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General theory of summability. I 

• By R I C H A R D JAJTE in Lodz (Poland) 

In this paper we give the general definition of a summability method of functions 
defined on a cr-bicompact space. It seems that this definition includes all the cases 
so far considered, in particular the broad classes of summability methods of 
functions considered by K . KNOPP and his pupils. Owing to the generality of our 
methods we may give, on the one hand, a uniform theory and on the other we can 
find more applications of this theory. The present paper includes the fundamental 
theorems concerning the most important properties of the methods considered. 
These theorems constitute a generalization of the well-known theorems for matrix-
transformations (the theorems of TOEPLITZ, KNOPP, MAZUR—ORLICZ, HENSTOCK, 
STEINHAUS; see references at the end of the paper). In a subsequent paper we shall 
consider some special classes of methods and some applications of the general 
theory in other branches. ' 

; § 1 

D e f i n i t i o n 1. A locally bicompact space is called a c-bicompact space if 
it is the sum of a sequence of bicompact sets.1) Let X be a cr-bicompact Hausdorff 
.space2). By Q(X) we denote the set of real functions defined and continuous on X 
with bicompact supports and by i2+(X) the set of functions continuous and non-
negative on X with bicompact supports. Let / ( / ) be a distributive functional de-
fined on O(X) and non-negative on Q+(X). Let p and Jf(x)d/:i denote the Lebesgue 
measure and integral generated by the functional / ( / ) . 3 ) 

D e f i n i t i o n 2. A funct ion/(x) defined on X shall be called convergent in °° 
to the number £ if for any e > 0 the set 

{ x : | / ( x ) - £ | S e } 

is contained in a bicompact set. 

') A topological space is called a locally bicompact space if every point xiX possesses a 
neighbourhood with a bicompact closure and if the whole space X is not bicompact. 

2) The space X is considered as fixed in all the further considerations. 
3) See [7], § 6. 
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D e f i n i t i o n 3. Let S = '{5r} ( 0 S t < m ) be a family-of bicompact subsets of 
the space X such that S^^S",» if T'<T" and . |J Sx = X. The improper integral 

\ O^R<CO 

(5) f f ( x ) d , i 

exists and is equal to a if J f(x)d/.i exists for 0 s T < and lim jf(x)d[i = j.. 
ST , ' S . 

D e f i n i t i o n 4. Let <Z> = {<i>{t, x)} (/0 S t T ^ denote a family ofcontinuous 
functions defined on X. A function / (x) defined on X is said to be summable by 
the method M = M(/.i, S, <i>) to the number ^ if 

(a) the integrals (S ) f <P(t, x)f(x)d/.i exist for every t£[t0, T), and 

(b) the limit lim (S) J <t>{t, x)/(x)c/^==«J exists. 

Evidently, by specifying the space X and the classes S and <J> we can obtain, 
some well-known classes of summability methods for number sequences or for 
functions defined on the half line (see e. g. [3]). The case considered here 
is, however, much more general for it includes even the summability of functions 
defined in non-metric spaces. Let us observe that the. term "summability of 
functions in co" has a formal character, since X can stand e.g. for a closed circle its 
center excluded. Then the center z0 of this circle shall play the part of and we 
obtain a summability method of a function at the point z0. 

D e f i n i t i o n 5. A function defined on ^ is said to be locally bounded if for 
every point x0£X there exists a neighbourhood U(x0) in which this function is-
bounded. 

For what follows the following conditions are important. 

(Ci) ) i m ( S ) f \ 0 ( t , x ) \ d p c ^ ; 

(c2) lim (S) j.0(t, x)dn'=x ; 

(c'2) lim (S) J 0(t, x)d/i— 1 ; 

(c3) lim / <P(t, x) dj.i = <x(A) exists for every measurable set A contained 

in some bicompact set; 

(c3) lim / <P(t, x)d/.i = 0 for every measurable set A contained in some 
- r - X 

bicompact set. 

D e f i n i t i o n 6. We call a method M a convergence preserving method (a 
convergence preserving method for null functions) if it sums all ¿¿-measurable, 
locally bounded and in convergent (convergent to zero) functions. We call 
a method M permanent (permanent for null functions) if it sums all the measurable. 
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locally bounded and in convergent (convergent to zero) functions, to their 
ordinary limits. 

T h e o r e m 1. A method M is- convergence preserving for null functions if and 
only if the conditions ( c x ) and ( c 3 ) are satisfied. 

P r o o f . The necessity of condition (c3) is evident. To prove the necessity of 
condition (Ci) we complete the space A'with the point into the space The 
set of functions continuous on X and having.a limit in equal to zero (we denote 
it by Q^A^)) is a Banach space with the norm 

. . / ; , . , - s u p ¡/(.v).. 
' .V! .V 

The. functional 

i , . , ( / ) = f 4>(t,x)f{x)dp 

is linear (i. e. additive and continuous) in C0(XJ). We shall show that its norm is. 
equal to 

j\<P(t,x)\dp 
s. 

Since the set Sx is bicompact, we have /.i(Sz)=K<°° and there exists for I/>0 an 
open set Uz)Sr with a bicompact closure such that p(U— Sr)<rj. We denote by 
Ax and A2 the subsets of the-set ST in which <P(t, X)^E/K, <I>(t, x) S — e/K, 
respectively. The sets^,-, in view of.the continuity of the function <P(t,x), are bicom-
pact. In virtue of the well-known theorem of TJrysohn(see e. g. [7], p. 34) there exists 
a continuous function u(x) defined on the whole space X and satisfying the 
conditions 

(i) 0 - »(.v) -5 I, 
(ii) w(x) = l f o r x^A1 a n d u(x)= 0 f o r x£A2. 

By the same theorem of Ur.ysohn there exists a continuous function v(x) defined 
on the whole space X and satisfying the conditions • 

' (j) O ^ r ( . v ) ^ 1. . • 

(jj) » W = l for A-€5t. and i; (*)=•() for x£X„-U. 
Let us put ip(x) = [2u(x}~ l]-u(x). We have \ij/(x)\^.l and 

1 f o r x£AL, 

ij/(x) = - 1 f o r x£A2, 

0 for A" U. 

Obviously ij/ £ C0(X„). Moreover we have 

s * 
Since this implies 

m j i = f m t , x ) \ d p . 
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The functional 
At{J) = \\mAut{f) 

T-+co 

is defined in CQPC,), therefore according to the Banach—Steinhaus theorem ([1], 
Theorem 5, p. 80) 

sup M ( i J = ( S ) / | < Z > ( ? , . V M K C O . 
OSK» J 

Choose a set S r and an open set Uz> Sr such that 

U -St 
We have 

A,№) = j <P(t,x)4>(x)dp^\\Aj\-2e+ f 4(t, x)il>(x)dfi. 
. u-st ' u~sv 

But 
J <P(t,x)4/(x)dp> — J \<P(t,x)\dn'>—E. 

V-Sr U-St 
Therefore 

Passing to the limit as e-*0 and r —<=°-we obtain immediately 

M.ll - (S)J.\*(t,x)\dfi. 

Since by assumption lim A,(./) exists for every f£C0(X„) so by the Banach— 
r->r-

Steinhaus theorem we have 
lim M,|| < oo, 

l - T -

which ends the proof of the necessity of condition (Cj). 
Now we shall prove that the conditions ( c j and (c3) are sufficient. 
Let f(x) be a measurable and locally, bounded function and l i m f ( x ) = 0 . We 

may assums (considering, if necessary, the function Cf(x)) that | / ( x ) | S l . We put 

c5(Z) = l im f <P(t, x)dfi. 
•-T- z 

By condition (c3) this limit exists for any measurable set contained in a bicompact 
set. Let e„ be a sequence decreasing to zero. Then there exists an increasing sequence 
of bicompact sets {V„) such that for V„ we have | / (x) | <£„. Let 

Z*00 = {x£Vn\ k/2"^f(x)ck+ 1/2"} for k = - 2 " , - 2 " + 1 , . . . , 2 " - 2 , 

= {xtVn: l - l / 2 » S / ( x ) S l } . 
Put 

= 2 -" 2 . 
k=- 2" 
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Now we shall show that the limit <5 = lim 5„{f) exists. Let m > w. .We have 

\Sm(f)S„(f)\ 
t=- 2" 

where 

2 2 k / 2 m S ( K n z t ) - k/2nő(Ztn)) 
k = —2"' 

N= s u p (S) f \4>(t,x)\ dp. 4 ) 

+ N-SN 

We observe that the sets V„ fl z£m) are formed by dividing the sets zf \ thus the-
sum under the modulus-sign on the right hand side of the inequality can be writ-
ten as follows . 

2'"- 1 
V 

Hence 

^ <5(K„n zr ))[fc/2M-a*] with 1 óé*: —k/2'"\ <2~". 

\öm(f)-ö„(f)\^N-sn + 2-: 2 | á ( K „ n z r ) | ^ ^ „ + 2-'V0 
k= — 2 

for M — <=», which implies convergence of the sequence <)„(/). We shall prove tha t 
M-\\mf{x) = <5. Let / j > 0 be given. Putting 

we have 

ÍAr/2" for . v e z f V 
}() for .v 

| (S) f 0 (t, X)f(x) d[l~ö\^\j<P (t, x) [/(A-) - g„ (A-)] dp | + 
v„ • 

+ | /ö>(/,A-)gn(A-)^-(>| + |(5) / * ( / ,* ) / (* ) 
v'n x-v„ 

We fix n such that max («„A'', N2~", |<5„(/) — T h e n we have 
\(S)fcI>(t,xyf(x)dn-ö\^N2-+\J<P(t,x)gn(x)dn-őn(f)\ + 

• y,. 

£„<3/4/7 + 2 */2" [*(t, x) dp - ÖJ 
_\k=- 2" J 

+ \őn(f)-ő\+Nen A f ) 

for t sufficiently large, which ends the proof of our theorem. 

T h e o r e m 2. A method M is convergence preserving if and only if the conditions: 
( c i )> ( c 2 ) and ( c 3 ) are satisfied. 

4) Without diminishing the generality of our considerations we may assume that 

sup (5)/*!<P(r, 
0 ••!< / J 
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P r o o f . The necessity of conditions (c2) and (c3) is evident, while necessity 
• of the condition (C[) follows from the foregoing theorem. The sufficiency-of the 
conditions (Ci), (c2) and (c3) follows from theorem 1 by considering the function 

.¿KA-) = / ( * ) - Iim/(A-). 
' .V ->O= 

T h e o r e m 3. A method M is permanent for null functions if and only if the 
conditions ( c , ) and (c 3) are satisfied. 

Proof . The necessity of condition (c3) is evident. Necessity of condition (c,) 
follows from theorem 1. The sufficiency follows from the proof of theorem 1 and 
from the remark that ôn(f)=0. 

T h e o r e m 4. A method M is permanent if and only if the conditions (c , ) , (c 2) 
and (c 3) are satisfied. 

Proof . The sufficiency of conditions (c,), (c2) and (c3) follows from the theorem 
3 by considering the function g(x) = f(x) — lim/(jr). 

.V -* CO 

D e f i n i t i o n 7. A method M is called a row-finite method if <P(t.x)=0 beyond 
a bicompact set Z, for t 0 ^ t < T . 

T h e o r e m 5. For each convergence preserving method M there exists a row-
finite method M{ equivalent to M for bounded functions (i. e. summing the same 
measurable and bounded functions to the same limit). 

We omit the easy proof of this theorem. ' 

§ 2 

A number £ is called the limit value of the function/(x) in if for any bicompact 
•set ZaX and any e > 0 there exists a point x^X—Z such that \f(x) — <£. We 
say that ( — i s the limit value of the function f(x) if for any bicompact set 
Z and for any number AT there exists a point x£X—Z such that f(x) > K(f(x) < K). 
The upper ( lower) bound of the limit values shall be denoted by lim/(x) (lim /'(»)• 
The interval 

K( f ) - [lim/(.v), lim A*)] 

•(finite or infinite) shall be called the core of the function f(x) in =>=. 
Let f(x) be a measurable, locally bounded function and M — M(p, S, <P) a per-

manent method. We set c p ( t ) = ( S ) J 0(t, x)f(x)dp and 

KM(f) = [ lim y(t), lh^ , ,(0]. 
1 - T - X ->T-

It can easily be shown that if <P(t, .v)sO then 

We call a number £ the essential limit value in °=> of the function / (x ) if for 
any £ > 0 and for any bicompact set Z there exists a point x^X—Z at which the 
function f(x) is continuous and such that |/(.v) — £!<£• We say that (—°°) 
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is.the essential limit value of the function f(x) if for any bicompact set Z and for 
any number L there exsits a point X— Z at which the function f(x) is continuous 
and such that f(x) > £ ( / ( * ) <L) . The upper (lower) bound of the essential 
limit values shall be denoted by lim ess f(x) (lirn essf(x)). The interval . 

K e J f ) = Him ess/(x), lim ess/(x)] 

shall be called the essential core of the function f(x) in =». We have obviously 
* e s s ( f ) ^ K ( f ) . 

T h e o r e m 6. Given a fixed measure /( and a family S determining the improper 

integral (S) J \j/(x)dp,for each number £ from the essential core of the function f ( x ) 

there exists a method M(p, S, <P) permanent and positive (i.e. <P(t, i)£0J such 

that M-lim f(x) — 1. 
x -* °° 

We omit the proof. (See e. g. [2], p. 77). 

§ 3 

D e f i n i t i o n 8. A method M = M(p, S, <P) is said to satisfy the.condition (u) 
if there exists a family of bicompact sets {Z,} (t0St<T) such that Zt-QZ,~ for 

t'ct", U Z, = X a n d l i m ( S ) f \<P(t, x)\dp = 0 . 
f o S K T I - . T - x _ Z t 

T h e o r e m 7. Let two permanent methods M1 and M2 satisfying the condition (w) 
be given. If M 2 is more general than Mv for bounded functions (i. e. any measurable 
bounded function summable by M x is also summable by M2), then this methods are 
consistent for bounded functions (i. e. any measurable bounded function summable 
by Mv to the number £ is summable by M2 to the same number).5) 

P r o o f . Let ^M^L M2 =M2(p2, S2, <P2), Suppose, there exists 
a measurable bounded function f(x) defined on the space X and summable in 
by the methods Mf to different numbers. We may assume that lim f(x)= 0 
and M2-\im f(x) = 1. We shall prove that in this case there exists a measurable 
and bounded function summable by Mx but not summable by M2. 

Let {Z,(1)} and {Z^} be two families of bicompact subsets of the space X 
such that .. 

lim (Sd J = 0 ( /=1 ,2 ) . 
• x-•/.]'> . 

P u t ill I2\ 

By W0 we denote the empty set. Let W{ = V,0. In virtue of the permanency of the 
methods Mt there exists a number tY £ [/0 , T) such that . . 

| / $ , ( * , * ) / ( * ) 1/2 for ( /=1 ,2 ) . 
w i . . 

5) Compare [5] and- [8]. 
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Put. W2 = Vtl. Let us choose t2 >max [t\, T— such that for t^t2 

\ j * i ( t , x ) f { x ) d n \ ^ \ 1 4 , | f </>,(/, x ) f ( x ) ¿///,| < 1/4 ( / = 1 , 2 ) . 
w2-w, 

Let IV3 = Vt2 etc. We define inductively a number sequence {tk} increasing to T 
and a sequence of bicompact sets {Wt>} such that for t ^ t k we have 

| / <Pf(f, x)f{x)dn\ for . / = 1 , 2 , / = 1 , 2 , 

and ^/fc.,. Let be a numerical sequence such that lim = 1, ljm £k = 0 , 

S i , lim l ^ - ^ . . ! | = 0 . Put *(*) = &/(*) for xzWt-W,.,. {k = \,2, ...). 
A:-co ~ 

Then we have for / = 1,2 

(Sdj<l>i(t,x)g(x)dpi = ¿ Q j I cpi(t,x)f(x)dpi + 

1 Wj-WJ-, 

+ & + 1- 7 ('> x ) f { x ) dpi + (^t + 2 — Ct + 1) f 0i(t,x)f(x)dni + 
W.k + 2-Wk Wk + 2-Wk+l 

+ № ) f $i(t,x)g(x)dHi. 
x~yt* + i 

The following estimations hold for .the terms on the right hand side of our 
equality: 

- . . |(£fc+2-£k+i) / <Pi(t,x)f(x)dni\^ 
tVk + 2-tVk+l 

lk+ 1 ' 

+ + SUP (5)/|<f i(i,x)|i//i1-SUp|/(A-)|, 

. J <Pi{t,x)f(x)dlii ^k-2-K f o r 

1(5.) / ( ' ,*)*(*) ^ f l ^ iS , - ) j | 0 ; ( / , x ) | ^ r s u p | / ( x ) | for 43=/-

17 *)/(*) - w)/*«(<• *)/(*) != 
» V X — WK + 2 

+ / !<&(/, sup | / (x) | for 
v _ z ( 0 A C A 

Considering in the above inequality k as a function of t given by the inequality 
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t k ^ ' t < i k + l we see that 
J <Pi(t,x)f(x)dlii-Mr\\mf(x) . ( / = 1 , 2 ) 

as * — 71—, while the other terms on the right hand side of the inequality tend to zero 
as t — T—. From the divergence of the sequence {ck} we see that the generalized 
limit M2-l img(x) does not exist while A/,-lim g(x) = Af,-lim f{x) = 0, which 
ends the proof of our theorem. 

T h e o r e m 8. Let a convergence preserving method M(ji, S, <P) be given. Let 
f ( x ) be a measurable, bounded function defined on X and let ! / ( * ) ! ^ A. Put 

<x>x(x) = 
1 if f { x ) ^ a , 

0 if /(*)>«• 

I f . the limit A/- l im o)a(x) = ® ( a ) exists for any | a | < A then the function a»(a) 
X-* oo • 

has a finite variation in the interval [—A, A], the limit M- l i m f { x ) exists, and 

P r o o f . Put 

A/-lim f(x) — Jadco(oc). 

ht(a) = (S) f0(t,x)cox(x)dp. 

Let us observe that for any t the functions h,(a) have bounded variations with the 
common bound sup (S) / \<P(t, x)\dfi. This follows from the estimation 

(oS<<r 
ii- 1 r n- 1 . . . 

2 \ht(zi+i)-ht(a:)\^(S) / m t , x)\ 2 K + -)-ioXl(x))d^ 
• = i J ¡=i 

* 

:(S)J\<P(t, x)\dfi, where — I s « ! <oc2< ... < a „ ^ A . 
If for any a the limit 

lim ht (a) = co (a) 
l - T -

exists, then obviously tv(a) has a finite variation and 

V a r a » ( a ) S sup (5 ) / \<P(t, 3c)| dp. 
'o'•'<•'• 

Put Z j = {x: oja.tl(x) ^ojai(x)} and denote by ¿z(x) the characteristic function 
of the set Z. Let |ai + 1 — a f | < s (/ = 1, 2, ..., n — 1). We have . . 

(S) j<?>(/,. 
n — 1 

x ) f ( x ) d n - 2 «¡[^(«¡+i)-^<(a;)] i= 1 

(S) $(t,x) 
n- 1 

f ( x ) - 2 a i X z f x ) ¡=1 
dp 

ssup i f ( x ) - z «¿*Zi(*)KS) J m t , x ) \ d ^ z . ( s ) J m , dn. 
xiX 
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Hence it follows that 

(S)J<P(t,x)f(x)dp = Jadh,(a). 
— /. 

Since 
X A • 

| fad[œ(a)-h,(a)]\^[a\œ(a)-/il(a)\]-A+ f \m(a)-h,(a)\ i f a - 0 a s t - T ~ , 
-A ' -A i 

A 

•then lim (S) J <P(t, x)f{x) dp = Jadœ(a), 

which ends the proof. 

T h e o r e m 9. For each permanent method M there exists a measurable function 
taking only the values Ô and 1, which is not summable by the method M. 

P r o o f . Suppose that there exists a permanent method summing all measurable 
functions with the values 0 and 1. By the foregoing theorem.this method would sum 
all measurable and bounded functions. Let {/„} be a sequence increasing to T. The 
method M described by the functional 

M ( / ) = lim (S) f<P{t„,x)f(x)dp 

would then sunt all the measurable and bounded functions and it would satisfy 
the condition (w) (definition 8). Thus there would exist a method satisfying the 
condition (w) and not weaker for bounded functions than all the permanent methods. 
Thus by the consistence theorem (theorem 7) all permanent methods satisfying the 
condition (vv) would be consistent for bounded functions, which is impossible. This 
contradiction proves our theorem. 
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