
Approximation of continuous functions on compact metric 
space by linear methods 
By GÉZA F R E U D in Budapest 

Dedicated to professor L. Kalmár in occasion of his 60th birthday 

§1 
We refer to the following theorem, due to J . P . NATANSON [2]: 

Let {Kn(t)) be a sequence of In-periodic L-integrable functions, for which the 
relations • -

+ k 11 • 

/ K„(t) dt = ), f Kn(tyd' = 0(\) • 
— JI — 7C 

ind 
+ * '. 

/ \tKn(t)\ dt = o(in) (;.„ i o) — K 

are satisfied, and with the aid of {^„(7)} define for arbitrary In-periodic continuous' 
functions f{t) the sequence of linear transformations 

• n 
. An(f;x) = Jf(t+x)Kn(t)dt. I 

— 7t 
Then 

A n { f , t ) - m = 0{\yco{f-Xn), 
where 

. . c o ( f ; S ) = max \f(x + h)—f(x)\ 
. -fit) 

is the continuity modulus of f(x). 
The aim of this paper is to extend this theorem to a. rather general case. An> 

example, where the generalized theorem is needed, is contained in § 5. 

§ 2 
Let A" be a compact metric space, with the distance function Q(X, y) (x,y£ K),. 

let further CK be the space of real valued continuous functions f(x) over K with. 
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the usual norm 

<1) "ll/MII = Max|/(.v)[. 

Let a ( / ) be a bounded linear functional over CK, 

<2) sup \a(f)\ = A 
l l / l ls i 

and 
<3) s u p |A{/(X)E(A - , £)}| = A ^ . 

T h e o r e m 1. Let <p(d) be a not decreasing function with <p(0) = 0 and 

•(4) <p{25)^2<p{5) ( ¿>0) . 

Then for every f£CK the condition 

•(5) | / ( . Y ) - / ( C ) | ^ V{o{x, C)} fixed) 

implies for every oO 

<6) \a{f)-№*(\)\ ^ {A+3a-iAdq>{aV) ' 

Before proving our theorem, we deduce some of its consequences, the proof 
.itself is postponed to § 3. We call K convex if for every pair xl,x2£K there is at 

. least one xl2£K such that 

<(7) Q(Xi, XX2)=\Q(X1,X2) (/ = 1,2). 

For convex K the modulus of continuity 

a>(f;8)= Max \f(x,)-f{x2)\ 

of an 'arbitrary function f(x) satisfies 

co(f,25)^2cD(f,5). 
Let2) 

A ^ = sup/ f , . 
UK 

Putting cp = co we obtain from (6) 

<6a) \*<J)-ma(\)\^ (A+3a~>A^)w(f;a). 

for every <r>0. 

' ) We use the notation ot(l) = a ( / o ) , / . s i . 
2) As a consequence of the compactness of K 

sup Q(XI,X2) = R' 
v., x2 € K 

•-•so that A*sRA. From this we conclude /4" '-=°°. 
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§ 3 

Let K be convex and let A be a bounded linear transformation of CK into itself, 
transforming / £ C K into A{f;x)iCK (x€_K), with the norm 

sup \\A(f)\\ = Mil. 
11/11 S I ' 

For each fixed £ € K we consider the linear transformation 

A4f)'=Me(x,Q№} 
and set3) 

= sup 

Putting a ( f ) = A ( f ; 0 , A^\\A\\, A^^A^ in (6a), we obtain 

(6b) \A(f;Z)-A(lU)№\ ^ (WAW + lAWo-^uif-o) ' 

for every er>0 and 'i^K. 
Now let us consider a sequence {A„} of bounded linear transformations over 

CK, such that 
(8) IM„|| = 0(1) and A^ = 0(ln), 
where ).„ \ 0. 

Substituting A = An, a ~/,n in (6b), we obtain4) 

An(f; 0 - M ) An(\; o = O {©(/; A„)} 

and the constant in the O-estimate does not depend on the choice of / € CK and 
tZK. 

This gives the announced generalization of NATANSON'S theorem: 

T h e o r e m 2. Let K be convex, and let the sequence {A„} of linear transformations 
over CK satisfy (8). Then 

(9 ) \ A „ t f Z ) - m A n { \ : 0 \ ^ K M . f , K ) 

where Ki is neither depending on £ nor on the choice o f f £ C K . 

. . . . §4-

We turn to the proof, of Theorem I. 

L e m m a 1. For every cr>0 and #=-1 we have 

(10) <p($ti;)<2<6cp(o). 

P r o o f . From (4) it follows by induction 

<p(2m5)^2m(p(d) (m = 1 ,2, . . . ) . 

3) From the inequality | | / l ? | | s / l | [ / l | | (see ')) we conclude /1(,)<<«>. 
4) We use the notations /1„(1; A»(Jo\0, fo'= 1. 
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Let now m be the integer for which 

Since cp{5) is monotone, we obtain 

<p {i!a) cp (2"' +1 a) ^ 2'"+1 <p(a) < 2-% (a) . Q. e. d. 

Le 
m m a 2. I f , for a fixed £ £ K, (5) and (4) are satisfied, then for arbitrary a > 0 

there is an / , £ CK and an f2 £ CK such that 

(U) /(*) + + 
where 
(12) H A N I and \ \ f 2 \ \ ^ l . 

P r o o f . We consider the function F(x) = / (*)—/(£) on the closed set 1 = 
= {x: g(x, ¿;)S<T}. According to the theorem of TIETZE F can be extended as a 
continuous function to K, so that 

max |F(X)| = max |F(x)| ^ <p(p)-

We put F(x)=f1(x)<p(a),f1^CK, | | / J ^ 1 , and de f ine / 2 £C K by (11). T h e n / 2 ( ; t ) = 0 
for and for (i. e. Q(X, £ ) > a ) we have by Lemma 1 with I) = o~1Q(x, C,} 

\f(x)-M)\ ^ <F{Q(X, 0 } ^ 2 a - 1 i ? ( x , 0<p{o). 

For we have 

; |F(x)| == <p{A) O-1Q(X,Q<P(C), 

so that (11) gives 

I A W I — 1: x$Z. 

For x^Z.we had f2(x) = 0, so that 

ll/2|| = l- Q . e . d . 

P r o o f of T h e o r e m 1. From the representation (11) we conclude 

« ( / ) - / ( £ > « ( 1) = [a( / , ) + 3(T-'a{O(A-, 0f2(x)}]<p(c), 

hence by (12), (2) and (3) we obtain 

and 
|a { e ( * , i ) / 2 ( * ) } | ^ c , 

so that 
M f ) - № o L ( \ ) \ ^ ( A + 2o-*As)cp{<j). Q . e . d . 
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§ 5 

We mention a typical application of our theorem. In [1] we applied the follow-
ing lemma: We consider a matrix of real functions, {^„(x)} (k = 1,2, .... 11; 
.71 = 1 ,2 , . . . ) defined over a finite interval \a,b\, a<0<b. For x(L\a, b\ let 

<i3) ¿ ç a * ) = i 

(14) Z\x-xkn\\n„(x)\ = 

a n d • 
• n 

(15). 
k= 1 . 

Then for every g £ C [a, b] 

g(0) + Ê 9M[g(xkn)~g(0)\-g(x) = 0(1)a> ¿ j . 

Setting n 
2 <Pkn(x)f(Xkn) 

A„(f; x) = n— , 

Z?kn(x) 
k= 1 

f(x) = g(x)—g(0), and /.„ = ~ , the conditions of Theorem 2 are satisfied and 4 n . 

we obtain as its conclusion 

i. e. 
n g(0)+ Z(pkn(x)[g(xkn)-gm-g(:x) = k=l 

= 0 ( 1 ) « +max |g (x ) -g (0 ) | = 0(l)co , 

so that this lemma appears to be a consequence of Theorem 2, though it would 
not follow from NATANSON'S theorem. 
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