General tﬁéory of sﬁmmability. 1

+ By RICHARD JAJTE in Lodz (Poland)

In this paper we give the general definition of a summability method of functions
defined on a o- blcompact space. It seems that this definition includes all the cases
so far considered, in particular the broad classes ‘of summability methods- of
functions consxdered by K. KNopp and his pupils. Owing to the generality of our
methods we may give, on the one hand, a uniform theory and on the other we can
find more apphcatxons of this theory. The present paper includes the fundamental
" theorems concerning the most important properties of ‘the methods considered.

These theorems constitute a generalization of the well-known theorems for matrix-
transformations (the theorems of ToepLITZ, KNopP; MAZUR—ORLICZ, HENSTOCK,
. STEINHAUS; see references at the end of the paper). In a subsequent paper we.shall
consider some special classes of methods and some applications of the general
theory in other branches.

§1

Definition 1. A locally bicompact space is called a o-bicompact space if
it is the sum of a sequence of bicompact sets.') Let.X be a o-bicompact Hausdorfl
space?). By Q(X) we denote the set of real functions defined and continuous on X
with bicompact supports and by Q+(X) the set of functions continuous and non-
"negative on X with bicompact supports. Let J(f) be a distributive functional de-

fined on Q(X) and non- negative on Q*(X) Let yand ff(A)dy denote the Lebesgue
measure and integral generated by the funct10nal J(f)?)

Definition 2. A function f(x) defined on X shall be called convergent in oo
- to the number f if for any >0 the set

.,{«\lf(\) e|>31  . - ;

is contained in a bicompact set.

1 A topological -space is called a locally blcompact space if every point \:X possesses a
neighbourhood with a bicompact closure and if the.whole space X is not bicompact.

2) The space X is considered as fixed in all the further consnderatlons

1) See [7], § 6.
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Definition 3.-Let S={S} (0=t <) be a family. of bicompact subsets of
the space X such that S, &S, if ’<7” and . |J S,=X. The 1mprope1 integral

E 05r<oo
@ [fredn

exists and is equal to o if /f(Y)d;l exists for 0=t <=0 and lim ff(x)d;t—y
. . e s,
_ Definition 4. Let &= {(D(f )} (= = T< =) denote a family of continuous.
functions defined on X. A function f(x) defined on X is said to be summable by
the method M =M (u, S, @) to the number ¢ if

(a) the integrals (S)frﬁ(t, x) f(x)du exist for every t€(t,, T), and
(b) the limit lim () [ @(i, ) f()du=¢ exists. ' ‘
t=+T~- -

Evidently, by specifying the space X and the classes .S and ¢ we can obtain
~ some well-known classes of summability methods for number sequences or for
functions defined on the half line (see e. g. [3]) The case considered here
is, however, much more general for it includes even the summability of functions
defined in non-metric spaces, Let us observe that the. term' “summability of
functions in =" has a formal character, since X can stand e.g. for a closed circle its
center excluded. Then the center z, of this circle shall play the part of « and we
obtain a summability method of a function at the point z,.

Defmltlon 5. A functlon defined on X is said to be locally bounded if for
every point x,€X there exists a nelghbourhood U(xo) in which this function is.
bounded

For what follows the fo]lowmg conditions are important.

©) » T ) [ 190, ) du<ee
() lifp (s) A/._Oﬁ(r,.x) di=2 :
(c2) CdmS) [ Ddu=1;

(c3) lim j¢‘(1, X)du=a(A) exists for every measurable set A contained
t>T— 4 B .

in_some bicompact set;

(c3) lim f@(r X)du=0 for every measurable set A contained in some
t-T—- 4

bicompact " set.

Definition 6. We call a method M a convergence preserving method (a
‘convergence preserving method for null functions) if it sums all p-measurable.
locally bounded and in == convergent (convergent to zero) functions. We call
a method M permanent (permanent for null functions) if it sums all the measurable,
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locally bounded and in == convergent (convergent to- zero) functlons to then
ordinary limiis.

Theorem 1. 4 method M is- convergence preserving for null functzons if and
~only-if the conditions (c,) and (c;) are satisfied. .

. ‘Proof. The necessity of condition (c;) is evident. To prove the necessity of

condition (c,) we complete the space X with the pomt x.. into the space X,,.. The -
_set of functions continuous on X and-having a limit 1n = equal to zelo (we denote

it by Co(X.)) is a Banach space with the norm

| Al = SUP \f(l)\
The. functional

A;U)£f¢mxyuwm‘

is linear (i.-e. additive and continuous) in Cy(X.). We shall show that 1ts norm lS,
equal to

f[tb(r x)]| du

Smce the set S is blcompact we have u(S,) K <= and there exists for n=0 an
open set UD S with-a bicompact closure such that u(U—S,)<n. We denote by
Ay and A4, the subsets of the .set S, in which @(t, x)=e/K, o(1, x)=—¢/K, -
respectlvely The sets 4;, in view of. the continuity of the function @(z, x), are bicom-
pact. In virtue of the well-known theorem of Urysohn (see e. g. [7), p. 34) there exists
a continuous function u(x) defined on the whole space X and satlsfylno ‘the. -
conditions .

(i) 0<u(x)<1

(i) u(x)=1 for xEA1 and u(x)=0 for xEA2
"By the same theorem of Urysohn_there exists a continuous functlon v(x) deﬁned'
on the whole ‘space X and satisfying the conditions’ -

() 0=v(0=1,

(i) v(x)=1 for x¢ S, and v(x) =0 for xEX UL
Let us put y(x) = [2u(x)—1]-v(x). We have W (x) =1 and

1 for x-EVAl_,'
Y(x)=1—1 for xc4,,
0 for x¢U.

Obv10usly ¥ € Co(X.). Moreover we have

YROE f|¢(r 9 =2
Since yll.=1 this lmphes

WMJ=[@@W¢L
. Se .
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The functional

' A(f)~11mAn(f)

T— 0o

is defined in Cy(X..), therefore accordmg to the Banach Steinhaus theorem ([1],
Theorem 3, p. 80) .

sup 14, = (8) [ 1900, )| di< oo.

O0=t<oo

Choose a set S, and an open set U> S, such that

f @ (1, A)] d,u<8

We have v .
AW) =A4,.(P)+ j ’1’(’ ,\)xp(x)d;z>||A,,||—23+ j a(t, x)xﬁ(x)dy
Bnt . . U=s. S U~S.
f<z><r @ de=— [ 10, D= e
Therefere o o

‘ r(l//) A, — 3e.

Passing to the limit as ¢ ~0 and T -~ we obtain immediately

| 40 = (5) [ e, x)lda.
Since by assumption lLim A,(f) exists for every f € CO(X.,.,) so by the Banach—

t—»T—
Steinhaus theorem we have -
lim ||4,[] < e,
t—T— .
which ends the. proof of the necessity of condmon (cl)
Now we shall prove that the conditions {c,).and (c3) are sufficient. :
Let f(x) be a measurable’ and locally. bounded function and lim f(x)=0. We

. X oo

may assums (consndermg, if necessary, the function Cf(x)) that lf(x)l =1. We put

6(Z) lim f(D(r x)d;t
. e

By condition (c;) this limit exists for any measurable set contained in a bicompact

set. Let g, be a sequence decreasing to zero. Then there exists an increasing sequence

of bxcomnact sets {¥,} such that for’ VQ v, we have |f(x)|<g,. Let

Z" = {x€ Vi k/2"<f(x)<k+1/2"} for k=-—2" —2741,...,2"=2,

Z8 = {xeV, 1= =f(x)=1}.
Put :

2n-1

oa(f)=2"" 2 k&(Z(")
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Now we shall show that the limit § = lim (),,(f) exists. Let m=>n. We have

n—soco

|0m(f) 0 (f)l = \2"" Z ko(z('")) Z’ ké(Z("’).

k=-=2m k=21 =
2m_1 2n ] .
= > k/2”’5(V,,ﬂZ,f’")) 2 k/2"5(Z") |+ N-¢,,
k=—2m =-2 . :

‘Where
| N= sup (5) 100, 9l du.)

to=t1<T
We observe that the sets V,NZ™ are formed by dividing the sets Z\", thus the
sum under the modulus-sign on the right hand side of the mequalny can be writ--

ten as follows .
7l1| l

Y’ 5([/[lmz(rrr)){k/zrtx_1k] With I“l\—'k/2m| —n.
’ l::—"'
Hence »
N ’ . 27"_1
1NN =N 2T 2 180 ﬁz"”’|<N(a,,+2"’) o

f=—2m

- for n—oo, Wthh 1mplles cqnvergence of the sequence J,(f). We shall prove that -

M—hmf(x) 5 Let n=0 be glven Puttmg

L k2" for \EZ(")
g,.(.\) a {0 for V

) [ o0, x)f(»)du—é\<l f 205 )1/ - g,,(A)]d/t~+

" we have

+vj / (1, X)g, (X)du—0 +‘(S) f P(1, x) f(x) d,ul.
Vi, . XV, -
. We fix n such that max(g,N, N2-",18,(f) — 6|) <n/4. Then we have

) f o v)f(z)d;t—5\<Nz-n+| J o0z di=s, o+

N

k/2" /qs(r X)du—34, (f)‘<;1

z”

+ |5..(f)—. 8|+ Ne,<3/4n+

for ¢ sufficiently large, which ends the proof of our theorem.

Theorem 2. A method M is convergence preserumg if and only /f the conditions:
{e1), (¢5) and (c5) are sansﬁed ‘

4) Wlthout diminishing the genera]ityi of our considerations we may assume that
sup (S) l‘P(f X)ldp <o,

o=t<T
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Proof. The necessity of conditions (c;) and (c;) is evident, while necessity
-of the condition (c,) follows from the foregoing theorem. The sufficiency- of the
conditions (c,), (¢,) and (c;) follows from theorem 1 by considering the function

gl = f(\)— lim f(x).
Theorem 3. A method A/I is permanent for null funcuom if and only if the
-conditions (c,) and (c3) are satisfied.

Proof. The necessity of condition (c3) is evident. Necessity of condition (c,)
follows from theorem 1. The sufficiency follows from the proof of theorem | and
from the remark that J,(f)=0. :

“Theorem 4. A method M is permanent if and only if the conditions (c,), (c3)
and (c3) are satisfied.

Proof. The sufficiency of conditions (c,), (¢3) and (c3) follows from the theorem
3 by considering the function g(x) = f(x)— lim f(x).

X—r oo

Definition 7 A method A1 is called a row-finite method if @(¢, x) =0 beyond
.a bicompact set Z, for to=t<T.

Theorem 5. For each convergence preserving method M there exists a row-
finite method M, equivalent to M for bounded functions (i.e. summing the same
measurable and bozmded Sfunctions to the same limit )

We omit the easy proof of this theorem.

§2

A number ¢ is called the limit value of the function f(x) in == if for any bicompact

-set Z< X and any ¢>0 there exists a point x€ X — Z such that {f(x) —¢| <& We
say that 4 =0 (— o) is the limit value of the function f(x) if for any bicompact set
Z and for any number K there exists a point x € X — Z such that f(x) >K(f(x) <K).

The upper ( lower) bound of the limit values shall be denoted by lim £(x) (Lim f(x))-
'The interval

K(f ) = [lim f(x), lim f(x)]

(finite or infinite) shall be called the core of the-function f(x) in ee.
Let f(x) be a measurable, locally bounded function and M =M (y, S, @) a per-

manent method. We set ¢(t) = (S)j ®(t, x)f(x)du and
Ky (f) = [lim (), lim ¢ (2)].
t=T - t-T-—

It can easily be shown thét‘if.tﬁ(r, x)=0 then
Ku(NSK().

We call a number ¢ the essential limit value in < of the function f(x) if for
any ¢>0 and for any bicompact set Z there eXists a point x € X' —Z at which the.
Afunction f(x) is continuous and such that |f(x) — & <e. We say that +eco (— <o)
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is.the essential limit value of the function f(x) if for any bicompact set Z and for
any number L there exsits a point x € X — Z at which the function f(x) is continuous
“and such that f(x) >L( f(x)<L). The upper (lower) bound of the essential

limit values shall be denoted by limess f(x)" (11m ess f(x)). The interval .
K. (f)=[lim ess f(x), lim essf(x)]

shall be called the essential core of the function Sf(x) in . We have obwously
ess(f) K(f) o N

- Theorem '6. Given a ﬁxed measure 1 and afamﬂy S derérmining the improper
integral (S) f Y (x)du, for each number £ from the essential core of the function f(x)

there exists a method M(u, S, &) permanent and positive (i.e. ®(t,x)=0) such
that M-lim f(x) =¢.

X-—r00

We omit the proof. (See e. g. 121, p. 77).

| | §3 o
Definition 8. A method M=M(y, S, ®) is said to satisfy the condition ()
if there exists a family of bicompact sets {Z} (to=t<T) such that Z,.S Z,. for

r=t’, U Z,=X and lim($) [ 10, 0ldu=0.
to=st<T t->T— x2z. .
Theorem 7. Let two permanent methods M and M, satisfying the condition (w)
be given. If M, is more general than M| for bounded functions (i. e. any measurable
bounded function summable by M, is also summable by M,), then this methods are
consistent for bounded functions (i.e. any measurable bounded function summable
by M, to the number & is summable by M, to the same number ).5)

Proof. Let M, =M (uy, Sy, D); My=M,(p;, S,, D,). Suppose there ex1sts
a measurable bounded function f(x) defined. on the space X and summable in <=
"~ by the methods M; to different numbers. We'may assume that M,-lim f(x)=0 °
and M,-lim f(x)—l We shall prove that in'this case there exists a measurable
and bounded function-summable by M, but not summable by M,.

Let {Z(l)} and {Z,(Z)} be two families of blcompact subsets of the space X
such that : , : v :
im sy [ 1, x)|d;¢ —0  (=1,2).

t=T- oy 70
Put Z(l)UZ(Z)

By W0 we denote the empty set. Let W=V, In virtue of the permanency of the :
methods M; there exists a number 7, e[ro, T ) such that , .

| [oue, 0 f)dus} <12 for -1z, (=1,2).

5) Cornpére [5] and [8].

8 A.
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Put W, = V,l Let us choose 1, >max (f;, T—1) such that for r‘é t, '
St as@aul<ir | [ e0r0 dil<1 =12
. 1 Vao—W)
Let W3= V,z‘ etc. We define inductively a number sequence {t} increasing to T .
and a sequence of bicompact sets {W,} such that for t=1t, we have

| f <P,-(t,x)f(x)d;t,-‘<2“"' for j=1,2,...k; i=1,2,
-Wj-y - g
and Wk=V,k -

=1, ,]lm 6= &1 =0. Put g(X) & f(x) for xe W, — Wk 1 (k—1 2,..).

Then we have for i=1,2

Let {&) be a numerical sequence such that 11m =1, hm &, =0,

.

() / b;(t, x)g (x) dy; = ,; ¢ / ' By(1, X)) dps o+

i Wi—Wjo
tan [ aN@dut GGy [ e 9109 dut
Wic+2=Wi ’ T Wiy2=Wicsn
+(8) [ @t g0 dus.

‘\’_ka-n

.The following estimations hold for the -terms on the rlght hand side of our
equality: .

(Gt f O S du| =

Wit2=Wik

= 1eke2 = sl sup () [ 10406 )| dieesup 179,

12 / q’i(l,é\f)f(x)du,-_"ék.z-k for (=t

=
: Wi=W;-4

}(S,-) ' f @, x)g(X)du,’S(S,) [ 1o )l di sup (9] for  h=t<h,

tk+1 X- Z()

‘ | f P, (1, X)f(x) dp; = (S) f &,(1, x)f(‘x)dyi‘g

Wiw2-Wi

<[fq§(f \)f(x)du,{+|(5) [ r®0, x) di =

N=Wiy2~

k25 4(S) [ IQ;-(t,x)[du,--sup.lf(x)] for  St<ler.

x-z®

Con31der1ng in the above inequality £ as a functlon of t given by the inequality
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t=t<t,, we see that -

[ qﬁ(r,x)f(x)dui.»'Mi#_lim O (=1,2)

W;.+2 Wi
as t—T—, while the other terms on the right ‘hand side of the inequality tend to zero‘
as t—~T—. From the divergence of the sequence {¢,} we see that the generalized
limit M,-lim-g(x) does not exist while- M, -lim g(x) = M,-lim f(x) = 0,' which
“ends the proof of our theorem. , '

Theorem 8. Let a convergence preserving method M u, S, ®) be given. Let
Sf(x) be a measurable, bounded function defined on X and let | f(x)l = Put
| LY = |
©%0=10 i f@=a

If the Izmzt Mhmw(x) w (o) exzsts for any |a|<A then the functzon w(x) -

X oo .

has a ﬁmte variation in the interval [—2 )], the limit M-lim f(x) exists, and

X=— oo

2

M-lim f (x) = f o dow (O()‘.

X—co -

Proof. Put
| h(@) =(S) [ o, x)wa(x)du
Let us observe that for any ¢ the functions A,(«) have bounded variations with the
common bound sup (S) f | D (2, x)|dp. Thls follows from the estlmatlon

to=t<T

Z|h(a,+1) h(a.>1<(S) @, x>|2(w;[ﬂ(\> wa,(x))dﬂ<

_ o <(S)f|45(t )| dy, where —/1<oz1<ozz< <o, =
- If for any o the limit -
‘ lim A,(x) = w(oz)

AT -

exists, then obvmusly w(a) has a finite variation and
Varco(oz)< sup (S)fldi(t ) dp.

Put Z; = {x: 0,, () >, (x)} and denote by %z(x) the characterlstlc functlon
of the set Z. Let ]oc,+1—oz |<e (i=1,2,. n—l) We have

_ ’(S)/¢(f_, X)f(x) dp— Z ai[ht(ai+1)_".h_t(ai)]’ =

= (9 f b1, x) [f(x) Faxz (x)] du’
<sup|f(x) Za 22,(9]-(S) f ¢, Dl du=e(S) [1e6, x)l dp.
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Hence it follows that

®) [ @) Cydu = [ wdh (3.

Since

2 . 2 :
|fo;d[w(a)—h,(a)]|;[a|w(a)-h,(a)|]‘_,-,+ [[w(a)-—h,(oz)ldoz—»o as 1—T—,

-then 11m (S)fq5(t X)f(x)dy = foz dw(x),

which ends the proof.

Theorem 9. For each permanent method M there exists a medsurable Junction
taking only the values 0 and 1, which is not summable by the method M.

Proof. Suppose that there exists a permanent method summing all measurable
functions with the values 0 and 1. By the foregoing theorem this method would sum
all measurable and bounded functions. Let {#,} be a sequence increasing to T. The

method M described by the functional

By = 1im ($) [ #0091 dn

n-»oo

would then 'sum all the measurable_and bounded functions and it would satisfy
the condition (w) (definition 8). Thus there would exist a method satisfying the
condition () and not weaker for bounded functions than all the permanent methods.
Thus by the consistence theorem (theorem 7) all permanent methods satisfying the
condition (w) would be consistent for bounded functions, which is impossible. This
contradiction proves our theorem.
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