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On the structure of set mappings and the existence of free sets 
By G. FODOR and A. MÁTÉ in Szeged 

To Professor László Kalmár on his 60tli birthday 

Let E be an infinite set of power m and suppose that, to every element x of 
E there corresponds a subset S(jc) of E such that jt Two distinct elements 
of E, x and y, are called independent if x £ S(y) and y $ S(x). A subset F of E is called 
free if any two distinct elements of F are independent. Throughout this paper we 
assume that m is regular and the power of the set S(x) is -<m for every ,x£E. 

Let us denote by Pt (E) the set of all subsets of E. Let S ^ P t (E). We say that 
S satisfies the ascending chain condition for the ordinal number r, if there exists 
no sequence of type T of elements of S such that holds for every 

Let us denote by Ac(E, r) the set of all sets S ^ P t ^ ) which satisfy the 
ascending chain condition for T. By S\H we denote the set {S(x)i~]H\ x£E], where 
/ / r / : . 

We consider the following two conditions for the set mapping S(x): 
(A) For every Xi<S = {S(x)}x(iE, the set {Y£&: VQX} is well ordered by 

Q and the ordinal type ^{X) of the set {Yg®: 7 c X ) is less than co(m). The least 
upper bound of the ordinal numbers where X f B , is co(m). The set of the elements 

S for which £_ (X) = £ has power less than m, and every subset of ..© which is well 
ordered by 5= has power 

(B) For every decomposition E — |J Etl of E, where r <oj(m), Et] = m.; and the 

sets £„ are mutually disjoint, there exists an ordinal number c r such that 
£Ac (E ( , a>(m)). . . ' . 

. In this paper we deal with the following question: 
Whether or not the condition (A) (or (B)) implies .the existence of free subsets 

•of certain cardinalities of E? 
In section I we shall prove that the condition (A) does not imply the existence 

of a free set of power m. In section II we shall prove that the condition (B) implies 
the existence of a free set of power 

We shall use the following notations: For any set P of sets let 

• < P > = U ^ • 
X 6 P 

For-any cardinal number p we denote by co(p) the initial number of p and by p+ 

the cardinal number following p immediately. The symbols 5 and y denote the 
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cardinal numbers of the set S and of the ordinal number y, respectively. For any 
element x of £ let S'^x) = {y£E: x£ S ( j )} and for any * i £ l e t S(A0= U S(x) 
and S~X(X)= U -S-1^)- *s;,r 

xiX 

1. 

First we consider the following conditions: 
(a) There is a cardinal number n<m such that, for every x£E, S(x) < n. 
(b) For every x 6 E, S(x) <m. 
If the condition (a) is satisfied, then there exists a free subset of E with the 

power m. (See [1].) 
On'the other hand, it is easy to see that (b) does not imply the existence of an 

independent pair. 
E x a m p l e : E= {£: £<co(m)} and S(£) = {t]: rj <<!;} for every 
In this case the set © of all sets S(x) forms a well ordered set of type a>(m) 

with respect to inclusion Q. 
In the following we assume that the condition (b) holds for the sets S(x), where 

x£E. 
Now, we consider the following condition for the system © = {£(*)}*££: 
(c) For every X£<5, the set {Y£<B: YQX} is well ordered by £ and the ordinal 

type £(X) of the set { 7 £ © : 7 c X ) is less than co(m). 
The ordinal number £(X) is called the order of the element X. The order of 

the system © is the least upper bound of the orders of its elements. 
It is easy to prove that there exists a system © = {-S(x)}x€E of order 1 such that 

•there exists no free subset of power greater than 2 of E. Let E1 and E2 two disjoint 
subsets of power m of E such that E = E ^ E j . Let fa|}i<(l)(m) and {xf}?<ra(m), 
be well orderings of and E2 respectively. If x = x\.£El, then let 

S ( * ) = { * i } U & } « < - , 

and if x = Xy(LE2, then let similarly 

• S O ) = . f a i j u f a f } « , , . 

It is easy, to see that the system © of the sets S(x) has the order 1 and there 
exists no free subset of power greater than 2 of E. 

Therefore in the sequel we assume'the following condition: 
(A) The system © = {5 ,(x)}x££ satisfies the conditions (b) and (c), the order of <& 

is co(w). the set of the elements of order c of © has power less than m, and every 
subset of © which is well ordered by £ has power <m. 

In this section we deal with the following question: 
Whether or not the condition (A) implies the existence of a free subset of power 

m of E? 
In discussing of this question we shall need another formulation for the proper-

ties of the system ©. 
D e f i n i t i o n 1. 1. The ordered pair (R, S ) is said to be a ramification system 

if R is a set and S is a partial ordering relation defined on the set R satisfying the: 
..condition: for every x£R the set is well ordered by 
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D e f i n i t i o n 1.2. The order q(x) of an element x of a ramification system 
(R, s ) is the ordinal type of the well ordered set {y^R \ y<x). 

D e f i n i t i o n 1. 3. The order of the system (R, is the least upper bound 
of the orders of its elements. 

D e f i n i t i o n 1. 4. By a (p, /?) ramification system we mean a system of order 
/?, where for each £ the set Rt of the elements of order £ has power less than p. 

D e f i n i t i o n 1. 5. We say that the property Q(p, ft) holds, if there is a (p, fl) 
ramification system (R, S ) of order fi such that every subset of R which is well 
ordered by ^ has power </?. , 

It is known that the property Q(p, co(p)) holds (see [2]), if 
(i) p = n+, where n is strongly inaccessible, 

(ii) p = n+, where n is regular (assuming the generalized continuum hypothesis), 
(iii) p is singular. 

We prove now the following 

T h e o r e m 1. The condition (A) does not imply the existence of a free set of 
power m. 

P r o o f . We shall define a system © = {^Wixtf : which satisfies the condition 
(A) and for which Theorem 1 is valid, assuming that Q(m, co(m)) holds (otherwise 
(A) cannot be satisfied). In this case there exists a ramification system (R, 
satisfying the following conditions: 

(1) R = U R(, R(ir\Ri2 = 0 for every Ci<£2-=co(ro), 
•i < <o{m) 

where R* is the non-empty set of the elements of order £ of R, 

(2) ' 0 < ^ < w 

for every £<(o(m), 

(3) R = m . , 

(this follows from (1) and (2)), 

(4) R ' < m 

for every subset R' of R which is well ordered by = . 
Consider now an arbitrary element r of R. We define the set S(r) as follows. 

There is an ordinal number such that Let 

S(r) - U K - W(r) 

where W(r) = {y^R: y = r). It is obvious that for every r£ R, the power of the 
set S(r) is We prove now 

(j) for the system © = {S(r)} r€K the condition (A) holds, 
(jj) there exists ho free set of power m. 
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Since for r,s£R the relation r < i holds if and only if the relation S(r)czS(s) 
holds, (j) follows from (1)—(4). 

Since r and 5 are independent if and only if r<s or s<r, any free set is ordered, 
consequently it is well ordered (see 1. 1) and so because of (4) it has power 
Put E = R. The theorem is proved. 

n . 

We assume in the sequel that m is regular and the condition S{x) < m holds 
for x£E. In this section we prove the following 

T h e o r e m 2. The condition (B) implies the existence of a free set of power . 

We need, for the proof of-Theorem 2, some lemmas and definitions. 
L e m m a 2. 1. Let F be a set of power m, where m is regular and m i s c . Further 

let S^ Pt (F) such that 

(1) S £ A c {F,o).(m)), 
(2) X<m for every X£S. 

Then there exists a subset K of power on of F such that 
(3) K%X for every X£S. 

P r o o f . Consider the partial ordering of S with respect to the relation of 
inclusion. By- a theorem of HAUSDORFF [3] there is a maximal ordered subset P 
of S . By another theorem of HAUSDORFF. [3] P has a well ordered subset Q which 
is confinal to P. It is obvious that (P) = (Q). It follows from (1) that Q < m . Since 
m is regular and Q ^ S , we obtain from (2) that (Q)<«? . As ( P ) = ( Q ) , we have 
that <P) < m. 

Since F=m, F—(P)?iO. Let x be an arbitrary element of F—(P). Clearly 
the power of (P )U{x} is < m . By the maximality of P there exists no set A' in S 
for which <P>U{x} iA ' holds. Put ^ = <P>U {x}. The lemma is proved. 

L e m m a 2.2. The condition (B). with x = l implies the existence of a subset K 
of power </w of E for which f | 5 _ 1 ( x ) = 0 holds. 

xiK 
P r o o f . It follows from (B) with x — 1 that S\E satisfies the conditions of Lemma 

2. 1 with E = F and S'|£' = S. Consequently there is a subset K of power < m of 
E such that S{x) for every x£E, i. e. f l S - 1 ( Y ) = 0 . 

D e f i n i t i o n 2. 3. Let § = {E, S ) be an arbitrary partial ordering of the set E. 
If x£E, then we denote by cT(x) the set of the minimal elements of the set {y £ E\ 
x<>'}; moreover let |T(0)(x) = x and =QT(S"(A:-1)(X)) for the natural number k. 
If X g £ - t h e n w e p u t S " ( J 0 = U ^ W , and § ( k \ X ) = $ ( § ( k - i \ X ) ) . 

xiX 
D e f i n i t i o n 2. 4. Let /£be the set defined in Lemma 2. 2. The partial ordering 

SF =(E, is said to be free if 
(1) 8F =(E, is a ramification system (defined in 1. 1), 
(2) each element of AT is minimal in and if the element x £ £ — K is minimal 

in OF, then it is maximal too. 
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(3) if x<y in , then x and y are independent. 

D e f i n i t i o n 2. 5. The partial ordering M = is said to be regular if 
(1) m is free, 
(2) for each x£E, ä$(x)on (see Definition 2. 3), 
(3) for each x£E for which f | S - 1 ( j ) = 0 . 

ytMx) 
D e f i n i t i o n 2.6. If the partial ordering 1% = (E,S) is regular, then the set 

XQE is said to be ä path if 
(1) X is well ordered by 
(2) if x£X and y<x, then y£X, 
(3) (for K, see Lemma 2. 2 and Definition 2. 4). 
Let us denote by the set of the paths in which are maximal with respect 

to the relation of inclusion Q. Further, for every natural number k, let us denote 
by a(ß, k) the set of the paths of power k in 3/t. 

L e m m a 2.1. Let ß be a regular partial ordering having only paths of finite 
length. Then 

(1) a ( ß ) < m and (2 ) f | S'HX) = 0 . 
. Xe<r(@) 

P r o o f . First we prove the statement (1). It is easy to see by 2.5/(2), that 
for every positive integer k 

a(ß,k) = Mk-l(K)<m. 

If then by the regularity of in we obtain: 

(J o(ß,k)<m. 
1 Sk<a> 

If m — then a simple argument of D. KÖNIG [4] gives the existence of a 
positive integer t with 3%<(K) = 0, and so we have 

= (J -¿So 
l a u i . • 

which proves the statement (1). 
To prove the statement (2) let y be an arbitrary element of E. It is enough 

to show that there exists a path X£a(3$) for which j $ S - 1 (X). For this purpose 
let x0 be an element of K with .S1^1 (J:0) (such an x0 clearly exists — see 2.2). 
Now suppose that for the positive integer k the path Xk = {xi}i<k has been already 
defined such that S'^XJ. If Xk is no maximal path, then let xk£@(xk_1) for 
which S-'(xk) (such an xk clearly exists — see 2.5/(3)). Since every path in 
01 is finite, in a finite number of steps we obtain a maximal path X=X,= {Xi}i<t 
with the positive integer t, such that j> ft ' (X). The lemma is proved. 

D e f i n i t i o n 2. 8. Let L% denote the set of all regular partial orderings 3k. We 
define a partial ordering cJll = (1 , S ) as follows; Let and 0t2 be two elements 
of % then we put it 

(1) the relation x ^ y in My implies the relation in Sk2 and , 
(2) 0 implies ®i(x) = @2{x). . 
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L e m m a 2. 9. Let %' be an ordered subset of Then 

(1) & = (J M f f t and (2) 01 implies SA^St'. 
mtT 

We omit the proof. 
It follows from' 2. 9 with the aid of the Kuratowski—Zorn lemma the following 

L e m m a 2. 10. The set % has a maximal element in $11. 
L e m m a 2. 11. If 01 is an element of% having only paths of finite length, then 

01 is not maximal in S]l. 
P r o o f . By 2. 7/(1) we have a(M) < m . Let . 

X0, Xt, ..., X f , ... (£<t) 

be a well ordering of a(0t~) for some T<Q)(m). As er(52) and for every £ < t 
Xs~= we have (&(&)) < m . Thus S((o(3$)))on because m is regular and for 
every x£E, S(x)<m. Put G = E-(a{0tj)-S((o(0t))). It follows that 

-VSSIEflBEB 
(i) E^G < in. 

Let G( = {x£G: J ^ U f a } is free}. 

Obviously = G — S~i(X?). Thus 

U G { = U ( G - 5 - 1 ( ^ i ) ) = G - n = n 

By means of 2. 7/(2) we have: 

UGrG" PI S~i{X)-=G.-
X£o(®) 

For every £ < T, let 
Ht = G{-\JG.. 

<z<i 

It is obvious that 

(ii) U = U = G-

Let now F( = Hi if H^ = m and F^—0 if H^-^m. In accordance with (i) and (ii) 
we obtain that 

. « • £ - u 
O K I 

It follows from the condition (B) that there is an F i ? i 0 such that 

S |F { €Ac(F 4 , a>(m)) . 

Therefore we can easily conclude by Lemma 2. 1 that there is a set LQFS with 
L<m such that L^S(x) for every X£E, i. e. f | 5 _ 1 ( j ) = 0 . Now we define the 

>'S L 

partial ordering 01' as follows. Let x ^ j ; in 01' if xgZ^ and y£L, in the other cases 
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let u^v in 01' if and only if u^v in 3k. It is easy to see that ' l l ' is regular and 3k<0l' 
in Sit. Consequently 01 is not maximal. Thus Lemma 2. 11 is proved. 

L e m m a 2. 12. There exists a regular partial ordering which has ani infinite 
path X. 

Proof . This follows trivially from 2. 10 and 2. 11. 
It follows from the definition of the regular partial ordering (2. 5) that the 

path X defined in 2.12 is an infinite free set. Thus Theorem 2 is proved. 
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