theory of system is shown in Fig. I 
(the only non-void elementary regions are shown in Fig. I). 

Now, we shall study the complete existential theory of the system 

( 3 0 ) I 2 = I , U { J I , J 2 } = { M , S , F T , F 2 , F 3 , J X , J 2 } . 

It follows from (24) that the non-void elementary regions of the system {J1( J2) 
are 
( 3 1 ) J I J 2 = J I , J I J 2 , J 1 J 2 = J 2 , 

hence the elementary regions of I 2 are obtained by forming the meet of each region 
shown in Fig. I, with each region (31). We shall prove that some of these meets 
are void. 

First, we have S = > J X by Lemma 2 and ( 2 9 ) ; hence all I 2 elementary regions 
included in S satisfy . 

Further, it is evident that F 3 J 2 = > - J 1 , hence F 3 J 1 J 2 = 0 and a fortiori 

(32) S F 2 F 3 J I J 2 = 0 ; 
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by Lemma 3 we have also F j F j J ^ O , hence a fortiori 

(33) S F 2 F 3 J i = 0. 

Finally, F 2 J 2 =*F3J2 = ^ 1 . hence all Z2 elementary regions included in F 2 , 
that is in FT or in FJF 2 , satisfy J ^ 

The elementary regions of Z 2 , indicated in Fig. II, are non-void. To prove 

S F ! J 2 S F I F 2 J 2 

S F 2 F 3 J 2 

S F 3 J 2 
S F ! J 2 S F I F 2 J 2 

S F 2 F 3 J 2 S F 3 L J 2 

S F I J I S F I F 2 J I 

S F 2 F 3 J 2 S F 3 L J 2 

S F I J I S F I F 2 J I 

S F 2 F 3 J 2 

S F 3 J 1 

M S F I J I M S F I F 2 J I M S F 3 J 1 

M F 1 J 1 M F 1 F 2 J 1 M F 3 J I 

Fig. I I 

this assertion, we compare Fig. II to Fig. I and we remark it is sufficient to prove 
that the regions S F ^ i , S F i J 2 , S F ^ J i , S F ^ J z , S F j J ! , S F j J i J ^ SF 3 J 2 are non-
void. But the fact that the first four regions are non-void, is shown by the lattices in 
Fig. 7,8,9, 10. The fact that the regions S F ^ j and SF 3 J j J2 are non-void, is shown by 
any of the lattices in Fig. 12, 13, 14, respectively by any of the lattices in Fig. 15, 16. 
Finally the fact that the region SF 3 J2 is non-void, is shown by the lattice in Fig. 17. 
We have thus examined all elementary regions of I 2 , proving the following 

L e m m a 7. The complete existential theory of system Z2 is shown in Fig. II. 
Now, we are in the position to study the complete existential theory of the 

system 
( 3 4 ) R = X 2 U { Q , C 2 } = { M , S , F J , F 2 , F 3 , J J , J 2 , C 1 ; C 2 } . 

It follows from (25) that the non-void elementary regions of the system {Cx, C2} 
are 

( 3 5 ) C 1 C 2 = C I , C I C 2 , C I C 2 = C 2 , 

hence the elementary regions of I are obtained by forming the meet of each region 
shown in Fig. II, with each region (35). We shall prove that some of these meets 
are void. 

First, relation (29) shows that every I elementary region, included in S, satis-
fies Q . 

Further, by Lemma 4, S F 2 C 2 = 0 , hence every I elementary region, included 
in SF 2 , that is in SFi or in S F i F ^ satisfies C 2 . 
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But J 2 C i v J 2 C i C 2 = J 2 (C i v C i C 2 ) = J2C2 = 0, by (35) and Lemma 5, 
hence a fortiori 

(36) S F 2 F 3 J 2 C i = S F 2 F 3 J 2 C 1 C 2 = S F 3 J 2 C 1 = S F 3 J 2 C 1 C 2 = 0 . 

Finally, Ji Ci = 0, by Lemma 2, hence 

(37) S F 3 J i J 2 C I = 0 . 

The elementary regions of E, shown in Fig. I l l , are non-void. To prove this 
assertion, we compare Fig. I l l and Fig. II, and we remark that it is sufficient to prove 

S F ! J 2 C 2 S F 1 F 2 J 2 C 2 

S F 2 F 3 J 2 C 2 

S F 3 J 2 C 2 
S F ! J 2 C 2 S F 1 F 2 J 2 C 2 

S F 2 F 3 J 2 C 2 S F 3 J 1 J 2 C 1 C 2 S F 3 J 1 J 2 C 2 

S F i J i C 2 S F i F j J i C i 

S F 2 F 3 J 2 C 2 S F 3 J 1 J 2 C 1 C 2 S F 3 J 1 J 2 C 2 

S F i J i C 2 S F i F j J i C i 

S F 2 F 3 J 2 C 2 

S F 3 J 1 C 1 S F 3 J i C I C 2 S F 3 J 1 C 2 

1 
M S F i J i C i | M S F i F 2 J i C i M S F 3 J 1 C 1 

M F i J i C i M F 1 F 2 J 1 C 1 M F 3 J 1 C 1 

Fig. I l l 

that the regions S F 3 J t C i , S F 3 J ^ C a , S F - ^ C j , S F 3 J 1 J 2 C 1 C 2 , S F ^ J ^ are 
non-void. But this is shown by the lattices in Fig. 12, ..., 16, respectively. We have 
thus examined all elementary regions of E, proving the following 

T h e o r e m . The complete existential theory of system E is shown in Fig. III. 

In other words, the non-void elementary regions of I are those shown in Fig. III. 
The fact that the regions indicated in Fig. I l l are elementary, is a consequence of 
the_following relations: M S = 0 , F 1 F 2 F 3 = F 1 F 2 F 3 = F 1 F 2 F 3 = F X F 2 F 3 = 0, J ^ = 0 , 
CyC2 = 0 (equivalent to (22), (23), (24), (25) respectively) and (26), (27), (31), (35). 

As an application of the above theorem, let us decide whether the relation 
S F 2 J 2 C ! = 0 (that is Ci =>-S v F 2 v J 2 , or S J 2 = > F 2 v C ! , a. s. o.) is true or not. 
But SF 2 J 2 C! = S (F 2 F 3 v F 3 ) J 2 C 1 = S F 2 F 3 J 2 C 1 V S F ^ C ^ O thus the above 
implication is true. 

C o n c l u s i o n s . The present study could be continued, by adding other axioms 
to E, for instance the converses of ¿ j and C 2 , or some conditions involving the 
notion of a dimension function (see [11]). 

Note added in proof. A simple inspection of Fig. I l l shows that F 3 C 1 C 2 = 0 
(or F3C2=>-C1). This assertion is equivalent to the dual of Theorem 3.3 in 
KoRiNEfc's paper „Lattices in which the theorem of Jordan — Holder is generally 
true", Tridy Ceske Acad. 59, No. 23 (1949). 
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Fig. 1 Fig. 2 Fig. 3 Fig. 4 

A 

Fig. 6 

V v V" 
Fig. 7 Fig. 8 Fig. 9 

V " 

A A it < k 

V V V 
Fig. 11 Fig. 12 Fig. 13 Fig. 14-

Fig. 15 Fig. 16 Fig. 17 
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