54282

On the structure of set mappings and the existence of free sets

By G. FODOR and A. MÁTE゙ in Szeged
To Professor László Kalmár on his 60th birthday

Let E be an infinite set of power m and suppose that to every element x of E there corresponds a subset $S(x)$ of E such that $x \notin S(x)$. Two distinct elements of E, x and y, are called independent if $x \notin S(y)$ and $y \notin S(x)$. A subset F of E is called free if any two distinct elements of F are independent. Throughout this paper we assume that m is regular and the power of the set $S(x)$ is $<m$ for every $x \in E$.

Let us denote by $\mathbf{P t}(E)$ the set of all subsets of E. Let $\mathbf{S} \subseteq \mathbf{P t}(E)$. We say that S. satisfies the ascending chain condition for the ordinal number τ, if there exists no sequence $\left\{X_{\xi}\right\}_{\xi<\tau}$ of type τ of elements of \mathbf{S} such that $X_{g} \subset X_{i}$ holds for every $\vartheta<\lambda<\tau$. Let us denote by $\operatorname{Ac}(E, \tau)$ the set of all sets $\mathbf{S} \subseteq \operatorname{Pt}(E)$ which satisfy the ascending chain condition for τ. By $S \mid H$ we denote the set $\{S(x) \cap H: x \in E\}$, where $H \subseteq E$.

We consider the following two conditions for the set mapping $S(x)$:
(A) For every $X \in \mathbb{S}=\{S(x)\}_{x \in E}$, the set $\{\dot{Y} \in \subseteq: Y \subseteq X\}$ is well ordered by \subseteq and the ordinal type $\xi(X)$ of the set $\{Y \in \subseteq: Y \subset X\}$ is less than $\omega(m)$. The least upper bound of the ordinal numbers $\xi(X)$, where $X \in \mathcal{E}$, is $\omega(m)$. The set of the elements $X \in \Subset$ for which $\xi(X)=\xi$ has power less than m, and every subset of $\mathbb{S}^{\text {which }}$ is well ordered by \subseteq has power $<m$.
(B) For every decomposition $E=\bigcup_{\eta<\tau} E_{\eta}$ of E, where $\tau<\omega(m), \vec{E}_{\eta}=m$; and the sets E_{η} are mutually disjoint, there exists an ordinal number $\xi<\tau$ such that $S \mid E_{\xi} \in$ $\in \operatorname{Ac}\left(E_{\xi}, \omega(m)\right)$.

In this paper we deal with the following question:
Whether or not the condition $(A)(o r(B))$ implies the existence of free subsets of certain cardinalities of E ?

In section I we shall prove that the condition (A) does not imply the existence of a free set of power m. In section II we shall prove that the condition (B) implies the existence of a free set of power \aleph_{0}.

We shall use the following notations: For any set \mathbf{P} of sets let

$$
\langle\mathbf{P}\rangle=\bigcup_{X \in \mathbf{P}} X .
$$

For any cardinal number p we denote by $\omega(p)$ the initial number of p and by p^{+} the cardinal number following p immediately. The symbols \bar{S} and $\bar{\gamma}$ denote the
cardinal numbers of the set S and of the ordinal number γ, respectively. For any element x of E let $S^{-1}(x)=\{y \in E: x \in S(y)\}$ and for any $X \subseteq E$ let $S(X)=\bigcup_{x \in X} S(x), ~$
and $S^{-1}(X)=\bigcup S^{-1}(x)$. and $S^{-1}(X)=\bigcup_{x \in X} S^{-1}(x)$.

I.

First we consider the following conditions:
(a) There is a cardinal number $n<m$ such that, for every $x \in E, \overline{\overline{S(x)}}<n$.
(b) For every $x \in E, \overline{\overline{S(x)}}<m$.

If the condition (a) is satisfied, then there exists a free subset of E with the power m. (See [1].)

On' the other hand, it is easy to see that (b) does not imply the existence of an independent pair.

Example: $E=\{\xi: \xi<\omega(m)\}$ and $S(\xi)=\{\eta: \eta<\xi\}$ for every $\xi \in E$.
In this case the set \mathfrak{S} of all sets $S(x)$ forms a well ordered set of type $\omega(m)$ with respect to inclusion \sqsubseteq.

In the following we assume that the condition (b) holds for the sets $S(x)$, where $x \in E$.

Now, we consider the following condition for the system $\mathbb{C}=\{S(x)\}_{x \in E}$:
(c) For every $X \in \Subset$, the set $\{Y \in \Subset: Y \subseteq X\}$ is well ordered by \subseteq and the ordinal type $\xi(X)$ of the set $\{Y \in \mathbb{S}: Y \subset X\}$ is less than $\omega(m)$.

The ordinal number $\xi(X)$ is called the order of the element X. The order of the system \mathbb{S} is the least upper bound of the orders of its elements.

It is easy to prove that there exists a system $\mathbb{S}=\{S(x)\}_{x \in E}$ of order 1 such that there exists no free subset of power greater than 2 of E. Let E_{1} and E_{2} two disjoint subsets of power m of E such that $E=E_{1} \cup E_{2}$. Let $\left\{x_{\xi}^{1}\right\}_{\xi<\omega(m)}$ and $\left\{x_{\xi}^{2}\right\}_{\xi<\omega(m)}$ be well orderings of E_{1} and E_{2} respectively. If $x=x_{i j}^{1} \in E_{1}$, then let

$$
S(x)=\left\{x_{\gamma}^{2}\right\} \cup\left\{x_{\xi}^{1}\right\}_{\xi<\gamma}
$$

and if $x=x_{y}^{2} \in E_{2}$, then let similarly

$$
S(x)=\left\{x_{\gamma}^{1}\right\} \cup\left\{x_{\xi}^{2}\right\}_{\xi<\gamma}
$$

It is easy. to see that the system \mathcal{C} of the sets $S(x)$ has the order 1 and there: exists no free subset of power greater than 2 of E.

Therefore in the sequel we assume the following condition:
(A) The system $\mathcal{\subseteq}=\{S(x)\}_{x \in E}$ satisfies the conditions (b) and (c), the order of \mathfrak{S} is $\omega(\mathrm{m})$, the set of the elements of order ξ of \circlearrowleft has power less than m, and every subset of \mathbb{S} which is well ordered by \subseteq has power $<m$.

In this section we deal with the following question:
Whether or not the condition (A) implies the existence of a free subset of power m of E ?

In discussing of this question we shall need another formulation for the properties of the system \mathcal{E}.

Definition 1.1. The ordered pair (R, \leqq) is said to be a ramification system if R is a set and \leqq is a partial ordering relation defined on the set R satisfying the condition: for every $x \in R$ the set $\{y \in R: y \leqq x\}$ is well ordered by \leqq.

Definition 1.2. The order $\xi(x)$ of an element x of a ramification system (R, \leqq) is the ordinal type of the well ordered set $\{y \in R: y<x\}$.

Definition 1.3. The order of the system (R, \leqq) is the least upper bound of the orders of its elements.

Definition 1.4. By a (p, β) ramification system we mean a system of order β, where for each $\xi<\beta$ the set R_{ξ} of the elements of order ξ has power less than p.

Definition 1.5. We say that the property $Q(p, \beta)$ holds, if there is a (p, β) ramification system (R, \leqq) of order β such that every subset of R which is well ordered by \leqq has power $<\bar{\beta}$.

It is known that the property $Q(p, \omega(p))$ holds (see [2]), if
(i) $p=n^{+}$, where n is strongly inaccessible,
(ii) $p=n^{+}$, where n is regular (assuming the generalized continuum hypothesis),
(iii) p is singular.

We prove now the following
Theorem 1. The condition (A) does not imply the existence of a free set of power m.

Proof. We shall define a system $\mathcal{S}=\{S(x)\}_{x \in E}$ which satisfies the condition (A) and for which Theorem 1 is valid, assuming that $Q(m, \omega(m))$ holds (otherwise (A) cannot be satisfied). In this case there exists a ramification system (R, \leqq) satisfying the following conditions:

$$
\begin{equation*}
R=\bigcup_{\xi<\omega(m)} R_{\xi}, \quad R_{\xi_{1}} \cap R_{\xi_{2}}=0 \quad \text { for every } \quad \xi_{1}<\xi_{2}<\omega(m) \tag{1}
\end{equation*}
$$

where R_{ξ} is the non-empty set of the elements of order ξ of R,

$$
\begin{equation*}
0<\bar{R}_{\xi}<m \tag{2}
\end{equation*}
$$

for every $\xi<\omega(m)$,

$$
\begin{equation*}
\overline{\bar{R}}=m \tag{3}
\end{equation*}
$$

(this follows from (1) and (2)),

$$
\begin{equation*}
\overline{\bar{R}}^{\prime}<m \tag{4}
\end{equation*}
$$

for every subset R^{\prime} of R which is well ordered by \leqq.
Consider now an arbitrary element r of R. We define the set $S(r)$ as follows. There is an ordinal number $\xi<\omega(m)$ such that $r \in R_{\xi}$. Let

$$
S(r)=\bigcup_{\alpha \leqq \xi} R_{\alpha}-W(r)
$$

where $W(r)=\{y \in R: y \leqq r\}$. It is obvious that for every $r \in R$, the power of the set $S(r)$ is $<m$. We prove now
(j) for the system $\mathbb{S}=\{S(r)\}_{r \in R}$ the condition (A) holds,
(jj) there exists no free set of power m.

Since for $r, s \in R$ the relation $r<s$ holds if and only if the relation $S(r) \subset S(s)$ holds, (j) follows from (1)-(4).

Since r and s are independent if and only if $r<s$ or $s<r$, any free set is ordered, consequently it is well ordered (see 1.1) and so because of (4) it has power $<m$. Put $E=R$. The theorem is proved.

II.

We assume in the sequel that m is regular and the condition $\overline{\overline{S(x)}}<m$ holds for $x \in E$. In this section we prove the following

Theorem 2. The condition (B) implies the existence of a free set of power \aleph_{0}.
We need, for the proof of Theorem 2, some lemmas and definitions.
Lemma 2. 1. Let F be a set of power m, where m is regular and $m \geqq \aleph_{0}$. Further let $\mathbf{S} \subseteq \mathbf{P t}(F)$ such that
(1) $\mathbf{S} \in \mathbf{A c}(F, \omega(m))$,
(2) $\bar{X}<m$ for every $X \in S$.

Then there exists a subset K of power $<\dot{m}$ of F such that
(3) $K \subseteq X$ for every $X \in \mathbf{S}$.

Proof. Consider the partial ordering of \mathbf{S} with respect to the relation of inclusion. By.a theorem of Hausdorff [3] there is a maximal ordered subset \mathbf{P} of \mathbf{S}. By another theorem of Hausdorfe [3] \mathbf{P} has a well ordered subset \mathbf{Q} which is confinal to \mathbf{P}. It is obvious that $\langle\mathbf{P}\rangle=\langle\mathbf{Q}\rangle$. It follows from (1) that $\overline{\mathbf{Q}}<m$. Since m is regular and $\mathbf{Q} \subseteq \mathbf{S}$, we obtain from (2) that $\langle\overline{\mathbf{Q}}\rangle<m$. As $\langle\mathbf{P}\rangle=\langle\mathbf{Q}\rangle$, we have that $\langle\overline{\overline{\mathbf{P}}}\rangle<m$.

Since $\vec{F}=m, F-\langle\mathbf{P}\rangle \neq 0$. Let x be an arbitrary element of $F-\langle\mathbf{P}\rangle$. Clearly the power of $\langle\mathbf{P}\rangle \cup\{x\}$ is $<m$. By the maximality of \mathbf{P} there exists no set X in \mathbf{S} for which $\langle\mathbf{P}\rangle \cup\{x\} \subseteq X$ holds. Put $K=\langle\mathbf{P}\rangle \cup\{x\}$. The lemma is proved.

Lemma 2. 2. The condition (B). with $\tau=1$ implies the existence of a subset K of power $<m$ of E for which $\bigcap_{x \in K} S^{-1}(x)=0$ holds.

Proof. It follows from (B) with $\dot{\tau}=1$ that $S \mid E$ satisfies the conditions of Lemma 2. 1 with $E=F$ and $S \mid E=\mathbf{S}$. Consequently there is a subset K of power $<m$ of E such that $K \Phi S(x)$ for every $x \in E$, i. e. $\bigcap_{x \in K} S^{-1}(x)=0$.

Definition 2.3. Let $\mathscr{J}=(E, \leqq)$ be an arbitrary partial ordering of the set E. If $x \in E$, then we denote by $\mathscr{J}(x)$ the set of the minimal elements of the set $\{y \in E$: $x<y\}$; moreover let $\mathscr{J}^{(0)}(x)=x$ and $\mathscr{S}^{(k)}(x)=\mathscr{T}\left(\mathscr{J}^{(k-1)}(x)\right)$ for the natural number k. If $X \subseteq E$ then we put $\mathscr{J}(X)=\bigcup_{x \in X} \mathscr{J}(x), \mathscr{J}^{(0)}(X)=X$, and $\mathscr{J}^{(k)}(X)=\mathscr{J}\left(\mathscr{J}^{(k-1)}(X)\right)$.

Definition 2. 4. Let K be the set defined in Lemma 2. 2. The partial ordering $\mathscr{F}=(E, \leqq)$ is said to be free if
(1) $\mathscr{F}=(E, \leqq$) is a ramification system (defined in 1.1),
(2) each element of K is minimal in \mathscr{F} and if the element $x \in E-K$ is minimal in \mathscr{F}, then it is maximal too.
(3) if $x<y$ in \mathscr{F}, then x and y are independent.

Definition 2:5. The partial ordering $\mathscr{R}=(E, \leqq)$ is said to be regular if
(1) \mathscr{R} is free,
(2) for each $x \in E, \overline{\mathscr{R}(x)}<m$ (see Definition 2.3),
(3) for each $x \in E$ for which $\mathscr{R}(x) \neq 0, \bigcap_{y \in \mathscr{R}(x)} S^{-1}(y)=0$.

Definition 2.6. If the partial ordering $\mathscr{R}=(E, \leqq)$ is regular, then the set $X \subseteq E$ is said to be a path if
(1) X is well ordered by \leqq,
(2) if $x \in X$ and $y<x$, then $y \in X$,
(3) $X \cap K \neq 0$ (for K, see Lemma 2.2 and Definition 2.4).

Let us denote by $\sigma(\mathscr{R})$ the set of the paths in \mathscr{R}, which are maximal with respect to the relation of inclusion \subseteq. Further, for every natural number k, let us denote by $\sigma(\mathscr{R}, k)$ the set of the paths of power k in \mathscr{R}.

Lemma 2.7. Let R be a regular partial ordering having only paths of finite length. Then

$$
\text { (1) } \overline{\sigma(\mathscr{R})}<m \text {. and } \quad \text { (2) }: X \in \sigma(\mathscr{R}) \quad S^{-1}(X)=0 \text {. }
$$

Proof. First we prove the statement (1). It is easy to see by $2.5 /(2)$, that for every positive integer k

$$
\overline{\overline{\sigma(\mathscr{R}, k)}}=\overline{\overline{\mathscr{R}^{k-1}(K)}}<m .
$$

If $m>\aleph_{0}$, then by the regularity of m we obtain:

$$
\overline{\sigma(\mathscr{R})} \leqq \overline{\bigcup_{1 \leqq k<\omega} \sigma(\mathscr{R}, k)}<m .
$$

If $m=\aleph_{0}$, then a simple argument of D. König [4] gives the existence of a positive integer t with $\mathscr{R}^{t}(K)=0$, and so we have

$$
\overline{\sigma(\mathscr{R})}=\overline{\bigcup_{1 \leqq k<t} \sigma(\mathscr{R}, k)}<\aleph_{0}
$$

which proves the statement (1).
To prove the statement (2) let y be an arbitrary element of E. It is enough to show that there exists a path $X \in \sigma(\mathscr{R})$ for which $y \notin S^{-1}(X)$. For this purpose let x_{0} be an element of K with $y \notin S^{-1}\left(x_{0}\right)$ (such an x_{0} clearly exists - see 2.2). Now suppose that for the positive integer k the path $X_{k}=\left\{x_{i}\right\}_{i<k}$ has been already defined such that $y \notin S^{-1}\left(X_{k}\right)$. If X_{k} is no maximal path, then let $x_{k} \in \mathscr{R}\left(x_{k-1}\right)$ for which $y \nsubseteq S^{-1}\left(x_{k}\right)$ (such an x_{k} clearly exists - see $2.5 /(3)$). Since every path in \mathscr{R} is finite, in a finite number of steps we obtain a maximal path $X=X_{t}=\left\{x_{i}\right\}_{i<t}$ with the positive integer t, such that $y \not \ddagger S^{-1}(X)$. The lemma is proved.

Definition 2.8. Let \mathscr{G} denote the set of all regular partial orderings \mathscr{R}. We define a partial ordering $\mathfrak{A K}=\left(\mathscr{Z}, \leqq\right.$) as follows. Let \mathscr{R}_{1} and \mathscr{R}_{2} be two elements of \mathscr{A}, then we put $\mathscr{R}_{1} \leqq \mathscr{R}_{2}$ if
(1) the relation $x \leqq y$ in \mathscr{R}_{1} implies the relation $x \leqq y$ in \mathscr{R}_{2} and
(2) $\mathscr{R}_{1}(x) \neq 0$ implies $\mathscr{R}_{1}(x)=\mathscr{R}_{2}(x)$.

Lemma 2.9. Let \mathfrak{X} be an ordered subset of \mathfrak{X}. Then
(1) $\quad \mathscr{R}^{\prime}=\bigcup_{\mathscr{R} \in \mathscr{X}} \mathscr{R} \in \mathscr{X} \quad$ and
(2) $\mathscr{R} \in \mathscr{X}^{\prime} \cdot$ implies $\mathscr{R} \leqq \mathscr{R}^{\prime}$.

We omit the proof.
It follows from 2.9 with the aid of the Kuratowski-Zorn lemma the following
Lemma 2.10. The set \mathscr{X} has a maximal element in $\mathfrak{N l}$.
Lemma 2.11. If \mathscr{R} is an element of \mathscr{X} having only paths of finite length, then \mathscr{R} is not maximal in \mathfrak{R}.

Proof. By $2.7 /(1)$ we have $\overline{\overline{\sigma(R)}}<m$. Let

$$
X_{0}, X_{1}, \ldots, X_{\xi}, \ldots \quad(\xi<\tau)
$$

be a well ordering of $\overline{\sigma(\mathscr{R})}$ for some $\tau<\omega(m)$. As $\overline{\overline{\sigma(\mathscr{R})}}<m$ and for every $\xi<\tau$ $\bar{X}_{\xi}<\aleph_{0}$, we have $\langle\overline{\sigma(\mathscr{R})}\rangle<m$. Thus $\overline{\overline{S(\langle\sigma(\mathscr{R})\rangle})}<m$ because m is regular and for every $x \in E, \overline{S(x)}<m$. Put $G=E-\langle\sigma(\mathscr{R})\rangle-S(\langle\sigma(\mathscr{R})\rangle)$. It follows that

$$
\begin{equation*}
\overline{\overline{E-G}} \overline{\bar{G}}<m \tag{i}
\end{equation*}
$$

Let

$$
\dot{G_{\xi}}=\left\{x \in G: X_{\xi} \cup\{x\} \text { is free }\right\} .
$$

Obviously $G_{\xi}=G-S^{-1}\left(X_{\xi}\right)$. Thus

$$
\bigcup_{\xi<\tau} G_{\xi}=\bigcup_{\xi<\tau}\left(G-S^{-1}\left(X_{\xi}\right)\right)=G-\bigcap_{\xi<\tau} S^{-1}\left(X_{\xi}\right)=G-\bigcap_{X \in \sigma(\mathscr{R})} S^{-1}(X)
$$

By means of 2.7/(2) we have:

$$
\bigcup_{\xi<\tau} G_{\xi}=G-\bigcap_{X \in \sigma(\mathscr{R})} S^{-1}(X)=G
$$

For every $\xi<\tau$, let

$$
H_{\xi}=G_{\xi}-\bigcup_{\alpha<\xi} G_{\alpha}
$$

It is obvious that

$$
\begin{equation*}
\bigcup_{\xi<\tau} H_{\xi}=\bigcup_{\xi<\tau} G_{\xi}=G . \tag{ii}
\end{equation*}
$$

Let now $F_{\xi}=H_{\xi}$ if $\bar{H}_{\xi}=m$ and $F_{\xi}=0$ if $\widetilde{H}_{\xi}<m$. In accordance with (i) and (ii) we obtain that

$$
\overline{\overline{E-\bigcup_{\alpha<\tau} F_{\alpha}}}<m
$$

It follows from the condition (B) that there is an $F_{\xi} \neq 0$ such that

$$
S \mid F_{\xi} \in \mathbf{A c}\left(F_{\zeta}, \omega(m)\right)
$$

Therefore we can easily conclude by Lemma 2.1 that there is a set $L \subseteq F_{\xi}$ with $\bar{L}<m$ such that $L \nsubseteq S(x)$ for every $x \in E$, i. e. $\bigcap_{y \in L} S^{-1}(y)=0$. Now we define the partial ordering \mathscr{R}^{\prime} as follows. Let $x \leqq y$ in \mathscr{R}^{\prime} if $x \in X_{\xi}$ and $y \in L$, in the other cases
let $u \leqq v$ in \mathscr{R}^{\prime} if and only if $u \leqq v$ in \mathscr{R}. It is easy to see that \mathscr{R}^{\prime} is regular and $\mathscr{R}<\mathscr{R}^{\prime}$ in $\mathfrak{g l}$. Consequently \mathscr{R} is not maximal. Thus Lemma 2.11 is proved.

Lemma 2. 12. There exists a regular partial ordering which has an' infinite path X.

Proof. This follows trivially from 2. 10 and 2. 11.
It follows from the definition of the regular partial ordering (2.5) that the path X defined in 2.12 is an infinite free set. Thus Theorem 2 is proved.

References

[II] A. Hajnal, Proof of a conjecture of S. Ruziewicz, Fundamenta Math., 50 (1961-1962), 123-128.
[2] P. Erdós and A. Tarski, On some problems involving inaccessible cardinals, Essays on the Foundations of Mathematics (Jerusalem, 1961), 50-82.
[3] F. Hausdorff, Grundzüge einer Theorie der geordneten Mengen, Math. Annalen, 65 (1908), 435-505.
[4] D. König, Über eine Schlußweise aus dem Endlichen ins Uneridliche, Acta Sci. Math., 3 (1927), 121-130.
(Received December 18. 1964)

