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. A well-known theorem of CAYLEY states that groups are representable as:
. permutation groups. In his paper [3] Ch. HOLLAND has dealt with a similar problem
and proved that each lattice-ordered group is isomorphic to a group of monotone:

permutations of a suitable fully ordered set. Here we shall consider two questions. - -

‘connected with the above ones. The first one is similar to CAYLEY’s theorem and.
is. concerned with partially ordered groups, while the second one is connected. with:
the paper of HOLLAND and characterizes the partially ordered groups that can be
regarded as subgroups of the lattice-ordered group ‘of the monotone permutatlons.
of some fully ordered set.

The fundamental concepts concerning partxally ordered groups can be found
in the book of L. Fuchs [2].

The following result is well known.

Lemma. A4 group X of permutations of a fu/ly O)deled set S is par na//y left-‘
ordered') by the rule®).

a=p (0, Bin ), if w=u® for each u€S.

Before proving the converse of this lemma we shall consider the connection.
of -S and X in more detail. ‘

We define a new partial order- =’ on the set S in the followmg way:

Let a="b (a, b.in §) if there exist a u in S and «, § in X such that a=u*, b=uf
and a= . We denote the set S partially ordered under =’ by S’. The order of §
is.obviously an extension of the order of S’. Indeed, a="b (a, b in S) implies by
definition a=5.

We verify that the relation =’ is actually a - partlal order. We get reflexivity by’
the choice « = =e¢ (the unity of X). Antlslmmetry is clear because S is an extension.
of §’. Finally, we obtain transitivity in the following way: a=’b and b="c imply"
the existence.of u,v in S and «=p, y=4 in ¥ with the properties a=u", b=uf=v", -

c=v%. From the partial left-order it follows -l =g = y~15, that is, a=ur=pf e
=¥ =pP=c.

') A group X is partially left-ordered if there is a partial order = in the set X with the pro-
perty: o= f implies ya=ypp for all «, B, y€ 2. We can define partial right- -order similarly. A group-
is partially ordered if it is both partially left- and right-ordered.

2) We denote by u the image of the element 1 €.S under the mapping. an
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Thus we have the following
Theorem 1. S* is a partially ordered set.

The connection between X and S’ is shown by

Theorem 2. X is a partially ordered gr oup if and only lf its elements are mono-
.fone permutations of S’.

Proof. Let first £ be a partially ordered group, .and let a="b. Then a=u,
.b=uP for a suitable #€ S and for some a=f in 2. By two-sided ordering, for every
g€Z,u0=filc holds, and therefore a =u**='uf" =b° as asserted.

Next, let the elements of X be monotone permutations of S’, and let a=p
.and ¢ in £. From o= fi we obtain for every u€ S’ the relation v*="uf, and hence
.because of the monotonicity #%°="ufs, On using the fact that .S is an extension of
.S’, we get wo=u’° for each u€ S, that is, oo =fo. .

Clearly, S is the union of the disjoint sets S, which are the domains of intran-
sitivity under 2.

Let 2, be the pdrtlally left-ordered group of the permutations induced by the
«elements of 2 on §,. It is easy to see that X is a subdirect product of the partially
left-ordered groups X,. (See Conn [I]%).)

Now, let = be a subgroup of . We can define S’ and S, similarly as we did
S’ and S,. Obviously, each S, is the union of some Sﬂ, and it is €asy to see that
“the order of S’ is an extension of the order of S’. It can be proved without dif-
ficulty that if all posmve elements of Z are in 2 then ?’ A

Theorem 3. Let 2 be a nomm/ subgroup of Z Then the S.’s which are subsets
.of ‘the same S, are domains of imprimitivity of Z.

Proof. Let S,, S, belong to S,, a, b€ S, and ¢€S,. Then b=a? and c=a",
‘where ¢€Z and «€Z. Hence b"‘—a’”‘—a““""“—c“ ‘7=, Now, a~'gpa€Z because
T is a normal subgroup of Z, thus b*€S,.

The following result gives information about the representablllty of partially
left-ordered groups. .

Theorem 4. If Z isa /)amally left-ordered group then there exists a fully ordered
.set S such that the partially left-ordered g/oup of the permutations of 'S contains a
subgroup o-isomorphic to X.

Proof. Let Z be a partlally left-ordered group and let Z; denote the underly—
ing partially ordered set (i.e. in X, we dlsregard from the group operation). It is
known (see SzPILRAIN [4]) that the order of £, is the intersection of orders of some
fully ordered sets Z,. We can suppose that the set of indices v.is ordered. Finally,
let S be the union of the disjoint sets X, such that 2} is order-isomorphic to Z,.
We denote by u, the element of Z7 corresponding to the element u of Z,. We define
a full order in S by -putting u, =y, if either v precedes u in the ordering of the
indices or if v=pu and u,=v, in Z,.

Now we deﬁne; for each aEZ a mapping ¢, of S such that u%« =(ua), for each
v. Obviously, g, is a permutation of S. The mapping a -0, is a one-to-one corres-

3) CouN considers only the case of complete direct product.
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pondence, for if ‘'o,=0,, then a,=eJa=e’% =b, for every v, thatis, a=b. From
uteos = (ua)’> = (uab), =u% it follows that the mapping a—~o, isan isomorphism.
Let a=b. Then ua=ub, and therefore u?=(ua), = (ub),=ug*. Thus o,=g,,
and the mappmg a—o, is an o-preserving isomorphism. Let ﬁnally o, be a positive
element, that is, e, = ef«=(ea),=a, for all v. Since 2, is the mtersectlon of the
Z,., we get e=a, showmg that @ —o, is an o-isomorphism.

Next we shall consider partially ordered groups which are representable by
monotone permutations of a fully ordered set. The monotone permutations of a
fully ordered set S, as is well known, form a lattice-ordered group under the usual
ordering (see: Lemma). HoLLAND proved in [3] that to each lattice-ordered group
2 there exists a fully ordered set S such that the group of all monotone permutations
of S, under the usual ordering, has a subgroup o-isomorphic to X. We get-the
obvious

Theorem 5. 4 parria// 'y ordered group is representable by monotone permutations
of a fully ordered set if and only if it is isomorphic to a subgroup of a lattice-ordered
group.

Let the elements of a group X operate on a set.S. We call an ordering = of
S a Z-ordering if, for each €2, a=b implies a*=b* (a, b€ S). Let, for example,
Zbea partlally ordered group and P a convex subgroup of Z. The set of the right .
cosets of P is in the induced partial order (Pu=Pp if there are elements y € Px,
8 € Pf such that y=0) a Z-ordered set by the definition (Po)” = Pao. If the ordering
of the Z-ordered set of the right cosets of a convex subgroup P can be extended to
a full Z-ordering, we call P an admissible subgroup.

Remark. A convex subgroup P of a commutative group X is admissible if

and only if the induced order of the group X/P is extendible to a full order, that is,
Z/P is torsionfree. Let namely = be the induced order in Z/P and =" a full ‘order
of X/P which is an extension of =. Let Pu=’Pf and t an element of Z. Because
of PoPo=Pgo, PaPt='PBPr and Pat="Pf1 are equiValent The commutativity
of X completes the proof.
’ Example. We construct a group containing a subgroup which is not admis-
sible. Let the elements of X be the numbers of the form +2* and the elements of P
the numbers of the form 2%, where a are integers, and the group operation is multi-
“plication of numbers. Let the positive elements be the elements =1; then. P is convex
and there are two cosets of P, namely P and — P. P can not be an admissible sub-
group because P(—1) =—P and —P(—1) = P.

Theorem 6. A partially ordered group X is o-isomorphic to a subgroup of the
lattice-ordered group of all monotone permutations of a fully ordered set S if and .
only if there exists a set A of admissible subgroups P of X such that to each non-
positive o in X there is some P in A satisfying Pau<P in the induced ordering®).

Proof. Let first £ be o-isomorphic to a subgroup of the partially ordered
group of all monotone permutations of a fully ordered set S. We can assume, on
the basis of this o-isomorphism, that the elements of 2 are monotone permutations
of S. Let a€ S, and define P, to consist of all €2 such that a*=a. Obviously, .
for each a € S, P, is a convex subgroup. There will not be any ambiguity in denoting

%) The last assumption implies that X' is directed.
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the orders of S, 2 and the set of cosets of P, by the same sign =. Let us fix an «
in S. a®=d* is equivalent to ¢*#~'=a, further to aff~1€¢P,, that is, a*=a? if and
only if « and 8 are in the same right coset of P,. Now, we order the cosets of P,
by setting Pa=P,f if and only if @*=aP. This relation is, obviously, independent
of the representation of the cosets. It is also clear that this relation is an order,
moreover a full order, because the elements ¢* are in the fully ordered set S. Now,
Pa=Pp, i e, a*=af implies a® =dfs, i. e., Poo = P fo. Therefore P, is admissible.

Finally, let « be a non-positive element in Z. From the non-positivity we infer
the existence of an a€ S such that a* <a, because from a*=a, for each ¢ € S, the
positivity of o would follow. From a*<a it follows P, < P,; this means that the
subgroup P, has the property required in theorem 6.

Conversely, let A be a set of admissible subgroups P,, such that to each non-
positive a €2 there is some P, in A with the property P <P,. We can suppose
A to be fully ordered. Let S, denote the set of the right cosets of P,; S, is a fully
Z-ordered set. We denote the orders in S, and in A by =. Let finally S be the union
of S, with the following full order: Pix <P f if either v<pu in A or if v=p and
Poa<Pp in S,. We define, for each €2, the mapping P,u—(Pa)° =Pac of S
into itself. Obviously, these are mappings of S onto S, moreover they are one-to-
one. These permutations are monotone. For, let Pa<P,f. If v<yu in A, then
Pooc<Pfo for each c€Z. If Poa<Pf in S, then Pao <P fig, because S, is
Z-ordered.

Now, to o €2 we make correspond the monotone permutation P — P oo of
S. Then X2 will be isomorphic to a subgroup of the monotone permutations of S.
We have to show that this isomorphism is an o-isomorphism. It is enough to prove
that a monotone permutation P — Pxo is positive if and only if ¢ is a positive
element of Z. Let ¢ be positive. Then a <oo for each a in X and Pu < Poao =(P,o)°
for all P, in A and « in X. Now, let ¢ be non-positive. By hypothesis there exists
a subgroup P, in A such thdt Po<P,, and so the mapping P, — Pao is again
non-positive. )

Remark. The intersection of all P, in A is the unity of Z. In order to prove
this proposition, it is enough to show that for each e #¢ in X there is a P, in A such
that a ¢ P,. If a is non-positive then there is a P, in A such that P,a <P, and so
ag P,. If a=¢, then a~! is non-positive, and if =1 ¢ P, then « § P, too. If we replace
the condition “for each non-positive a €2 there exists a P€ A such that Pau<pP
holds” by “the intersection of all P,€ A is the unity of X, we are able to prove
only the existence of an o-preserving isomorphism.
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