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Introductit_in

In §1 of this paper we shall deal with certain representations of real numbers..
Let a, (n=0, 1, ) be an absolutely monotonic sequence of numbers, de such that

(1) d*a, =0 (k 0,1,...; n= k),
- where 4%, =a,, A'a, = da, = a,_,—a, (n=1), and
' Aa, = A(41a) (k=1 n=k).

Let us also suppose that the sequence is normed, i. €.

@ T o= L
and regular, i.e.
3) ' a,—~0 and A4"a¢,—~0 " (n— ).

Then every real x€(0, 1] admits a uniquely determined representation of the.
form o

) - x= 2 Aa,
k=0

where the sequence of integers 1 = n,<n; <n, <... depends on x.
This representation can also be written in the form

8,,A€‘ +o.tEn-1 an

W E

) x =

—

n=

where ¢, —e,,(x) equais 0 or 1; clearly g, =1 if the number n occurs in the sequence
My, and g, =0 if not.

In §2 we deal with the probability distribution of nk~nk(x) provided that x
‘is chosen at random with uniform distribution. in (0, 1]. We shall show that the
sequence of random variables n, is then a Markov chain. In § 3 we deal with the
Joint probability distribution of the random variables ¢, (=1, 2, ...) defined above.
We prove that if A, denotes- the random event that ¢,(x)=1 then the events 4,
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(n=1,2,..) form a sequence of equivalent (symmetrically dependent) events, such
that

. '(6) P(Ann mz"'Amk) = Akak

for | = my<m;<...<m,. (Here and in what follows P(A) stands for the proba-
bility of the event A.)

In § 4 we show that the strong law of large numbers for equivalent events implies
that for almost all x the limit:

k
7 lim
) o o )

exists. (Previously in § 2 we obtain the weaker result that the distribution of k/n,
tends to a limit distribution.) On the other hand the above mentioned connection
between equivalent -events and the representation (4)- or (5) leads to an effective
-construction of any sequence of equivalent events. A consequence of this is discussed
in §5. In §6 we construct the corresponding measure preserving transformatlon
to each sequence a,, whlle in § 7 we discuss an example.

§ 1. Representation of real numbers by series of successive differences

We start with the following

Theorem 1. Let a, (}1——0 1,...) be a normed, regular, absolutely monotonic
.sequence of real numbers. Then any lea[ number x€(0, 1] can be /epresemed in the
SJorm

(1. 1)

i
s
B

where the increasing sequence 'bf natural numbers ny is uniquely determined by x.
Proof. Let n, be the ﬁrst natural number such that ‘

(1. 2) . ’ Apy <X}

such a number exists because a, =1 and a,—0:. Let n, be the first natural number

such that
(1. 3) C a,,+ 4a,, <x;

such a number #, exists because da, —~0. Moreover, by the definition of n, we have

Opo <X = @Gn,_,, l.€. x—a, = da,, hence it follows n >ny. Similarly if
Hg, My, ..., n, are already determmed so that :

r-1

(1. 4) ZA"a =x = 2 Aka, +4a, -,

let n,,, be the least natural number such that
r+1

(1. 5) ' A ZA"’a,,k<x.
: =0
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It follows from (1.4) that

. r )
(1. 6) O<x— k_ZO Aa, = A+ia,
which implies — as by supposition 47*!q, is decreasing in n — that Hypy =1,

Thus n,,,; > r+1. Therefore — using again the monotonicity of 4"*1a, —
it follows from (l.6) that

a.n 0<x—k=ZoAkank<Ar+la,H.

In view of the condition 4"a, 0 it follows that if the numbers n, are determined
by the algorithm described above, then (1. 1) holds. This proves Theorem 1.

Let us note that according to a well-known theorem of F. HAUSDORFF [I]
every normed -absolutely monotonic sequence can be represented in the form

1
(1. 8) a, = [indF@) -
. . 0 :
where F(¢) is non-decreasing on the Qlosed interval [0, 1], is continuous from the

. left in the interior, and such that F(0)=0 and F(1)=1. Evidently,
' lima, = F(1)— F(1—0), .

n-»oco

thus condition lim a,=0 implies that F(t) is continuous at x=1. We have further

1
(1.9) o foaq = [ (L=t dF(r)
.0 )
for k=0,1, ... and .n =k; thus in particular
1 ) .
(1. 10) ta, = [ (=1 dF ().
, s
Hence

lim d¥q, = F(+0).

K= oo
Thus the condition of regularity lim 47a, =0 implies that F(f) is continuous at
¢ =0. Thus every normed, regular, absolutely monotonic sequence a, can be repre-
seited in the form (1. 8) where F(t) is the distribution function of a probability

distribution in the opern interval (0, 1).
In view of formula (1.9) the representation (I. 1) can be written in the form

1

(.11 ‘ ' x =/[k§(1 —t)kt"k-k] dF(t).
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Thus it follows that for every x€(0, 1] there is exactly one function g(r) of the form

.g(’) = ﬁ(l—r)kf'lkfk

with | = ny<n; <n,<..., such that

x = [g()dF ().

§ 2. Statistical theory of the difference-series representation of real numbers

Let x be a random variable, uniformly distributed in the interval (0, 1). Let us
consider the representation’ of x in the form

2.1 x = 2> Ma,
: ) k=0
where a, is a given normed, regular, absolutely monotonic sequence. According to
Theorem 1 the natural numbers n, =n,(x) are uniquely determined by x; thus they
are well defined random variables. We shall study now the nrobability laws govern-
ing the behaviour of these random variables. It is easy to see that if n,, ..., n, are
fixed, then x bslongs to an interval of length 4¥+'q, . It follows that denotmg by
. P(AIB) the conditional probability of the event A under condition B, we have

k+1
A" t1q,

(2. 2a) Pny=n|ng=mgy,ny=my, ...,0_,=m,_,) = iz

mg -1

provided that 1 = mo<m;<...<m,_, <n. Thus the conditional distribution of:
n, by given ng, ..., n,_, depends on n,_, only, that is the sequence of random
variables n, (k=0,1,...) is a Markov chain with the transition probabilities

k+1
Af+la,

(2.2b) ' P(ny=n|n_;=m) = T

As the probability on the right-hand side of (2. 2b) depends in general on & too,
the Markov chain #, is in general inhomogeneous It is easy to see that the Markov

chain is homogeneous if and only if a, = ={1-p)" (n=0,1,...) where O0<p<1.
In this particular case
(2.3) ‘ P, =nln_y =m)=p(l-py~—"-L

This particular case corresponds to the representation of the real number x
in the form

2. 4) 3 ‘ X = g@ (1 — p)™k,

In this case if 4, denotes the event that n is contained in the sequence #, then the
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events 4,, n=1,2, ) are independent and each has the probability P(4,)=p.
Especially if p=1% the representation (2. 4) reduces to -

. <. 1
Q2. 5) .x:kZ?Z"k where 1=no<n, <..., .

]
.Q

by other words to the representation of x in the binary number system.

Let us return to the random variables #, in the general case. The unconditional
distribution of », can be determined as follows : As mentioned above if ng, ny, ..., m
are fixed, then x belongs to an interval of length 4-7iq, . Now if only n, is fixed,

. [n .
n, =n, then the values of ry, ny, ..., m,; can be chosen in X ] different ways;
thus we have .

A A
Especially in the case when a, = (1 —p)", we have
27 . Pny = n) = (n; l)pk+1(1' —pyk-t

i.e. my—k—1 has a negativé binomial distribution of order k + 1.
In the general case it follows from (2. 6) and (1.9) that

. 1 .
2.9 P(n,=n) = (n; l]f(l_—t)'““lt"‘—"—1 dF (1)
. . o ) .
for nzk+1. o ' L :
The distribution (2. 8) may be called a mixed negative binomial distribution of
ny :

order k4 1. The characteristic function of . 1s
. . 1 A
iuny

co  m(e) = / (i’ )mle_(r).‘

1— f€k+1

(Here and in what follows M ‘stands for “‘expectation”.
We obtain by passing to the limit s

1

(2.10) , lim M(e"“) =/eﬁdF(z). '

k— oo

0

1t follows that the probability distribution of k1 tends to the distribution having

the distribution function 1— F(1 —z)

e

@2.11) : lim P [5 = ZJ = 1—F(1 -z).

koo n}g
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In the special case a, = (I —p)" we have

' 0 if r=1-p
F(t)— 1 if ¢=1-p,

thus (2 11) implies that in this case k/n, tends in probability to p. This is of course
well known, because
2.12) . - £= 81+£2+"'+.£nk

nk nk

and the (weak) law of large numbers applies to the independent random variables
g,, each having the expectation p.

We shall show in the next paragraph that much more is true than (2 11): not
only does the distribution of k/n, tend for k — = to the limit distribution 1 — F(1 — z),
but the random variables k/n, themselves tend for k —eco with probability 1 to a
random variable » having the distribution function 1— F(1 —z).

Using the formula (2. 8) we can of course compute all the moments of #,. Espe-
cially we have :

@.13) ~ M) = (k+1)/‘f%(’t).

Thus the expect:aﬁon of knkl does not depend on k; it is finite if and only if the

integral on the right of (2. 13) is convergent, otherwise it is equal to + eo.

§ 3. Connection with the theory of equivalent events

Let A, denote the event that the natural number # is contained. in the sequence
m(x) where x is a random variable, uniforly distributed in the interval (0, 1). We
have evidently .

G. 1) S - P(4,) =k§ P(n, = n).
It follows from (2. 8) that

(G.2) P4, —/[j [ )(l—t)"“t" k=1dF (1) —/(l—t)dF(t)

for n=1,2, .... Before proceeding further we have to compute the r-step transition
probabilities of the Markov-chain #,. Clearly we have for r=2 and n = m+r

Ak+r+ 1an

(3. 3) P(nk+r' - nINk = m) - Ak+1am .m<m1<...<m -1<n l’
thus _
‘ ‘ ' n—m—1)A*r+lg,
(3.4) P(nk+r=”lnk:m)::( r—1 ]W
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It follows that for m<n

G5 o =nn=m="T"T") (") 40
Thus we have ‘ '
m— 1k+n m '—n’l—l m—l et
+
(3 6) P(AmAn) - O 1 1 l—k-—l k A a,.

Taking (1.9) into account we obtain for 1=m<n

G.7) - P(A,,,A)—f(l—t)ZdF(t)

We shall show now that for any r=1 and for 1 = my <m,;<...<m, we have

G.9) o P(A,,,IA",Z..‘.A,,,,)z f (1 =1y dE(t).
. 0 .

The proof is esséntially the same as for r=2. We obtain in the same way as
(3. 5) was shown — using that », is a Markov chain — that for k; <k, <... <k,,
my<nmy<..<m, 4

my—1) =1 (m-,;1 m;— 1]

3.9 P, =my,...,n,. =m) = J A"'“am
6.9 P = =m =" ],,-1:71 Kyan—ley—1 .
Of course the probability (3. 9) is positive only if m; = k;+1 and mJ+1 m; =
= kjp —k; G=1,2,...,r—1). From (3.9) one obtains (3.8) by means of the
identity : ' )

(3. 10) Py Ay A) = D Py, =iy, ..oy, =m,).

ki<ky<...<k,

As clearly ,
, |
3.11) - [a—oydr@) = #a,
0

we have proved the following

Theorem 2.- Let A, denote the event that the natural number n is contained
in the sequence {n(x)} defined by Theorem 1, where x is a random variable uniformly
distributed in the interval (0, 1). Then the events A, n=1, 2, ...) are equivalent, and
one has for 1 §'m1<m2<... <m, r=1,2,..)

(3.12) P(Ap Ay An) = Aa,

-Remark. Note that the sequence W,=d4'a, is absolutely monotonic too,
because setting

(3.13) . G(t) = 1= F(1—i+0)
we have _
(3.14) - w, = [1rdG).

‘ : 0
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It is easy to see also that
(3. 15) Atw, = A" ta,,

Conversely let us be given a sequence of equivalent events B, (n=1,2,...)
in a probability space [Q, &, P] where Q is a non empty set, the generic element
of which will be denoted by w, & is a g-algebra of subsets of 2 and P a probability
‘measure on &. It is known (see [2], [3]) that there exists an &/-measurable function
f=PB(w) on @ — called the density of the sequence of events B, -— such that
0=f=1 and for r=1,2,... and m; <m, <...<m, one has

(3.16)  P(By,Bu,..-B,) = [prap.
0

Let us consider first the case when f=1 on a set B of positive probability. Let Be
denote the indicator of the set B,. It was shown in [3] that if n,<n,<...<n,
my<m;<..<m and n,»#rnj, then

(3' 17) 'P(anan B B,,“B,"z..-B,,”) = fﬁkﬂml/}mz'ﬂ'/}lm dP'
A ' 0
It follows that _
(3. 18) , p[ﬁ Bn] — [ [ ;-ap.
. n=r J rsEj<s

As (3. 18) holds for s=r too (the empty .product is equal to 1), we have
P (‘]] B,,] = P(B).
Thus we obfain, putting ]] B,=B*,
n=1

P(B)=P(B*)=P(BB*).

This implies that the sets B and B* are identical up to a set of P-measure 0. Let us
denote now by B the complementary event of B, i.e. B = Q— B. It follows that
the events A, = BB, also are equivalent, and have the density o defined as follows:

B@) if och, . S
D=1 0 i wen ST
As ‘a matter of fact we have
P(AmlAmz Am) - P(Bmlez er)—P(B) = fak dp. N . _'
. Q

As P(x=1)=0, we have shown that without restriction of generality one can suppose
that P(f=1)=0.

Similarly. one can suppose without restricting the generality that P(f=0)=0.
As a matter of fact if C denotes the set on which =0 and 0 <P(C) <1 then the
sét C is disjoint to all the sets B, (up to a set of probability 0) and thus instead of
the probability space [Q, o/, P] we may consider the space [Q, o/, P*] where
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P(AC)
P(C)
space too, with the same density . Thus the case of an arbitrary sequence of equivalent
events can be reduced to a sequence of equivalent events the density f of which is
such that P(f=0)=P(f=1)=0. Let us call such a sequence a regular sequence
of equivalent events. If 4, is a regular sequence of equivalent events with density
fS and if we put . :

PH*(A)= and the events B, will be equivalent with respect to this probability

we = P{Ay Avy- An) = [ BdP
2
then clearly we have

limw, =0 and limd*w, =0.

k—oo k= o0

Putting a, = A*w,, clearly w, = 4*a, and the sequence g, is a normed regular absolutely
monotonic sequence. Thus the events {4,} can be realized as the events connected
with the representation of the random real number x uniformly distributed in (0, 1)
in'the form (1. 1), so that the event A, is identified with the event that # is contained
in the sequence n,.

' § 4. The strong law of largé numbers for the Markov chain "

We first give — to make thlS paper self- contamed — a short proof of the follow-
ing known result:?)

Theorem 3. Let A, be an arbitrary sequence of equivalent events, let a, denote
the indicator of A, and o the density of the sequence A,. Then e have

k4. D ‘. (llm—Zak—aJ_l

n—oo M k=1

Proof. Let us consider the random variables
.(4- 2) ' Op = o —a
and let us put for A\ <k,<...<k,, r=1,2, ...
4.3) P(Ay, Ay AL) = i,
It follows from (3.17) that '
A if ky=k,=k;=k,,
B if k1=k2 and k3:k4¢k1,
4. 4) M(é,\,‘éhéhéka) = or if ky=ky, and k,=ks #k,,
: orif ky =k, and k, =k; =k,
0 otherwise, '

2) Theorem 3 can also be deduced from BIRKHOFF’s érgodic theorem.
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where ‘
4.5) A = wy —4w,y + 6w~ 3w,
and . '
4. 6) ' B = w, —2w;+w,.

This implies
{0+ ..+ _ [ !
@7 w2ty <ol ).

Thus the series

4.8) > [u]

n=1 n

is convergent with probability 1 and therefore (4. 1) holds.
In view of (2. 11) and the results of § 3 this implies that the following theorem
holds: '

Theorem 4. If the sequence n(x) is defined according to Theorem 1 then the
limit '

@.9) - - gin;;k%)—=z<x)

exists for almost all x in (0, 1); denoting by u(A) the Lebesgue measure of the set
. A one has

4. ]0) p(x(x)=y) = 1=F(1—yp) for 0=y=l.

§ 5. Consequences for equivalent events

" In the preceding § we applied the theory of equivalent sequences of eyents to

prove the existence almost everywhere of the limit Iimn o
. ) k— oo M1}

results lead to the proof of a property of equivalent events which seems not to be
noticed up to now. This is expressed by

Conversely, our

Theorem 5. Let A, (n=1,2,...) be.a regular sequence of equivalent events.
Let us set '
P(A, A,,...A4,) = wy (my<my<..<n; k=1,2,..).

Denote by a, the indicator of the event A, and define the random variables v, as follows:
v, is the least value of n such that o, +o,+ ... +o, = k. By other words, v, denotes
the index of the k-th event in the sequence of events A, (n=1, 2, ...) which takes place.
Then the random variables v, form a Markov chain with the transition probabilities

~k=1
4" W,
m—k °
A" Fw,

G - ‘ P, =nlv,=m) =
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§ 6. The measure preserving transformation corresponding to a series
of successive differences

To every representation (7) — i. e. to every normed, regular, absolutely mono-
tonic sequence {a,} — there corresponds a measure preserving transformation 7~
of the interval (0, 1) defined as follows: If

6. 1) x =2 Aa,
. . . . k=0 .
then '
6.2) 1 (TX) = M py()=1  (k=0,1,...).

Clearly 1 =no(Tx), because if ny(x) =1 then g, (x) =1 and thus ny(Tx) = n,(x)—1=1
and if ny(x)=2 then ny(Tx) = ng(x) —1=1; the inequality . (Tx)=>n(Tx) is.
evident. The inverse transformation 7-'y can be defined as follows: T-1y is two--
valued, namely if

(6. 3) y = 2 4a,
) k=0 .

then 7-1'y has the two values x; and x, where

(-} - L==3
(6 4) X1 : l\;’) Akank+xs X, =a; + ,\21' Aka'!k—ﬂ-l .

Clearly if y belongs to the interval /, defined by fixing the values of ng, 1y, ..., ;. ‘
in (6.3) (1 = ng<n,;<...<n,) and having the length 4"*1a, then x, belongs to.
an interval I7 of length 4"*'a, ,, and x, to an interval I of length 4"*2a, ,,. As.

(6. 5) A+ta,  +FA+2a, = A,
it follows that denoting by u(A) the Lebesgue measure of the set 4 one has
(6. 6) (T = )+ e = p(l).

It follows from (6. 6) that Tx is measure preserving.
The transformation T'x can of course also be defined by -

6.7) . 6T =50 () (k=0,1,...).

Thus T is equivalent to the shift transformation in the sequence-space (&;,85, -+ €qs+--)--
it is easy to see that the transformation 7 is ergodic if and only if a,=¢" with
-0<g <1, because it follows from (6. 7) and Theorem 4 that

(6. 8) #(Tx) =2 (x)

and thus each level set of % is an invariant set of 7; thus T is ergodic if and only if”
» is constant almost everywhere, i. c. if g, =¢". Especiaily in the case a,= 2-", T~
is the well known transformation T =(2x) where (Z) denotes the fractional part
of Z. » :
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§7. An exalilple

As an example let us consider the seQuénce q,,=~l— (n=0,1,2,..). Evi-
dently, S, ntl
1
(7 I) ’ Ak'an =,
n
' (n4+1) (k]
hence
1
(7.2) d"a, = a, = paral

Thus a, is a normed, regular, absolutely monotonic sequence. Theorem | asserts
for this case that every real number x with 0 <x=1 has a unique representation
-of the form

(1.3) - T Z *I—"_
o ol
where the n, are integers, 1 =n, '<172<.... The function F(t) figuring in (1. 8) is
.in this example equal to 7 (0=r=1), The transition probabilities (2. 2b) are in this
example "
(7. 4) Plny =nln_, =m)= Y
and the distribution of n, is given by
k+1 .
(7.5 P(""_")*m for n=k+1.

Thus the random variables n, have an infinite expectation. The equivalent events
A, can in this case be interpreted as the events of the following Pdlya urn model:
Let us consider an urn containing one white and one red ball. Let us draw one of
the -balls at random (each having the probability + to be drawn) and put it back
into the urn together with another ball of the same colour, then draw another ball
from the urn which now contains 3 balls, each ball having the same probability
to be drawn, put it back together with another ball of the same colour and continue
this procedure indefinitely. Let A, denote the event that at the n-th occasion a red
ball has been drawn from the urn. Clearly in this interpretation a red ball is drawn
the &+ l-st time at the n,-th drawing; the limit » .of k/n, is in this case of course
uniformly distributed in the interval (0, I).
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Uber ein Problem von S. B. Stetschkin

Von K. TANDORI in Szeged

" Herrn Professor Ladislaus Kalmar ‘zum 60. Geburtstag gewidmet

~In dieser Note werden wir den folgenden Satz beweisen, der ein Problem von
S. B. STETSCHKIN!) im positiven Sinne beantwortet.

Satz. Es gibt eine trigonometrische Reihe

";_0 + Z (aycoskx+b, sin kx)

mit a,—~0, b, —~0 (k — o) derart, daf fur ihre Partialsummen s,(x) iiberall gilt:
- lim 5,(x) <lim 5,(x) (n— o).

Hilfssiitze '

Im folgenden bezeichnen wir mit ¢y, c;, ... poSitive, absolute Konstanten.

Hilfssatz 1. Es seien a und N gegebene natwhche Zahlen: Dann glbt es ein
trigonometrisches Polynom

a.N) . ‘
P(X) =P, N;x) = 2 (aycoskx+b,sinkx) . (N<v(a, N)<pu(a, N))

k=v(a,N)

mit den Jfolgenden Eigenschaften: |a|=cy, |bl=c,

[P(x)] = czmalx{l[1 (—2;5——1—?),(1} (—oo<Xx <o),

und es gibt fiir jedes x €[—n/128a, n/128a] Indizes p =p(x), ¢ =q(x) derart, daf
sx)=ca, und s,(x) =—cza (e3=1),
wobei s,(x) die n-te Partialsumme von P(x) bezeichnet.

1)y Siehe I1. JI. VssiHOB, PeUICHHbIC M HEPELUICHHBIC MPOJACMBI TCOPHH TPHTOHOMETPII-
YeCKHX M OPTOTOHAJILHLIX PSAAOB, Yenexw mames. Hayk, 19:1 (115) (1964), 3—69.
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Wir setzen endlich

_685:-1 403 [ ;
o(x) = ) O, |x— 11280

i=0

Auf Grund von (4) und (5) ist offens1chthch, daB Q(x) allen Bedingungen des Hilfs-
satzes 11 geniigt.

Beweis des Satzes

Es set (c,=)a, <...<a;=<... eine Folge von natiirlichen Zahlen, fiir die die
Ungleichung

(6) cela+ ... +a) §62—7a,.+1 (i=1,2,..)

besteht und es sei M;=m(a},, M;_;) (i=1,2,...; M,=0). Wir setzen

Z i Q(a.-z, m(ai-y, Mi—1)5 x).

Auf Grund des Hilfssatzes IT vad (6) ist es klar daB die Koeffizienten dieser tri-
gonometrischs:: Reine nach O streben und {iiberall gilt:

lims,(x) = —eo, lims,(x) = o=.

Damit haben wir unseren Satz bewiesen.

(Eingegangen am 11. Mdrz 1964)



