On completely continuous and uniformly bounded operators

in l^{p} spaces

By L. GEHER in Szeged
To Professor L. Kalmár on his 60 th birthday

Introduction and terminology. In the sequel, a transformation T means: a linear, bounded (and everywhere defined) mapping of a Banach space \mathfrak{B}_{1} into another Banach space $\mathfrak{B}_{2} ; T$ is called invertible if it has a bounded (everywhere defined) inverse T^{-1}. In case $\mathfrak{B}_{1}=\mathfrak{B}_{2}, T$ is said to be an operator. An operator T defined on a Banach space is called uniformly bounded if there exists a constant. K with $\left\|T^{n}\right\| \leqq K(n=0,1, \ldots)$. Contraction means an operator with norm not greater than 1. Two operators A and B defined on \mathfrak{Y} and \mathfrak{Z}, respectively, are said to be similar if there exists an invertible transformation C mapping \mathfrak{Y} onto \mathfrak{B} such that $A=C^{-1} B C$.

A few years ago B. Sz.-Nagy [1] proved the following theorem:
Every completely continuous and uniformly bounded operator defined on a Hilbert space $\sqrt[5]{5}$ is similar to a contraction of $\sqrt{9}$.

The theorem also has been proved for l_{n}^{p} spaces [2].
In this paper we are going to give a generalization of the above mentioned theorem of B. Sz.-NAGY in l^{p} spaces. The following theorem will be proved:

Theorem. Every completely continuous and uniformly bounded operator on $l^{p}(1 \leqq p<\infty)$ is similar to a contraction defined on a proper subspace of ${ }^{p}$ isomorphicto l^{p}.

Every subspace of a Hilbert space isomorphic to being also isometric to G, our result contains that of B. Sz.-NAGY (at least for separable Hilbert spaces).

Proof of the theorem. 1°. Let T be a completely continuous and uniformly bounded operator defined on l^{p}. Then the spectrum Σ of T consists of countable many points, the only possible accumulation point of which is the point 0 . Further, T being uniformly bounded, its spectrum Σ lies on the closed unit disc, and on the unit circle there are only finitely many eigenvalues of T. Denote by $\mu_{1}, \mu_{2}, \ldots, \mu_{k}$ the eigenvalues lying on the unit circle, each of them being written as many times. as its geometric multiplicity (for a uniformly bounded operator, each eigenvalue lying on the unit circle has the same algebraic multiplicity as its geometric multiplicity, cf. [1]). Let $a<1$ be a positive number such that the rest Σ^{\prime} of the spectrum.
.lies in the disc $|z|<a$. Then, as well-known,

$$
P=-\frac{1}{2 \pi i} \oint_{|z|=a} R_{z} d z, \quad \text { where } \quad R_{z}=(T-z I)^{-1}
$$

is a projection commuting with T, such that the spectrum of the restriction T_{3} of T to $B=P l^{p}$ is Σ^{\prime}. B has finite codimension. (A subspace of a Banach space has finite codimension k, if it has a k-dimensional complementary subspace.) $\$ 3$ being isomorphic to l^{p}, there exists an operator T^{\prime} on l^{p} similar to $T_{33} . *^{*}$) For a moment, suppose that the theorem is true for T^{\prime}, i. e. that there exists a subspace $\mathfrak{W}_{1}^{\prime}$ of I^{p}, such that T^{\prime} is similar to a contraction on \mathcal{W}_{1}^{\prime}.

The space of the elements $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}, x\right)$, where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ are scalars .and $x \in I^{p}$, supplied with the norm $\left(\sum_{i=1}^{k}\left|\alpha_{i}\right|^{p}+\|x\|^{p}\right)^{1 / p}$ is a Banach space isometric to l^{p}, thus it can be identified with l^{p}. The elements $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}, x\right)\left(x \in \mathfrak{B}_{1}^{\prime}\right)$ form a subspace \mathfrak{B}_{1} of this space. The operator

$$
T_{1}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}, x\right)=\left(\mu_{1} \alpha, \mu_{2} \alpha_{2}, \ldots, \mu_{k} \alpha_{k}, T_{1}^{\prime} x\right) \quad\left(x \in \mathfrak{B}_{1}^{\prime}\right)
$$

-defined on this subspace is evidently a contraction and similar to T.

[^0] in l^{p}, every element $x \in \mathcal{F}$ may be written in the form
$$
x=\sum_{n=1}^{\infty} \alpha_{n} P e_{n} \text { with } \sum_{n=1}^{\infty}\left|\alpha_{n}\right|^{p}<\infty
$$
:but not uniquely. It can be proved, however, that we can choose a set of k subscripts $N=\left\{n_{1}, n_{2}, \ldots, n_{k}\right\}$ such that a representation
$$
x=\sum_{n \notin N} \alpha_{n}^{\prime} P e_{n} \quad \text { with } \sum_{n \notin N}\left|\alpha_{n}^{\prime}\right|^{p}<\infty
$$
s fossible and is uniquely determined, for each $x \in \mathfrak{B}$. I. e. $\left\{P e_{n}\right\}_{n \notin N}$ is a basis for \mathfrak{B} and P furnishes, by the closed graph theorem, an isomorphic mapping of the space spanned by the vectors \boldsymbol{e}_{n} ($n \notin N$) onto \mathfrak{B}. To construct such a set N consider a basis $q_{i}=\alpha_{11} e_{1}+\alpha_{12} e_{2}+\ldots(i=1,2, \ldots, k)$ of the complementary subspace $(I-P) I^{p}$ of \mathfrak{B}. Then the matrix
\[

\left($$
\begin{array}{cccc}
\alpha_{11} & \alpha_{12} & \ldots & \ldots
\end{array}
$$\right)
\]

is of rank k, i. e. it has a subdeterminant of order k different from 0 , e.g.

$$
\left.D=\left\lvert\, \begin{array}{cccc}
\alpha_{1 s_{1}} & \alpha_{1 s_{2}} & \ldots & \alpha_{1 s_{k}} \\
\alpha_{2 s_{1}} & \alpha_{2 s_{2}} & \ldots & \alpha_{2 s_{k}} \\
\ldots & \ldots & \ldots & \ldots
\end{array}\right.\right] \neq 0 .
$$

An easy calculation with determinants shows that the set $N=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ satisfies the above requirement.

So it is enough to deal with the case when the spectrum is contained in the interior of the unit disc.
2°. Suppose that T has no eigenvalue lying on the unit circle. In virtue of the well-known theorem of Gelfand, $\lim _{n \rightarrow \infty}\left\|T^{n}\right\|^{1 / n}=\varrho<1$, where ϱ denotes the spectral radius of T. Thus for any number σ with $\varrho<\sigma<1$ there exists a natural number N such that $\left\|T^{n}\right\| \leqq \sigma^{n}$ for $n>N$. We define a new norm in l^{p} with

$$
|x|=\left(\sum_{n=0}^{\infty}\left\|T^{n} x\right\|^{p}\right)^{1 / p}
$$

It follows from

$$
\|x\| \leqq|x|=\left(\sum_{n=0}^{\infty}\left\|T^{n} x\right\|^{p}\right)^{1 / P} \leqq\|x\|\left(\sum_{n=0}^{N}\left\|T^{n}\right\|^{p}+\sum_{n=N+1}^{\infty} \sigma^{n p}\right)^{1 / p}=C\|x\| \quad(C<\infty)
$$

that this new norm is equixalent to the old one. Denote by l^{p} this new space and by \boldsymbol{T} the operator on \boldsymbol{l}^{p} defined by $\boldsymbol{T} x=T \dot{x}$. Evidently, \boldsymbol{T} is a contraction. The two norms being equivalent, \boldsymbol{T} is similar to T. Now, we have only to prove that l^{p} may be isometrically imbedded into l^{p}. Let Θ be a rearrangement of the double :sequence into a simple sequence. Rearranging the double sequence ($x, T x, T^{2} x, \ldots$), where $x, T x, T^{2} x, \ldots$ stand instead of the sequences corresponding to $x, T x, T^{2} x, \ldots$, respectively, by means of Θ, we easily get an isometric transformation of l^{p} into l^{p}.

Remark. Suppose that there exists a decreasing sequence $\mathfrak{B}_{1} \supset \mathfrak{F}_{2} \supset \ldots$ of. finite codimensional subspaces of l^{p} reducing T, with $\bigcap_{n=1}^{\infty} \mathfrak{B}_{n}=0$. (For instance, this is the case if the point 0 is not an eigenvalue of T. Indeed, let $\left\{a_{n}\right\}_{1}^{\infty}$ be a decreasing sequence of positive numbers, converging to 0 , such that the circles with radius $a_{n}(n=1,2, \ldots)$ and centre 0 contain no eigenvalue of T. Then with the aid of the projections

$$
P_{n}=-\frac{1}{2 \pi i} \oint_{|z|=a_{n}} R_{z} d z
$$

we get a sequence of invariant subspaces having the required property.) Then T is similar to a contraction defined on a finite codimensional subspace of l^{P}. The proof is based on the fact that if T_{1}, T_{2}, \ldots denote the restrictions of T onto $\mathfrak{B}_{1}, \mathfrak{B}_{2}, \ldots$, respectively, then $\left\|T_{n}\right\| \rightarrow 0$ for $n \rightarrow \infty$. To prove this suppose the contrary, i. e. that there exist a positive. number $\varepsilon>0$ and a sequence $\left\{x_{n}\right\}_{1}^{\infty}$, with $\left\|x_{n}\right\|=1$ and $x_{n} \in \mathfrak{F}_{n}(n=1,2, \ldots)$ such that.

$$
\left\|T_{n} x_{n}\right\|=\left\|T x_{n}\right\| \geqq \varepsilon
$$

T being completely continuous, there exists a convergent subsequence $\left\{T x_{i_{n}}\right\}_{1}^{\infty}$ of $\left\{T x_{n}\right\}_{1}^{\infty}$. Let $\lim _{n \rightarrow \infty} T x_{i_{n}}=x$. Then by $\left\|T x_{i_{n}}\right\| \geqq \varepsilon$ it follows that $\|x\| \geqq \varepsilon$. On the other hand, in virtue of $x_{i} \in \mathfrak{B}_{n}$ and $\bigcap_{n=1}^{\infty} \mathfrak{B}_{n}=0$, we get $x=0$, which is a contradiction.

Using this, the proof can be finished so as in the former case.

References

B. Sz.-Nagy, Completely continuous operators with uniformly bounded iterates, Publ. Math. Inst. Hung. Acad. Sci., 4 (1959), 89-93.
L. Gehér, Über ähnliche lineare Transformationen in endlichdimensionalen Räumen, Publ. Math. Inst. Hung. Acad. Sci., 4 (1959), 95-99.
A. Pelçyński, Projections in certain Bana̧ch spaces, Stuclia Math., 19 (1960), 209-228.

[^0]: ${ }^{*}$) We have made use of the fact that every finite codimensional subspace of l^{p} is isomorphic to l^{p}. Although this is a consequence of a general theorem of Pelczyński [3], in this special case we sketch a proof for it. Let 2 be a k-codimensional subspace of l^{p} (k is finite, $k>0$) and P a (bounded) projection of $l^{\dot{p}}$ onto \mathfrak{B}. Introducing the basis vectors $e_{1}=(1,0,0, \ldots), e_{2}=(0,1,0, \ldots), \ldots$

