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| §1°
We refer to the following theorem, due to J. P. NATANSON [2]:

Let {K, (1)} be a sequence of 2n-pel iodic L- mregmb/e functtons, Jor which the
relations .

'f K,()di=1,"" flKn(z)l dr=0(1)""

and - ‘ - o
[uk.ldi=0@) (a1 0)

are satisfied, and with the aid of {K,(t)} define for arbitrary 2m-periodic continuous~
Junctions f(t) the sequence of linear transformations
AL = [fer oK@ dn o
Then o o
A (f; )= f(1) = 0()-0(f; 4,),
o(f;8) = max M+ ~f )

ji =5

. xe( n, + 1)

where

|is the continuity modulus .of f(x)..
The aim of this paper is to extend this theorem to a rather general case. Am.
example, where the generalized theorem is needed, is contained in § 5.

§2

Let K be a compact metric space, with the distance function o(x, y) (x, y € K),.
let further Ci be the space of real valued continuous functions f(x) over K with.
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‘the usual norm

o 1AW = Max |/l

Let a(f) be a bounded linear functional over CK,
{2) ' “sup |a(f)] = 4
[t =1
and
3 sup la{f(x) e(x, f.)}i=A¢-
Theorem 1. Let (5) be a not decreasing function with 9(0)=0 and -
@ - p20)=20()  (5=0)
Then for every feCy the condition .
(5) =) = ple(x, &)} (xEK, E fixed)
.implies for every ¢=0" S o
+(6) , Na(f) =fQaD] = (4 +36 ' 4)p(0).")

" Before prbving our theorem, we deduce some of its éonsequences the proof
Atself is postponed to' § 3. We call K convex if for every pair xl, x; €K there is at
. least one x;, €K such that

(7 ' Q(«\'i:xlz)=‘}0(x1w"2) (i=1,2).

For convex K the modulus of continuity

w(f;9) = Max -Gl
"(xl X2)=d

-of an'arbitrary function S(x) satisfies

' o (f; 20) =20 (f; 9).
Let?) . "
AWM = sup A,.
SEK

Putting ¢ =w we obtain from ,(6)-

«(6a) l2(f) =f(©a(D]= (44367 Ao (f; 0)

for every ¢=>0.

'} We use the notation a()=a(fo), fo=1.
2) As a consequence of the compactness of K

sup o(xi,x2) = R<os
X1, x2€ K

:s0 that A;=RA. From this we conclude A"’ <eo,
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§3
" Let K be convex and let 4 be a bounded 11near transformation of Cy into 1tself
transforming f€ Cx into A(f x)€Cx (x€K), with the norm
Sup [ = 141

.For each fixed EEK we consider the linear transformation .
A:(f) Afe(x, ﬁ)f(X)}

and set3)
: A®) = sup || 4,].
gek

| Putting a(f)=A; &), Aéll/lll', Atl)éA(l?‘ in’(6a), we obtain
(6b) A=A 0 Q) = (14 I +34%=)a(f; ) "

for every o=>0 and .fEK
Now let us consider a sequence {4,} of bounded linear transformatlons over
Cy, such that

8) 4, ||=0(1) and - A" =0(4,),

where 4,10.
Substltutmg A=A,, 6=24, m (6b), we obtam“)

AL O=FOA1: )= O{w(f A}

. and the constant in the O-estimate does not depend on the ch01ce of feCx and
EEK.
This gives the announced generahzatlon of NATANSON s theorem:

Theorem 2. Let K be convex, and let the sequence {A,} of linear tr ansformattons
over Cy satisfy (8). Then

C) D IAAﬂ@—ﬂéAAIQI Ko(f; 4,)

where K, is neither depending on & nor on the choice of f¢€ C;.

. §4
‘We turn to the proof. of Theorem I.
-Lemma 1. For every ¢=>0 and 9=>1 we have
a0 | P(96) <20(0).
Proof. From (4) it follows by induction ‘
o P@"8)=2"0(5) (m=1,2,..).

%) From' the inequality [|4sl|=RIl Al (sece V) we conclude A <e,
) We use the notations Au(t; &)= A.(fo; &), fo=1.
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Let now .m be the integer for which
2"'<7§§2’"+".
Sincé pd) is monc‘)tone,' we obtain _
p(Pe) =g (2'”“6)S2’"+1(p‘(0)<229(p(0’) Q.e.d.

Lemma 2. If, for a fixed £€K, (5) and (4) are satzsﬁed then for arbitrary o >()
there is an f,€Cx and an f, € Cy such that

ayn f) = O +1i(x)+ 367 o(x, O f2(x)] p(0),
where :
(12) ’ IAl=1 and |fal=1.

Proof. We consider the function F(x) = f(x)—f(£) on the closed set X =
—{x o(x, &)=0}. According to the theorem of TIETZE F can be extended as a
continuous function to K, so that

max [F(x)] = max [F(x)] = ¢(0).

We put F(x) =/,()9(0), /1 €Cy, |Ifill =1, and define f; € Cx by (11). Then f5(x) =0
for x€Z, and for x¢ % (i. e o(x, €)>a) we have by Lemma 1 with '»9 a‘lg(x, &y

) —fOI = plelx, O} = 267 1o(x, & p(o).
For x¢ZX we have .
CIF@) = 0(0) = 07 e, 9p(0),
so that (11) gives _ X
‘ | f29=1, x¢Z.
For4x€2. we had f,(x) =0, so that
' ' =1 | ’ Q.e. d.

Proof of Theorem 1. From the representation (11) we conclude
a(f) —f(©x() = [w(f)) + 30~ a{o(x, Ef2()}]p (o),
hence by (12), (2) and (3) we obtain
()| = 4
{0, DL} S 4e, o
loe(f) =f(Da(D)] = (A+307 ' 4)p(0). ‘ Q.e.d.

and

so that
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§5

We mention a typical application of our theorem. In [I] we applied the follow-
ing lemma: We consider a matrix of real functions, {p.(x)} (k=1,2, .. n;
n=1,2,..) defined over a finite interval [a, b], a<0<b. For x¢|a, b] let-

. o : n 1

(13) 2 Prn(X) = 1+o[e],
, =1 n
(14) ] ‘\Z: \X ‘v_’\-kni ‘(pkn('x)‘ =0 ['77) ’
and . o .
(15). 2 [Pl = 0(1).

Then for every gEC [a, b]

g0 + Z’ Pin() 1 ()~ 2O =g () = o'(l)w'(g;%].
Setting

Z Pen () ()
A(fix) = ,

,\;: (Pkn (X )

S = g(x)—g(0), and 4, ="-11;, the conditions of Theorem 2 are satisfied and

we obtain as its conclusion

A5~ = 0y f; 1],

8O + > pu(IlE (i) ~£O) () = | |
= 0o [g; 1+ maxise-s010 (1) = 0w es 1]

so that this lemma appears to be a consequence of Theorem 2, though it would
not follow from NATANSON s theorem.
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