Approximation of continuous functions on compact metric space by linear methods

By GÉZA FREUD in Budapest

Dedicated to professor L. Kalmár in occasion of his 60th birthday

§ 1

We refer to the following theorem, due to J. P. Natanson [2]:
Let $\left\{K_{n}(t)\right\}$ be a sequence of 2π-periodic L-integrable functions, for which the: relations

$$
\int_{-\pi}^{+\pi} K_{n}(t) d t=1, \quad \int_{-\pi}^{\pi}\left|K_{n}(t)\right| d t=O(1)
$$

nnd

$$
\int_{-\pi}^{+\pi}\left|t K_{n}(t)\right| d t=O\left(\lambda_{n}\right) \quad\left(\lambda_{n} \downarrow 0\right)
$$

are satisfied, and with the aid of $\left\{K_{n}(t)\right\}$ define for arbitrary 2π-periodic continuous functions $f(t)$ the sequence of linear transformations

$$
A_{n}(f ; x)=\int_{-\pi}^{\pi} f(t+x) K_{n}(t) d t
$$

Then

$$
A_{n}(f ; t)-f(t)=O(1) \cdot \omega\left(f ; \lambda_{n}\right)
$$

where

$$
\dot{\omega}(f ; \delta)=\max _{\substack{|h| \leq \delta \\ x \in(-\pi,+\pi)}}|f(x+h)-f(x)|
$$

is the continuity modulus of $f(x)$.
The aim of this paper is to extend this theorem to a rather general case. An: example, where the generalized theorem is needed, is contained in § 5 .

§ 2

Let K be a compact metric space, with the distance function $\varrho(x, y)(x, y \in K)$,, let further C_{K} be the space of real valued continuous functions $f(x)$ over K with
the usual norm
(1)

$$
\|f(x)\|=\operatorname{Max}_{x \in K}|f(x)| .
$$

Let $\alpha(f)$ be a bounded linear functional over C_{K},

$$
\begin{equation*}
\sup _{\|f\| \leqq 1}|\alpha(f)|=A \tag{2}
\end{equation*}
$$

and
(3)

$$
\sup |\alpha\{f(x) \varrho(x, \xi)\}|=A_{\xi} .
$$

Theorem 1. Let $\varphi(\delta)$ be a not decreasing function with $p(0)=0$ and

$$
\begin{equation*}
\varphi(2 \delta) \leqq 2 \varphi(\delta) \quad(\delta>0) \tag{4}
\end{equation*}
$$

Then for every $f \in C_{K}$ the condition

$$
\begin{equation*}
|f(x)-f(\xi)| \leqq q\{\varrho(x, \xi)\} \quad(x \in K, \xi \text { fixed }) \tag{5}
\end{equation*}
$$

implies for every $\sigma>0$

$$
\begin{equation*}
\left.|\alpha(f)-f(\xi) \alpha(1)| \leqq\left(A+3 \sigma^{-1} A_{\xi}\right) p(\sigma) .^{1}\right) \tag{6}
\end{equation*}
$$

Before proving our theorem, we deduce some of its consequences, the proof itself is postponed to $\S 3$. We call K convex if for èvery pair $x_{1}, x_{2} \in K$ there is at least one $x_{12} \in K$ such that

$$
\varrho\left(x_{i}, x_{12}\right)=\frac{1}{2} \varrho\left(x_{1}, x_{2}\right) \quad(i=1,2) .
$$

For convex K the modulus of continuity

$$
\omega(f ; \delta)=\operatorname{Max}_{\substack{x_{1}, x_{2} \in K \\ \mathscr{Q}\left(x_{1}, x_{2}\right) \leq \delta}}\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|
$$

of an 'arbitrary function $f(x)$ satisfies

$$
\begin{gathered}
\omega(f ; 2 \delta) \leqq 2 \omega(f ; \delta) . \\
A^{(1)}=\sup _{\xi \in K} A_{\xi} .
\end{gathered}
$$

Putting $p=\omega$ we obtain from (6)
(6a)

$$
|\alpha(f)-f(\xi) \alpha(1)| \leqq\left(A+3 \sigma^{-1} A^{(1)}\right) \omega(f ; \sigma)
$$

for every $\sigma>0$.
${ }^{1}$) We use the notation $\alpha(1)=\alpha\left(f_{0}\right), f_{n} \equiv 1$.
${ }^{2}$) As a consequence of the compactness of K

$$
\sup _{x_{1}, x_{2} \in K} \varrho\left(x_{1}, x_{2}\right)=R<\infty
$$

:so that $A_{\S} \leqq R A$. From this we conclude $A^{(1)}<\infty$.

§ 3

Let K be convex and let Λ be a bounded linear transformation of C_{K} into itself, transforming $f \in C_{K}$ into $\Lambda(f ; x) \in C_{K}(x \in K)$, with the norm

$$
\sup _{\|f\| \leqq 1}\|\Lambda(f)\|=\|\Lambda\|
$$

For each fixed $\xi \in K$ we consider the linear transformation
and set^{3})

$$
\Lambda_{\xi}(f)=\Lambda\{\varrho(x, \xi) f(x)\}
$$

$$
\Lambda^{(1)}=\sup _{\xi \in K}\left\|A_{\xi}\right\| .
$$

Putting $\alpha(f)=\Lambda(f ; \xi), A \leqq\|\Lambda\|, A^{(1)} \leqq \Lambda^{(1)}$ in (6a), we obtain

$$
\begin{equation*}
|\Lambda(f ; \xi)-\Lambda(1 ; \xi) f(\xi)| \leqq\left(\|\Lambda\|+3 \Lambda^{(1)} \sigma^{-1}\right) \omega(f ; \sigma) \tag{6b}
\end{equation*}
$$

for every $\sigma>0$ and $\xi \in K$.
Now let us consider a sequence $\left\{\Lambda_{n}\right\}$ of bounded linear transformations over C_{K}, such that

$$
\begin{equation*}
\left\|\Lambda_{n}\right\|=O(1) \quad \text { and } \cdot \Lambda_{n}^{(1)}=O\left(\lambda_{n}\right) \tag{8}
\end{equation*}
$$

where $\lambda_{n} \downarrow 0$.
Substituting $\Lambda=\Lambda_{n}, \sigma=\lambda_{n}$ in (6b), we obtain ${ }^{4}$)

$$
\Lambda_{n}(f ; \xi)-f(\xi) \Lambda_{n}(1 ; \xi)=O\left\{\omega\left(f ; \lambda_{n}\right)\right\}
$$

and the constant in the O-estimate does not depend on the choice of $f \in C_{K}$ and $\xi \in K$.

This gives the announced generalization of Natanson's theorem:
Theorem 2. Let K be convex, and let the sequence $\left\{\Lambda_{n}\right\}$ of linear transformations over C_{K} satisfy (8). Then

$$
\begin{equation*}
\left|\Lambda_{n}(f ; \xi)-f(\xi) \Lambda_{n}(1 ; \xi)\right| \leqq K_{1} \omega\left(f ; \lambda_{n}\right) \tag{9}
\end{equation*}
$$

where K_{1} is neither depending on ξ nor on the choice of $f \in \dot{C}_{\mathbf{K}}$.

§ 4

We turn to the proof. of Theorem \mathbf{I}.
Lemma 1. For every $\sigma>0$ and $\vartheta>1$ we have
(10)

$$
\varphi(\vartheta \sigma)<2 \vartheta p(\sigma)
$$

Proof. From (4) it follows by induction

$$
p\left(2^{m} \delta\right) \leqq 2^{m} \varphi(\delta) \quad(m=1,2, \ldots)
$$

[^0]Let now m be the integer for which

$$
2^{m}<\eta \leqq 2^{m+1}
$$

Since $\varphi(\delta)$ is monotone, we obtain

$$
\varphi(\vartheta \sigma) \leqq p\left(2^{m+1} \sigma\right) \leqq 2^{m+1} \varphi(\sigma)<2 \vartheta \varphi(\sigma) . \quad \text { Q. e. d. }
$$

Lemma 2. If, for a fixed $\xi \in K$, (5) and (4) are satisfied, then for arbitrary $\sigma>0$ there is an $f_{1} \in C_{K}$ and an $f_{2} \in C_{K}$ such that

$$
\begin{equation*}
f(x)=f(\xi)+\left[f_{1}(x)+3 \sigma^{-1} \varrho(x, \xi) f_{2}(x)\right] \varphi(\sigma) \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
\left\|f_{1}\right\| \leqq 1 \text { and }\left\|f_{2}\right\| \leqq 1 . \tag{12}
\end{equation*}
$$

Proof. We consider the function $F(x)=f(x)-f(\xi)$ on the closed set $\Sigma=$ $=\{x: \varrho(x, \xi) \leqq \sigma\}$. According to the theorem of TiETZE F can be extended as a continuous function to K, so that

$$
\max _{x \in K}|F(x)|=\max _{x \in \Sigma}|F(x)| \leqq p(\sigma) .
$$

We put $F(x)=f_{1}(x) p(\sigma), f_{1} \in C_{K},\left\|f_{1}\right\| \leqq 1$, and define $f_{2} \in C_{K}$ by (11). Then $f_{2}(x)=0$ for $x \in \Sigma$, and for $x \notin \Sigma$ (i. e. $\varrho(x, \xi)>\sigma$) we have by Lemma 1 with $\vartheta=\sigma^{-1} \varrho(x, \xi)$

$$
|f(x)-f(\xi)| \leqq \varphi\{\varrho(x, \xi)\} \leqq 2 \sigma^{-1} \varrho(x, \xi) \varphi(\sigma) .
$$

For $x \ddagger \Sigma$ we have

$$
|F(x)| \leqq \varphi(\sigma) \leqq \sigma^{-1} \varrho(x, \xi) p(\sigma),
$$

so that (11) gives

$$
\left|f_{2}(x)\right| \leqq 1, \quad x \notin \Sigma .
$$

For $x \in \Sigma$. we had $f_{2}(x)=0$, so that

$$
\left\|f_{2}\right\| \leqq 1 .
$$

Q.e.d.

Proof of Theorem 1. From the representation (11) we conclude

$$
\alpha(f)-f(\xi) \alpha(1)=\left[\alpha\left(f_{1}\right)+3 \sigma^{-1} \alpha\left\{\varrho(x, \xi) f_{2}(x)\right\}\right] p(\sigma),
$$

hence by (12), (2) and (3) we obtain

$$
\left|\alpha\left(f_{1}\right)\right| \leqq A
$$

and

$$
\left|\alpha\left\{\varrho(x, \xi) f_{2}(x)\right\}\right| \leqq A_{\xi},
$$

so that

$$
|\alpha(f)-f(\xi) \alpha(1)| \leqq\left(A+3 \sigma^{-1} A_{\xi}\right) p(\sigma)
$$

§ 5

We mention a typical application of our theorem. In [1] we applied the following lemma: We consider a matrix of real functions, $\left\{\varphi_{k n}(x)\right\}(k=1,2, \ldots, n$; $n=1,2, \ldots$) defined over a finite interval $[a, b], a<0<b$. For $x \in[a, b]$ let

$$
\begin{gather*}
\sum_{k=1}^{n} \varphi_{k n}(x)=1+O\left(\frac{1}{n}\right) \tag{13}\\
\sum_{k=1}^{n}\left|x-x_{k n}\right|\left|\varphi_{k n}(x)\right|=O\left(\frac{1}{n}\right), \tag{14}
\end{gather*}
$$

and

$$
\begin{equation*}
\sum_{k=1}^{n}\left|\varphi_{k n}(x)\right|=O(1) \tag{15}
\end{equation*}
$$

Then for every $g \in C[a, b]$

$$
g(0)+\sum_{k=1}^{n} \dot{\varphi}_{k n}(x)\left[g\left(x_{k n}\right)-g(0)\right]-g(x)=O(1) \omega\left(g ; \frac{1}{4 n}\right)
$$

Setting

$$
\Lambda_{n}(f ; x)=\frac{\sum_{k=1}^{n} \varphi_{k n}(x) f\left(x_{k n}\right)}{\sum_{k=1}^{n} \varphi_{k n}(x)}
$$

$f(x)=g(x)-g(0)$, and $\lambda_{n}=\frac{1}{4 n}$, the conditions of Theorem 2 are satisfied and we obtain as its conclusion

$$
\Lambda_{n}(f ; x)-f(x)=O(1) \cdot \omega\left(f ; \frac{1}{4 n}\right)
$$

i. e.

$$
\begin{aligned}
g(0)+\sum_{k=1}^{n} \varphi_{k n}(x) & {\left[g\left(x_{k n}\right)-g(0)\right]-g(x)=} \\
& =O(1) \omega\left(g ; \frac{1}{n}\right)+\max |g(x)-g(0)| O\left(\frac{1}{n}\right)=O(1) \omega\left(g ; \frac{1}{4 n}\right)
\end{aligned}
$$

so that this lemma appears to be a consequence of Theorem 2 , though it would not follow from Natanson's theorem.

References

[1] G. Freud, Über ein Jacksonsches Interpolationsverfahren, Über Approximationstheorie, ISNM, 5 (Basel-Stuttgart, 1964), 227-232.
[2] И. П. Натансон, О точности представлення нспрерывных периодических функции сингулярными интегралами, Доклады Акад. Наук СССР, 73 (1950), 273276.

[^0]: ${ }^{3}$) From the inequality $\left\|\Lambda_{\xi} \mid \leqq R\right\| A \|$ (see ${ }^{1)}$) we conclude $\Lambda^{(1)}<\infty$.
 ${ }^{4}$) We use the notations $\Lambda_{n}(1 ; \xi)=A_{n}\left(f_{0} ; \xi\right), f_{0} \equiv 1$.

