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Introduction 

In § 1 of this paper we shall deal with certain representations of real numbers.. 
Let an (n =0 , 1, ...) be an absolutely monotonic sequence of numbers, i. e. such that 

(1) A*an>0 (k¿= 0,1, . . . ; n^k), 

where A°a„ = a„, A'an = Aa„ = a„_1 — a„ («& 1), and 

Akan = A(Ak-la„) 

Let us also suppose that the sequence is normed, i. e. 

(2) ' ' / / 0 = 1, 
and regular, i.e. 
(3) a„-*0 and A"an-~0 («-=•=). 

Then every real xS(0, 1] admits a uniquely determined representation of the. 
form 

(4) A-.= ZA"a„h (¡ = 0 
where the sequence of integers 1 ^ n0 < « 2 ••• depends on x. 

This representation can also be written in the form 

(5) x = Z s „ A «+••• + >»-ian 
n = 1 

where e„ = f.„(x) equals 0 or 1; clearly E„ = 1 if the number n occurs in the sequence 
nk, and fi„=0 if not. 

In §2 we deal with the probability distribution of nk=nk(x) provided that x 
is chosen at random with uniform distribution in (0, 1]. We shall show that the 
sequence of random variables nk is then a Markov chain. In § 3 we deal with the 
joint probability distribution of the random variables e„ (n = 1, 2, ...) defined above. 
We prove that if An denotes the random event that e„(x) = 1 then the events A„. 
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(n— I, 2, ...) form a sequence of equivalent (symmetrically dependent) events, such 
that 

• ( 6 ) P(A,^Ami...Amk) = Akak 

for I S m, <mk. (Here and in what follows P(A) stands for the proba-
bility of the event A.) 

In § 4 we show that the strong law of large numbers for equivalent events implies 
that for almost all x the limit 

(7) lim k 

k- 'h(x) 

exists. (Previously in § 2 we obtain the weaker result that the distribution of k/nk 
tends to a limit distribution.) On the other hand the above mentioned connection 
between equivalent events and the representation (4) or (5) leads to an effective 
construction of any sequence of equivalent events. A consequence of this is discussed 
in § 5. In § 6 we construct the corresponding measure preserving transformation 
to each sequence an, while in § 7 we discuss an example. 

§ 1. Representation of real numbers by series of successive differences 

We start with the following 

T h e o r e m 1. JLet an (11—0, 1, ...) be a normed, regulär, absolutely monotonic 
.sequence of real numbers. Then any real number x € (0, 1] can be represented in the 
form 

(1- 1) - * = ¿ > ö „ k k = 0 

where the increasing sequence of natural numbers nk is uniquely determined by x. 

Proof . Let n0 be the first natural number such that 

( 1 - 2 ) 

such a number exists because o0 = 1 a n d Let n t be the first natural number 
such that 
CI - 3) • a„0 + Aani<x; 

such a number exists because Aan—0. Moreover, by the definition of n0 we have 
ano-cx S a„0_l, i . e . x~a„0^Aa„0, hence it follows Similarly if 
n0,nlt ...,nr are already determined so that 

r r — I 

(1.4) Z A k a „ k ^ x g 2 + 
k = 0 k = 0 

let n r + i be the least natural number such that 
r + 1 

<1.5) Z 
k = 0 
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It follows from (1.4) that 
r 

(1.6) O c x - ^ 
k = 0 

which implies — as by supposition Ar+la„ is decreasing in n — that nr+l>nr. 
Thus /?r+i v 1. Therefore — using again the monotonicity of A t + i o n — 

it follows from (1.6) that 
r 

(1.7) O c x - Z A k a n k c A r + i a r + l . 
k = 0 

In view of the condition A"a„-~0 it follows that if the numbers nk are determined 
by the algorithm described above, then (1. 1) holds. This proves Theorem 1. 

Let us note that according to a well-known theorem of F . HAUSDORFF [1] 
every normed absolutely monotonic sequence can be represented in the form 

I 

(1.8) a„ — j t " dF(t) 
o 

where F(t) is non-decreasing on the glosed interval [0, 1], is continuous from the 
left in the interior, and such that F(0)=0 and ,F(1) = 1. Evidently, 

lima„ = F ( l ) - F ( l - 0 ) , . . 
N-»OO 

thus condition lim an= 0 implies that F(t) is continuous at x = l. We have further 
i 

( 1 . 9 ) . Akan = f ( l - t ? t — k d F ( t ) 
o 

for k = 0 , 1, ... and n ^ k ; thus in particular . 
t 

( 1 . 1 0 ) Akak = f (1 - t)k dF(t). . 
o 

l im Akak = F(+0). 
Hence 

Thus the condition of regularity lim A"an = 0 implies that F(t) is continuous at 
i = 0. Thus every normed, regular, absolutely monotonic sequence an can be repre-. 
seiited in the form (1. 8) where F(t) is the distribution function of a probability 
distribution in the open interval (0, 1). 

In view of formula (1. 9) the representation (1. 1) can be written in the form 
l 

(1.11) x = J [ Z o ( l - t ) k t » > - j d F ( t ) . 

5 A 
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Thus it follows that for every x£(0, 1] there is exactly one function g(t) of the form 

8(0 = ¿ ( l - O * / " " - ' 
k = 0 

with 1 s n0 < « ! < ..., such that 
i 

*= Jg(t)clF(t). 
o 

§ 2. Statistical theory of the difference-series representation of real numbers 

Let x be a random variable, uniformly distributed in the interval (0S ]). Let us 
consider the representation of x in the form 

(2 -1 ) 
k = 0 

where a„ is a given normed, regular, absolutely monotonic sequence. According to 
Theorem 1 the natural numbers nk=nk(x) are uniquely determined by x; thus they 
are well defined random variables. We shall study now the probability laws govern-
ing the behaviour of these random variables. It is easy to see that if nx, ..., nk are 
fixed, then x belongs to ^n interval of length Ak+Xa„k. It follows that denoting by 
P(A\B) the conditional probability of the event A under condition B, we have 

Ak+la 
( 2 . 2 a ) P(nk = n\n0 = m0,ni=mx, ...,nk_ t =mk_,) = -—— 

A a.;k-t 

provided that 1 s m0 < . . . -<mk-x </?. Thus the conditional distribution of 
"k by given n0, . . . , depends on /7fc_x only, that is the sequence of random 
variables nk (k =0 , 1, ...) is a Markov chain with the transition probabilities 

(2.2b) = = = IJ um 

As the probability on the right-hand side of (2. 2b) depends in general on k too,, 
the Markov chain nk is in general inhomogeneous. It is easy to see that the Markov 
chain is homogeneous if and only if an = (1 —pf (n= 0, 1, ...) where 0 < / 7 < K 
In this particular case 

(2.3) P ( n k ^ n \ n k ^ = m ) = / > ( l - j p ) " - m - 1 . 

This particular case corresponds to the representation of the real number x 
in the form 

(2.4) x = Z p k ( i - p ) " k ~ k -
k = o 

In this case if An denotes the event that n is contained in the sequence nk then the 
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events A„ (« = 1,2, ...) are independent and each has the probability P(An) = p. 
Especially if p = \ the representation (2. 4) reduces to 

°° 1 
(2.5) w h e r e 

k = 0 ^ 

by other words to the representation of x in the binary number system. 
Let us return to the random variables nk in the general case. The unconditional 

distribution of nk can be determined as follows : As mentioned above if nQ,n1, ...,nk 
are fixed, then x belongs to an interval of length A'i r 'a„k. Now if only nk is fixed, 

nk = n, then the values of /;0, « , , ...,nk-1 can be chosen in ^ ^ j different ways; 

thus we have 

(2.6) p ( » ; = » ) = 

Especially in the case when an = (1 —p)", we have 

( 2 . 7 ) P(nk = n)= ( n k 1 ) p k + 1 d - p ) n - k - 1 

i .e . nk — k — 1 has a negative binomial distribution of order k + 1. 
In the general case it follows from (2. 6) and (1.9) that 

I , 

(2.8) P(nk = r,) = ^ l } j ( l - t Y ^ t " - * - l d F ( t ) 
o 

for /(£-A- !-1. 
T h e d i s t r i b u t i o n (2. 8) m a y b e ca l l ed a mixed negative binomial distribution of 

order k-\-1. The characteristic function of , " k , is 
k+ 1 

( 2 . 9 ) M{ek+i)=e 
r iunk\ C; \ „ \*+i 
lglt + 1 I _ 0iu 

o VI - t e k + 1 

dF(t). 

(Here and in what follows M stands for "expectation". 
We obtain by passing to the limit 

I 
( iurik r iu 

( 2 . 1 0 ) Um M.[ek+1 J = e1~'dF(t). 
fc->oo J 

0 
k +1 

It follows that the probability distribution of tends to the distribution having 
nk 

the distribution function 1 — _F(1 — z) 

(2.11) lim P — S z = \ - F ( \ - z ) . 
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In the special case a„ = (1 —p)" we have 

iO if t ^ l - p 
m = \ i if t ^ X - p , 

thus (2.11) implies that in this case k\nk tends in probability to p. This is of course 
well known, because 

(2 12) — = £ l J r S l " ' 
"h nk 

and the (weak) law of large numbers applies to the independent random variables 
e„, each having the expectation p. 

We shall show in the next paragraph that much more is true than (2. 11): not 
only does the distribution ofk/nk tend for k to the limit distribution 1 — F(1 — z), 
but the random variables k/nk themselves tend for ° with probability 1 to a 
random variable x having the distribution function 1 —F(l—z). 

Using the formula (2. 8) we can of course compute all the moments of nk. Espe-
cially we have 

I 

(2.13) ' M(nk) = (k + \)J 
o 

Thus the expectation of does not depend on k; it is finite if and only if the 
* K -{-1 

integral on the right of (2. 13) is convergent, otherwise it is equal to + 

§ 3. Connection with the theory of equivalent events 

Let A„ denote the event that the natural number n is contained in the sequence 
nk(x) where x is a random variable, uniforly distributed in the interval (0, 1). .We 
have evidently 

n-i. 
(3. 1) - P(A„) = 2 1 P(nk = # ! ) . . . 

k = 0 

It follows from (2. 8) that 
I I 

( 3 . 2 ) P(An) = / ( ^ ( " ^ j a - O ^ 1 ' " - ' - 1 ^ ) = J o - - t ) d F ( t ) 

o o 

for « = 1, 2, .... Before proceeding further we have to compute the /'-step transition 
probabilities of the Markov-chain nk. Clearly we have for S 2 and n ^ m + r 

(3.3) P(nk+r=n\nk = m) = Ak+
k
r
+

 +
1

l a"- Z h 
Zl um m <mj < ... <mr_ i <71 

thus 

( 3 . 4 ) P(nk+r = n\nk = m)=^ r l ,j • 
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It follows that for m<n 

( 3 . 5 ) P(nk+r = n,nk = m) = ( " " " Y ' J t ' Y V + r + 4 ' -

Thus we have 
in - 1 к + n - m ( i \ ( л \ 

(3.6, 

Taking (1.9) into account we obtain for 
l 

( 3 . 7 ) P(AmA„) = J ( \ - t y d F { t ) . 
о 

We shall show now that for any e g 1 and for 1 s f f l l < m 2 < . „ < f f l l . w e have 
l 

( 3 . 8 ) P(AmiAm2...AmJ=f(l^ty'dF(t). 
о 

The proof is essentially the same as for r = 2. We obtain in the same way as 
(3. 5) was shown — using that nk is a Markov chain — that for кх<к2<-...-<кг, 
m i < m 2 < . . . < m r 

( 3 . 9 ) P(nkl = mi,...,nkr = mr) = 

Of course the probability (3. 9) is positive only if mt » ki +1 and mJ+1—mj ^ 
А'у+! — Aj- (y = 1 ,2 , . . . , r — 1). From (3. 9) one obtains (3. 8) by means of the 

identity 

( 3 . 1 0 ) P(A„nAm2...Amr) = 21 = ...,nK = mr). 
к\<к2<...<кг 

As clearly 

( 3 . 1 1 ) f { \ - t ) r d F { t ) = Arar 

о 

we have proved the following 

T h e o r e m 2. Let A„ denote the event that the natural number n is contained 
in the sequence {nk(x)} defined by Theorem 1, where x is a random variable uniformly 
distributed in the interval (0, 1). Then the events A„ (и = 1 , 2 , . . . ) are equivalent, and 
one has for 1 S ml <m2 < ••• <mr (r = 1 , 2 , . . . ) 

(3.12) P(AmiAm2...Amr) = A'ar. 

R e m a r k . Note that the sequence Wr=Arar is absolutely monotonic too, 
because setting 
(3.13) G(t) = l - F ( l - / + 0) 
we have 

i 
(3.14) u>r = f f dG(t). 

о 
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It is easy to see also that 

(3. 15) Ahwr = Ar~"ar. 

Conversely let us be given a sequence of equivalent events B„ (n = 1,2, ...) 
in a probability space si, P] where Q is a non empty set, the generic element 
of which will be denoted by co, si is a <7-algebra of subsets of Q and P a probability 
measure on si. It is known (see [2], [3]) that there exists an ^-measurable function 
f}=f}(co) on Q — called the density of the sequence of events B„ — such that 
0 ^ / 7 ^ 1 and for /•=.1,2,. . . and mi <m2 < . . . <mr one has 

( 3 . 1 6 ) P(BmiBmi...Bmr) = J f t ' d P . 
n 

.Let us consider first the case when P = 1 on a set B of positive probability. Let /?„ 
denote the indicator of the set Bn. It was shown in [3] that if tl l </72 . - - tlfc 
my < m 2 < ... < m and n ^ r t i j , then 

( 3 . 1 7 ) P(BniBn,...B„kBmiBnn...Bm^ JpkPmiL2....pmidP. 
si 

It follows that 

( 3 . 1 8 ) p [ n B n } = [ n Pj-dP. 
\n = r J J rsj<s 

B 

As (3. 18) holds for s = r too (the empty product is equal to 1), we have 

p [ n B ^ - P(B). 

¡CO 

Thus we obtain, putting J] Bn=B*, 
n=l 

P(B)=P(B*)=P(BB*). 

This implies that_the sets B and B* are identical up to a set of /"-measure 0. Let us 
denote now by B the complementary event of B, i. e. B — Q — B. It follows that 
the events A„=BBn also are equivalent, and have the density a defined as follows: 

[ p(co) if caiB, . 
a ( f t ) ) = l 0 if a>€A 

As a matter of fact we have 

P(AmiA„,2...Amr) = P(BmiBm2...BJ-P(B)=fakdP. . " 
si 

As P(a — 1) =0 , we have shown that without restriction of generality one can suppose 
that P(p = 1) =0 . 

Similarly one can suppose without restricting the generality that P(P = 0 ) = 0 . 
As a matter of fact if C denotes the set on which ^ = 0 and 0 < P ( C ) < 1 then the 
set C is disjoint to all the sets B„ (up to a set of probability 0) and thus instead of 
the probability space [i2, si, P] we may consider the space [i2, si, P*] where 
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P(AC) 
P*(A) = - - and the events B„ will be equivalent with respect to this probability 

space too, with the same density /?. Thus the case of an arbitrary sequence of equivalent 
events can be reduced to a sequence of equivalent events the density ft of which is 
such that P(fi =0) = P(Ji = 1) =0 . Let us call such a sequence a regular sequence 
of equivalent events. If A„ is a regular sequence of equivalent events with density 
fi and if we put 

^ = P{AniAni...Ani) = j'pkdP 
Q 

then clearly we have 
lim wk = 0 and lim/l tH' t = 0. 

Putting ak = Akwk, clearly wk = Akak and the sequence ak is a normed regular absolutely 
monotonic sequence. Thus the events {An} can be realized as the events connected 
with the representation of the random real number x uniformly distributed in (0, 1) 
in the form (1. 1), so that the event A„ is identified with the event that n is contained 
in the sequence nk. 

§ 4. The strong law of large numbers for the Markov chain nk 

We first give — to make this paper self-contained — a short proof of the follow-
ing known result:2) 

T h e o r e m 3. Let A„ be an arbitrary sequence of equivalent events; let tx„ denote 
the indicator of An and a the density of the sequence A„. Then we have 

(4.1) P lim - = « = I-
11 k = 1 ) 

• P r o o f . Let us consider the random variables 

(4.2) ' S k = a k - a 

and let us put for ki<k2-<... <kr, r= 1 , 2 , . . . 

( 4 - 3 ) P(AkiAkl...Akr) = 

It follows from (3. 17) that 

(4.4) M(8kl8klSM=-{ 

A if kt = k2 = k3 = Ar4, 
B if ky = k2 and k3 = k4 ^ kl; 

or if ki = kj and k2 = kA ^ kl5 

or if kt = k4 and k2 = k3 ^ k1; 

0 otherwise, 

2) Theorem 3 can also be deduced from BIRKHOFF'S ergodic theorem. 
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where 
(4.5) A = u-', — 4w2 +6H'3 — 3H'4 

and 
(4. 6) B = w2 — 2w3 + ii'+. 
This implies 

Thus the series 

(4. 8) f f 
)i = L V n 

is convergent with probability 1 and therefore (4. 1) holds. 
In view of (2. 11) and the results of § 3 this implies that the following theorem 

holds: 

T h e o r e m 4. If the sequence nk(x) is defined according to Theorem J then the 
limit 

(4.9) lim * = « ( * ) 
nk(x) 

exists for almost all x in (0, 1); denoting by fi(A) the Lehesgue measure of the set 
A one has 

(4. 10) .= 1 - F(\ - y ) for 0 =£y S 1. 

§ 5. Consequences for equivalent events 

' In the preceding § we applied the theory of equivalent sequences of events to 
k 

prove the existence almost everywhere of the limit l im——. Conversely, our 
nk(x) 

results lead to the proof of a property .of equivalent events which seems not to be 
noticed up to now. This is expressed by 

T h e o r e m 5. Let An (/? = 1, 2, . . . ) be a regular sequence of equivalent events. 
Let us set 

P(AniA„2...A„k) = wk («! <h2< ... <nk; k = 1, 2, . . . ) . 

Denote by a„ the indicator of the event A„ and define the random variables vk as follows: 
vk is the least value of n such that +a2 +... +a„ = k. By other words, vk denotes 
the index of the k-th event in the sequence of events A„ (n = 1 , 2 , : . . ) which takes place. 
Then the random variables vk form a Markov chain with the transition probabilities 

(5- 1) P(vk +1 =n\ vk = m) = ^ - r - t - ^ . 
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§ 6. The measure preserving transformation corresponding to a series 
of successive differences 

To every representation (7) — i. e. to every normed, regular, absolutely mono-
tonic sequence {a,,} — there corresponds a measure preserving transformation T' 
of the interval (0, 1) defined as follows: If 

(6. l) x = 2 
k = 0 . 

then 

( 6 . 2 ) ,1k(Tx) = nk+eiM(x)=l (k=0,\, ...). 

Clearly 1 S/70(7a-), because if n0(x) = 1 then ex(x) = 1 and thus n0(Tx) = n^x) — 1 ^ 1 
a n d if n0(x)^2 t h e n n0(Tx) = n0(x) — 1 = 1; t h e i n e q u a l i t y nk+1(Tx)>-iik(Tx) i s 
evident. The inverse transformation T~xy can be defined as follows: T~ly is two-
valued, namely if 

(6.3) y = 2 A k a „ k 
k = 0 

then T~ly has the two values x1 and x2 where 

(6.4) 2 A k ° n k + i , x 2 = a 1 + 2 * l ^ ^ - . + i-
k=0 k=1 

Clearly if y belongs to the interval / r defined by fixing the values of n0, n1, ..., nr. 
in (6..3) (1 S «0</7! < . . .< .n r ) and having the length Ar+1a„r then x, belongs to 
an interval I'r of length Ar+la„r+i and x2 to an interval /r" of length Ar + 2a„r+1. As-

(6.5) A ' ^ a n r + i + A'+ 2a n r + 1 = A ' ^ a „ r 

it follows that denoting by n(A) the Lebesgue measure of the set A one has 

(6.6) •/,) = / ! ( / ; ) = /i(/r). 

It follows from (6. 6) that Tx is measure preserving. 
The transformation Tx can of course also be defined by ' 

( 6 . 7 ) tk(Tx) = ek+Ax) .(£ = 0 , 1 , . . . ) . 

Thus Tis equivalent to the shift transformation in the sequence-space (e1,e2,---, £„,'•••)• 
It is easy to see that the transformation T is ergodic if and only if a„=q" with 

0 < f / < l , because it follows from (6. 7) and Theorem 4 that 

(6.8) y.(Tx) = y.\x) 

and thus each level set of * is an invariant set of T; thus T is ergodic if and only if* 
* is constant almost everywhere, i. e. if an=q". Especially in the case «„ = 2~", T 
is the well known transformation Tx = (2x) where (Z) denotes the fractional part, 
of Z. 



'74 A. Rényi: Certain representations of real numbers 

§ 7. An example 

As an example let us consider the sequence o„=—J—- (// == 0, I, 2, ...). Evi 
dently, 

(7. 1) Akait = -

n + i 

hence 

(7. 2) A"a„ = a„ = 
I 

/ i + 1 
Thus a„ is a normed, regular, absolutely monotonic sequence. Theorem 1 asserts 
for this case that every real number .v with 0 < . y ^ I has a unique representation 
of the form „ 

7 1 

47.3) ' kto 

where the nk are integers, 1 </?2 < . . . . The function F(t) figuring in (1.8) is 
in this example equal to t ( 0 ^ / S I). The transition probabilities (2. 2b) are in this 
example 

•(7.4) P(ng~n\nk-l=m) = 

and the distribution of nk is given by 

(̂ d(T) 

( 7 . 5 ) P(nk = „) = f o r " S f c + 1 . 
n(n+ I) 

Thus the random variables nk have an infinite expectation. The equivalent events 
An can in this case be interpreted as the events of the following Pólya urn model: 
Let us consider an urn containing one white and one red ball. Let us draw one of 
the balls at random (each having the probability \ to be drawn) and put it back 
into the urn together with another ball of the same colour, then draw another ball 
from the urn which now contains 3 balls, each ball having the same probability 
to be drawn, put it back together with another ball of the same colour and continue 
this proced tire indefinitely. Let An denote the event that at the /7-th occasion a red 
ball has been drawn from the urn. Clearly in this interpretation a red ball is drawn 
the A'+ l-st time at the nk-Vc\ drawing; the limit x of k/nk is in this case of course 
uniformly distributed in the interval (0, I). 
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Über ein Problem von S. B. Stetschkin 
Von K. TANDOR1 in Szeged 

Herrn Professor Ladislaus Kalmar zum 60. Geburtstag gewidmet 

In dieser Note werden wir den folgenden Satz beweisen, der ein Problem von 
S. B. STETSCHKIN1) im positiven Sinne beantwortet. 

S a t z . Es gibt eine trigonometrische Reihe 

-7-p + 2 ( a k c o s kx + bk sin kx) 
2 k= i 

mit 0 , bk-+ 0 =) derart, daß für ihre Partialsummen s„(x) überall gilt: 

lim s„(x) < lim s„(x) (n — -=-=). 

Hilfssätze 

Im folgenden bezeichnen wir mit c i , c 2 , . . . positive, absolute Konstanten. 

H i l f s s a t z I . Es seien a und N gegebene natürliche Zahlen.- Dann gibt es ein 
trigonometrisches Polynom 

P(x) = P(a,N;x) = 2 (akcoskx + bks'mkx) (N<v(a,N)<p(a,Nj) 
k = v(a, N) 

mit den folgenden Eigenschaften: \ak\^ct, \bk\^clr 

und es gibt für jedes x 6 [ — " / 1 2 8 a , 7r/128a] Indizes p=p(x), q = q(x) derart, daß 

sp(x) äs c3a, und sq(x) si - c3a (c3 ^ 1), 

wobei s„(x) die n-te Partialsumme von P(x) bezeichnet. 

' ) Siehe П. JT. У л я н о в , Решенные и нерешенные проблемы теории тригонометри-
ческих и ортогональных рядов, Успехи машем, наук, 1 9 : 1 (115) (1964), 3—69. 
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Wir setzen endlich 

Auf Grund von (4) und (5) ist offensichtlich, daß Q(x) allen Bedingungen des Hilfs-
satzes II genügt. 

Beweis des Satzes 

Es sei (c4 = ) « ! < . . . <i/ ,-<. . . eine Folge von natürlichen Zahlen, für die die 
Ungleichung 

(6) c 6 ( a 1 + . . . + a d * j a l + 1 (¿ = 1 , 2 , . . . ) 

besteht und es sei Mf = m(a?_1, M i _ 1 ) ( / = 1, 2, ...; M 0 =0). Wir setzen 

°° 1 
2 — Q(af> m ( - 1 , Mi-!); x). 
¡=i a t 

Auf Grund des Hi'fsäatzeE II und (6) ist es klar, daß die Koeffizienten dieser tri-
gonometrische:: Heine nach 0 streben und überall gilt: 

]imsB(jc) - - < » , limj„(x) = 

Damit haben wir unseren Satz bewiesen. 

(Eingegangen am 11. März 1964) 


