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Let E be an mﬁmte set of power m and suppose that to every element x of
E there corresponds a subset S(x) of E such that x¢ S(x). Two distinct elements
of E, x and y, are called independent if x ¢ S(y) and y ¢ S(x). A subset F of E is called
free if ‘any two distinct elements of F are independent. Throughout this paper we
assume that m is regular. and the power of the set S(x) is <m for évery x€E.
Let us denote by Pt (E) the set of all subsets of E. Let SS Pt (E). We say that
S satisfies the ascending chain condition for the ordinal number 7, if there exists
no sequence {X§}¢<t of type T of - elements of S such that X,C X, holds for every
¥ <A<t. Let us denote by Ac (E, 1) the set of all sets SEPt (£) which satisfy the - -
“ascending chain condition for 7. By S|H we denote the set {S(x)ﬁ H:x€E}, where
HEE. .
We consider the followmg ‘two conditions for the set mapping S(x):
(A) For every X€@ ={S(x)},cp, the set {YEG YEX} is well ordered by
C and the ordinal type £(X) of the set {Y€&: YT X} is less than w(m). The least
upper bound of the ordinal numbers & (X), where X €3, is w(m). The set of the elements
X €& for which E(X)=¢& has power less than m, and ever "y subset of & ‘which is well
ordered by < has power <m.
(B) For every decomposmon E= U E of E where r<a)(m) E =m, and the
. op<t
sets E, are mutua//y dlS]omt ‘there exists an 01dmal numbel §<r such that S |E§
CAc (Ec: w(m)).
. In this paper we deal w1th the followmg question:
Whether or not the condmon (A4) (or (B)) implies .the existence of fl ee subsets
of certain cardmalmes of E? :
In section I we shall prove that the condition (A) does not 1mply the ex1stence '
of a free set of power m. In section LI we shall prove that the condltlon (B) implies
the eéxistence of a free set of power g S
We shall use the following notations: For any set P of sets let

(Y= U x.
XcP

For -any cardinal number p we denote by o(p) the initial number of p and by p*
the cardinal number following p immediately. The symbols S and 7 denote the ..
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cardinal numbers of the set S and of the ordinal number 7y, respectively. For any
element x of Elet S-1(x)={y€E: xE S(»)} and for any XS E let S(X)= U S(x)‘
and S- 1(X)— U S (x).

- L

First we consider the following conditions:

(a) There is a cardinal number n<m such that, for every x€E, S <n.

(b) For every x€E, S(A)<m

If the condition (a) is satisfied, then there exists a free subset of £ with the
power m. (See [1].)

On'the other hand, it is easy to see that (b) does not imply the existence of an
independent pair.

Example: E={¢: 6<a)(m)} and S(&)={n:n<¢&} for every (€E.

In this case the set © of all sets S(x) forms a well ordered set of type w(m)
with respect to inclusion &.

In the following we assuime that the condition (b) holds for the sets S(x), where
x€E.

Now, we consider the following-condition for the system ©={S(x)} cg"

(c) Forevery X€E, the set {YEC: YES X} is well ordered by S and the ordinal
type E(X) of the set {YEE: YCX} is less than o (m). :

The ordinal number £(X) is called the order of the element X. The order of'
the system & is the least upper bound of the orders of its elements.

It is easy to prove that there exists a system & ={S(x)},¢¢ of order I such that
there exists no free subset of power greater than 2 of £. Let E| and E, two disjoint
subsets of power m of E such that £ = E,UE,. Let {x}}e<wem and {x¢}¢<mm),
be well orderings of E, and E, respectively. If x=x}€E,, then let

S(x) = {)««,}U {x§}¢<7
and if x—x, EEZ, then let similarly .

S(x) = {xv}U{)‘C}kv'

1t is easy. to see that the system & of the sets S{x) has the order 1 and there
exists no free subset of power greater than 2 of E.

Therefore in the sequel we assume’ the following condition:

(A) The system © ={S(x)}cp satisfies the conditions (b) and (c), the order of ©
is w(m), the set of the elements of order & of & has power less than m, and every
subset of © which is well ordered by S has power <m. '

In this section we deal with the following question:

Whether or not the condition (A) lmphes the existence of a free subset of power .
mof E?

In dlscussmg of this question we shall need another formulation for the proper-
ties of the system &. _

- Definition. 1. 1. The ordered pair (R, =) is said to be a ramification system
if Ris asetand = is a partial ordering relation defined on the set R satlsfymg the
.condition: for every x€R the set {y€R: y=x} is well ordered by =.
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Definition 1.2. The order f(x) of an element x of a ramification system
(R, =) is the ordinal type of the well ordered set { yE R:iy<x}. =

Definition 1.3. The order of the system (R, =) is the least 'upper bound
of the orders of its elements. ‘

Defrnrtlon 1. 4. By a (p, B) ramification. system we mean a system of order
B, where for each &< the set R; of the elements of order ¢ has power less than p.

Definition 1. 5. We say that the property Q(p, f) holds, if there'is a (p, B)
ramification system (R, =) of order f such that every subset of R which is well
ordered by = has power < ﬁ

It is known that the property Q(p, w(p)) holds (see [2)), if

@) p—n+, where n is strongly inaccessible,

(ii) p=n*, where n is regular (assuming the generalrzed continuum hypothesrs)
(iii) P is singular. ' »

We prove now the followmg

Theorem 1. The condmon (A) does not zmply the existence of a free set of
© power m.

Proof. We shall define a system &= {S (x)}xcg Which satisfies the condition
(A) and for which Theorem 1 is valid, assuming that Q(m, w(m)) holds (otherwxse
(A) cannot be satisfied). In this case there exrsts a ramification system (R, =
satlsfyrng the following conditions: , :
) R= U R, RglﬂR§2 =0 for every g1<fz<w(m)

E<a(m)

where R, is the non-empty set of the elements of ‘order £ of R,

Q) - ' o 0< ]i <m
for every & <w(m), g
3) ‘R=m

(this follows from (1) and (2)),
@ S R<m

for every subset R* of R which is well oordered by =.
Consider now an arbitrary element r of R. We défine the set S(r) as follows.
There is an ordinal number ¢ <w(m) sUch that réR;. Let

S(r) = U R,—W(r)

‘where W(r) = {yER y=r}. It is obvious that for every rER the power of the
set S(r) is <m. We prove now

) for the system &= {S(r)},cr the condrtron (A) holds,
1)) there exists no free set of power m.
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Since for r, s€R the relatlon r<s holds if and only if the relation S(r)C S(s)
holds, (j) follows from (H—(4).

Since r and s are independent if and only if r <s or s <r, any free set is ordered,
consequently it is well ordered (see 1. 1) and so because of (4) it has power <m.
Put E=R:. The theorem is proved.

1.

We assume in the sequel that m is Iegu/af and the condition S(A)<m holds
for x€E. In this section we prove the following

Theorem 2. The condition (B) implies the existence of a free set of power 8.

We need, for the proof of- Theorem 2, some lemmas and definitions.

Lemma 2. 1. Let F be a set of power m, where m is regular and m = 8. Further
let SSPt(F) such that

(1) S€Ac(F, w(m),
) X <m for every X€S.

Then there exists a subset K of power <m of F such that
(3) KE X for every X€S.

Proof. Consider the partial ordering of S with respect to the relation of
inclusion. By.a theorem of HAUSDORFF [3] there is a maximal ordered subset P
of S. By another theorem of HAUSDORFE [3] P has a well ordered subset Q which
is confinal to P. It is obvious that (P)=(Q). It follows from (1) that Q<m. Since
m is regular and QES, we obtain from (2) that <Q><m As (P)=(Q), we have
that <P><m

Since F=m, F— (P)#0. Let x be an arbitrary element of F—(P). Clearly
the power of (P)U {x} is <m. By the maximality of P there exists no set X in S
for which (PYU {x} S X holds. Put K=(P)U {x}. The lemma is proved.

Lemma 2.2. The condition (B) with t=1 implies the existence of a subset K
of power <m of E for which ﬂ S-1(x) =0 holds.

Proof. It follows from (B) w1th 7 =1 that S|FE satisfies the conditions of Lemma
2.1 with E=F and S|E=S. Consequently there is a subset K of power <m of
E such that KE S(x) for every x¢€E, i.e. ] S-1(x)=0.

x€EK
Definition 2.3. Let § —(E =) be an arbitrary partial ordering of the set E.
If x € E, then we denote by § (x) the set of the minimal elements of the set {y € E:
x <y}; moreover let g(")(x) x and §O(x) =& (§¢-1(x) ) for the natural number k.
If XS E then we put § (X)—- U § (x), §OX) =X, and T®(X) = (F¢-1(X)).

Definition 2. 4. Let Kbe the set defined in Lemma 2 2. The partial ordermg
=(E, =) is said to be free if

(1) #=(E, =) is a ramification system (deﬁned in 1. 1),

(2) each element of K is minimal in & and if the element x € F— K is minimal
in &, then it is maximal too.
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(3) if x<yin &, then x and y are independent.

Definition 2.5. The partial ordering 92 (£, <) is said to be regular if
- (1) Z is free, '
() for each x€E, Z(x)<m (see Definition 2. 3),
(3) for each .x€E for which Z2(x)=0, 1 S~'(»)=0."
‘ ¥ € RB(x) '
Definition 2. 6. If the partial ordering £ =(£, =) is regular, then the set-
XCE is said to ‘be a path if
() Xis well ordered by =, ‘
(2) if x€X and y<wx, then y€X,
(3) XN K#0 (for K, see Lemma 2.2 and Definition 2. 4).
Let us denote by a(£) the set of the paths in %, which are maximal with respect
to the relation of inclusion &. Further, for every natural number £, let .us denote :
by a(% k) the set of the paths of power k in Z.

Lemma 2.7. Let & be a regular partial ordering having bnly paths of finite
length. Then , '
| 1) e@)<m and @ ( STX)=0.

' . X€o(R) )

" Proof. First we prove the statement (I) It is easy to see by 2 5/(2) that
for every positive integer & .

_ o(#, k) = Z-1(K)<m.
If m>§,, then by the regularity of m we obtain:
' o RB= U o@R k)<m.

1=k<ow

If m=y,, then a simple argument o'f D. KGN[G [4] gives the existence of a
positive integer ¢ with #!(K)=0, and so we have

e@ = U o@R=<x,

1sk<e,

which proves the statement (1). :

To prove the statement (2) let y be an arbltrary ‘element of E. It is enough
to show that there exists a path X€o(2) for which y¢S-1(X). For this purpose
let x, be an'element of K with y¢ S-1(x,) (such an x, clearly exists — see 2.2).
Now suppose that for the positive integer k the path X, ={x;};<, has been already
defined such that y¢ S-1(X,). If X, is no maximal path, then let x, € Z(x,_,) for
which y¢ S—1(x,) (such an x, clearly exists — see 2.5/(3)). Since every path in
# 1is finite, in -a finite number of steps we obtain a maximal path X=X,={X}i<:
with the positive integer ¢, such that y¢ S-!(X). The lemma is proved.

Definition 2.8. Let ¥ denote the set of all regular partial orderings #. We
define a partial ordering 9N =(X, =) as follows: Let %, and %, be two elements
of ¥, then we put #,=%, if

- (1) the relation x=y in %, implies the relation x=y in %, and

) % (x);éO implies 2,(x) = ﬂz(x)
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Lemma 2.9. Let ¥ be an ordered subset of %. Then
N #X= | RcX and Q) ReK - implies R=R.

We omit the: proof. '
It follows from' 2. 9 with the aid of the Kuratowski—Zorn lemma the following

Lemma 2.10. The set ¥ has a maximal element in SN.

Lemma 2. 11. If # is an element of ¥ having only paths of finite length then
R is not maximal in 9N.

Proof. By 2.7/(1) we have a(@)<m. Let
Xo, Xys oo Xpv oo (E<7)

' be a well ordering of a(.%) for some 7 <w(m). As a(@)<m and for every &f<1
X, s < Ry, We have (a(%))<m Thus S((o(#)))<m because m is regular and for

every x¢E, S(x) <m. Put G E—{a(R))— S(c(#))). It follows that
E’m
(@) : E-G=<m.

Let . G: = {x€G: XU {x} is ffee}.
Obviously G; = G— S-1(X,). Thus '

UG =U (G S 1(Xz;))—G— NS'Xy)=G6- N S-X).
<t . &< E<t Xco(R) .

By means of 2. 7/(2) we have:
UG =6-_ N_5"'X)=

(<t Xeo(R)
For every &<, let
] , ' Hy =G~ UG..
It is obvious that
(ii) ’ éngz U G, =

Let now F,=H, if H§ =m and F;=0 if Hg <m. In accordance with (i) and (ii)
we obtain that

E—UF,<m.

. a<t
It follows from the condition (B) that there is an "F#0 such that
S|Fe € Ac (F;, w(m)).

Therefore we can easily conclude by Lemma 2.1 that there is a set LE F; with
L <m such that Lg S(x) for every x€E, i e. ﬂ S-1(y)=0. Now we define the

partial ordermg Z as follows. Let x=y in #’ 1f xEX(§ and y€L, in the other cases
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et w=vin £ if and only if u=v in Z. 1t is easy to see that'gl’. is regular and Z <%’
in 9. Consequently £ is not maximal. Thus Lemma 2. 1 is proved.

Lemma 2.12. There exists a regular partial ordenng which has an infinite
path X. )

Proof. This follows trivially from 2. 10 and 2. 11.

1t follows from the definition of the regular partial ordermg (2. 5) that the
path X defined in 2.12 is an infinite free set. Thus Theorem 2 is proved.
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