Cesaro operators*®)

By ARLEN BROWN, P.R.HALMOS, A.L.SHIELDS in Ann Arbor (Michigan, U.S.A.)

Introductlon

If fis a sequence of complex numbers, f {f0), f(l) f(), ...), the sequence
Cof of averages plays a role in the theory of Cesaro limits; by deﬁmtlon :

€onem = 3 o

for n=0, 1,2, .... Our study of Cesaro operators began with the following questions.

Is it true that if f€/2, then Cof€/2? If it is true, is the linear transformation C,

. bounded? If C, is bounded, what is its spectrum ? Along with these discrete questions,

it is natural to ask the corresponding contmuous ones; they concern the operator
- C, defined on LZ(O 1) by :

. 1 N
€N =< /f(y)_dy
) 0. )
for 0<x<1, an»d.the'_op'erator C.. defined on L? (0, =) by

(C. f)(X) /f(y) dy

for O<x<eco. - ‘
It turns out that all three Cesaro operators (that is, Co, C,,and C.) are every-
- where defined bounded linear transformations on their respective Hilbert spaces
(that is, on 12, L2(0, 1), and L?(0, =)). For Cy and C.. this fact is proved by HARDY,
. LirTLEWoOoD, and POLYA [S, Chapter 1X]; the proof below (Theorem 1) is somewhat
more conceptual and less computational than theirs.
For Cy we completely determine the norm, the spectrum, and the various parts
~of the spectrum (Theorem 2). There is, however, much about C, that remains
unknown. Thus, for instance, very little is known about the structure of the lattice”
of invariant subspaces of C, — a problem that belongs to a subject of great current
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interest. Another instance: while we prove that C, is hyponormal (Theorem 3),
the problem of whether or not it is subnormal remains open.

In view of our incomplete information -about C,, it may be surprising to learn
that the structures of C, and C. are completely known. We prove that 1 —C¥ is
a unilateral shift of multiplicity 1 (Theorem 4), and 1—C¥ 1is a bilateral shift of
multiplicity 1 (Theorem 5). (The operator C, has been studied by DE BRANGES
also [3]; our methods are completely different from his.) From these facts, via the
Beurling theory [1], it is easy to determine the spectra of €, and C.., and to derive
a satisfactory description of their invariant subspace lattices.

Bounidedness

The. proof that the Cesaro operators are bounded.can be made to depend on
a criterion due essentially to I. ScHUR [7]. (In the notation of the statement below,
ScHUR discusses the case p(x) =1 only; his proof is different from ours. Cf. also
[6, Chapter X]) Since this criterion does not seem to be explicit in the literature,
we proceed to state and to prove it with sufficent generallty to make it appropriate
for most applications.

Schur test. If X is a measure space, if. k(=0) is a measurable function on
XXX, if p(=0) is a measurable function on X, and if o and B are constants. such that

Sk dy = 0

and [k dx = B,
then the equation

| AN = k) fO)dy
deﬁhes an operator ( a bounded linear transformation) on L2, and []A“ZSaﬁ

Proof. If f is a bounded measurable function that vamshes outsnde some
measurable set of finite measure, then :

S ke ooy asl ax = [1( [ Ve VP()’)) [VV‘_X) f(y)] dy

- f(fk.(x,y)P(y)dy)'(f k(x,y) |f(y)|2 dy] dx = .

=/ ap@[f S 11 dy] dx =

dx =

]f(y)l

SO ([ kx )y dn) dy = [ 25 oy POy = Bl

r(»
Since the functions such as f are -dense in L2, the proof is complete.

Theorem 1. Each of the Cesa_ro operators Co, Cy, and C..is bouhdéd.
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Proof. For Co con51der the measure space {O I, 2 ..} with the counting:
measure, and let the kernel ko be defined by : :

0. if 0=i<j,

'ko(i,j)= Lo o
o ' =T if 0;]51.
L 1 ) .
A po(n) = —, then
Zk(lj)p I L B
e i+l VJ+1
pof - .
< ax 2Vi < 2Vi+ 1 = 2p, ).
il Vx i+l i+1 .
§ ; J
If j#0, then ‘
> 11

S kali NP0 = G YT

/' dx. 2 2 Vj+1

-

=== VT <2V2p,()).
DR T T T s

Since aisb ' , .
S kolis 0po() = 1+ kol Oroi)<1+2 = 3900,

‘it follows that
o o(’ ])Po(’)<3po(J)

for all j, and the Schur test 1mp11es ‘the boundedness of Cq.
. For C, the measure space is (0, 1) with Lebesgue measure, and the kemel is
defined by :

. 0 if O0<x=y,
k1(x:J’): l “if 0<y<x
: X 7
If pﬁl“(x) V_ then
. . 1 x
1 [d | T

/kl(x,y)pl(y)dy= .~ —V%=;2Vx=2pl(X)g

, _ LY A

and ! ' _ . _
: 1 ) -1
: ‘ . dx 2 4
[ m@ar= [ = & ~2<2m0)
X2 Yy
J o ST .
and the Schur test applies again.
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For C,. the measure spaée is (0, =) w‘ith‘ Lebesgue measure, and the kernel
k.. is defined formally the same way as ky; the difference is that x and y now vary in

4(0, =) instead of (0, 1). If, as before, p,.,(x)z—l/—l_—:, then
. X . '

o : X

: 1 fdy 2 :
/ kG ey = 2 [2 = 2 = 5p (),
.  oxJVy Vx
oL o . ] .
-and o . o

N r dx 2
’ /‘k'-i(-’\3 y)p“(x) dx :'/ o = -ﬁ = 2P-»(,V),

o ¥

.and, once more, the Schur test yields the desired result.

An examination of the proof of Theorem 1 yields (via the last assertion of the
Schur test) estimates for the norms of Cy, Cy, and C... For C, this estimate turns
out to be quite crude, and even for C, and C.,, where it is sharp, the method is not
sharp enough to tell what the norms of the operators actually are. To settle this
-question, and others, we turn now to detailed separate exammatlons of the three
Cesaro operators. :

The discrete Cesaro operator

Since C, is defined on a sequence space, it is naturally associated w1th a matrix,
‘which is in fact just the kernel k. Since

1 00 , 1+ 1
N N A
it fOllOWS. that
BERE

It turns out therefore that the product C,C% is almost the same as the sum Cy + C3;
-the difference Co—i-Co CoCy is the diagonal operator D, with matrix

1 00
0 3 0
0 0

1
"3
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Since (1 —Co)(l C*) = 1—DO, it follows that

I =Coll =1,
and hence that Coll=2.

[t is perhaps worth while to remark mat there are other ways of proving the
last inequality. One way is to compute C,C¥ immediately, and then apply the Schur
test to it (with the same p, as in the proof of Theorem 1). Since C,Cj is Hermitian,
only half the computation is necessary, and, moreover, the inequalities do yield -
the sharp result |CoCgl|=4. To infer, via this approach, that C, itself is bounded,
one more step is necessary; we need to know that if k is an infinite matrix with rows
in 72 such that kk* is bounded, then & itself is bounded (cf. [7] and [5, Chapter VIII]).
"The ‘proof of this can be carried out by looking at the n-th section k™ of k and
showing that the n-th section of kk* domaintes- k®k®*. (Recall that an infinite
matrix is"bounded if and only if its sections. are uniformly bounded.) '

- It is easy to prove that the inequality ||Col|=2 cannot be improved:

IColl =2.

TIndeed lf L) = =0 -:l)a (a>‘l ) }1:0 1,2,. ) then fa€12 and ||C¥ fan—.ZHf,H

as o —1 2 +. The proof of the latter assertion is a Stralghtforward computation. Since

s

(ngf,)(m) 2 (n+1)“+‘ ,.m=0,1,2, ..., it follows that

n_m

(Fay e a
icini = 32 (n+1>«+1] -2 / &) - [— wi) -

m+1 -

_LA 1
. m= O(m‘i'l)?a

\48

P IIfalI ,

and- this lmphes the limit assertion. :

‘For our next purpose we need the following lemma if Ais an operator such
~ that [|[4]|=1 and if |Af]|=||f|| for some nonzero vector f, then [|A*g||=|g| for
. .some non-zero vector g. For the proof, write g = Af, so that ||g|| =] ||, and observe .

that
llfllz—(A*Af,f) IIA*Afll llfH I\f\lz-

It follows that ||A*Af| =] f]l, so that’ |lA*g||—|| ||
We know that the supremum of ||Cof]| (and hence of [|C6f||) for vectorsfon .

the unit sphere is 2; we shall show that the supremum is not attained. Since
la —Do)f||<l|f|| unlessf 0, it follows that ' :

l.I(l—AC(’f)fII2 (1=CU=COLS) = (1 - C1 = COS I I=< I f11?

unless f=0. The preceding paragraph is applicable, ‘and we may infer that both .

N =Co)fN and |I(1 — CE)f]! are strictly less than || f], except when f=0. It follows

~ of course that ||Cyf|| and |CEf)| are strictly less than 2||f|| except when f=0.
- (Proof: IICofH—Ilf (I—Co)fll ||f|1+||(1 —-Cofl)

9 A
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The followmg statement sums up what we have )ust proved about norms and
what we shall ‘go on to prove about spectra

Theorem 2. (1) I1=Coll =1 and ncon_z @ If|Ifl =1, then (1 = Co)f <1

and ||(1 = CHfll<1. (3)-The point spectrum of Cqy is empty. (4) If |1 =] <1, then

A is a simple proper value of C§. (5) The point spectrum of C§ is the open disc
{A:[1 =2l <1}: (6) The spectrum of C, is the closed disc {A:|1 —)IS 1}.

Proof. (1) and (2) were proved above. To prove (3), observe first that if Cof=¢g,
then f(0) =g (0), and if n=1, then f(n) = (n+1) g(n) —ng(n—1). Consequently, if
Cof=4f, then f(n) = A((n+1) f(n) —nf(n—1)) or (A(n+1)=1)f(n) = Anf(n—1)
whenever nz1. If m is the smallest integer for which f(m)=0, then 1 = -mlj >
.so that 0<A=1. It follows that if n=1, then.

f(r=1)| 2 |f(n=1)],

()l = —(1—))

which, for a non-zero f in 12,- is impossible.
To prove (4), observe first that (C¥f)(n) = 2’ f(l) (cf. the matrix A}).

i=n

If Cif=g, then f(n) = (n+1)(gn)—gn+1)) for n—O 1,2, .... Consequently if
Cif=Mf, then  f(n) = A(n+ D (/M) —f(n+1)) cor An+Dfr+]) =
= (A(n+1)—=1)f(n). It follows that 0 is not a proper value of Cg (if 2=0, then

f()=0 for all n), and it follows also that f(n+1) = (1 ——)ﬁ]f(n). This.

‘implies that if n=1, then :
n 1Y}
fm= ]I [1—7Jf(0),
. i=1 J4

and we can conclude, even béfore we know which values of A can be ‘proper values. .
of C§, that all the proper values are simple.

: . 1 1 _ . .
Suppose now that |1 —A| <1, or, equivalently, that Re 7> It is convenient®

to rewrite the condition once more; if H=-=, then the condition is that 2 Re u =
= 1 +¢ for some positive number ¢. Our task is to prove that if this condition is
satisfied, and if

Sn) = U[lﬁf] -
=1 J
for n=1, then fc/?. Since
2 ) 2 1 2 . :
ot g 2Ren W L I (2 L),
j J j o TE
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it follows that .
o | ’ q

2 p— .
exp [lul P 2] . c

lf(n)|2 = - [ 1] < exp((l—}-s)logn) n1+a ’
exp

where c=exp (|u|2 5’—) ThlS completes the proof of (4). (We note in passmg

that 1ff15 a proper vector of C¥ w1th proper value 2, then f’f(n)- = (l — 7)’ -

whenever |z <1 )

Since ||l — Gyl = 1, the spectrum of I—C0 is included  in the closed disc
{A:|A]=1}, and, consequently, the spectrum of C, is included in the closed disc
“ {A:|1=2|=1}. The preceding paragraph implies that the spectrum of 1—C}¥
includes the open disc {%: |A| <1}, and hence that the same is true of the spectrum
of 1 —=C,. This, in turn, implies that the spectrum of C, 1ncludes the open disc
{2:]1 = Al <1}, and the proof of (6) is complete.

In view of what was just proved, the proof of (5), and hence of the theorem,
“can be completed by. showing that if |1 —A| = 1, then A is not a proper value of

C*, or, equivalently, 1 —/1 is not a proper value of 1 —C%. This, however, is an
immediate consequence of (2):if || f||=1and (1 - Cg)f = (1 —/l)f then ||(1 —-C*)fH—
= |1 - Al, and therefore |1 — /| cannot be equal to 1. :

We conclude our discussion of the discrete Cesaro operator by reporting a fact

that may not be important but that is at least an interesting curiosity.

Theorem 3. The operator C, is hyponormal, that is, C§Cy — CoC¥ is positive.
Proof. The matrix k}k, is “L-shaped”, meaning that it is-of the form

Bo Oy Uy
oy oy O

oy, Oy 7

o s 1
with «, j%" G
the difference of two L-sharped matrices is another one, the problem of proving
the hyponormality’ of C, reduces to the problem of deciding when an L-shaped
matrix is positive. An infinite matrix is positive if and only if all its finite sections
have positive determinants; the problem has reduced to the evaluation of the deter-
minant of

Since kokf is also L-shaped. (wnh o, = m) and since .

Og Oy . Op'ee.

NN

oy oy o
o, Oy Oy ...

a" a". aﬂ A O(n
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.This is easy. Subtract the second column from the first, then subtract the third column
from the second, and continue this way through the columns. The resulting matrix
has the same determinant as the original one and is triangular; its determinant

" therefore is the product of its diagonal elements. The diagonal elements are’
Qo —0y, 00y —0Up, ...y Oy y—0,, and o,. Conclusion: an finite L-shaped matrix is
positive if and only if its determining sequence is positive. and decreasing. The proof

Sl
_of the theorem is completed by verlfymg that _the sequence {jﬂzﬁ_—l—)i—;—l_*—i}
~has these. propertres : '

The finite continuous Cesaro operator

For C, the facts are simpler and the proofs are easier than for Cy; to get at
those facts, it is convenient to recall a few simple results about unilateral shifts.
An operator U on a Hilbert space H is a unilateral shift of multiplicity 1 if # has
an orthonormal basis {e,, e, e,, ...} such that Ue,=e,,,, n=0,1,2,.... A uni-
lateral shift. of multiplicity m (here in can be any cardinal number, ﬁmte or mﬁmte)
is the direct sum-of m unilateral shifts of multiplicity 1. Each unilateral shift is an
isometry, and so therefore is the direct sum of a unilateral shift and a unitary operator.
Conversely, every isometry is a direct sum of a unilateral shift and a unitary operator,
it being'understood that either summand may be absent. If U is an isometty, then
U*U—UU* is the projection on the co-range of U (the orthogonal complement
of the range of U), and consequently the rank of U*U —UU* (the co-rank of U)
is the multiplicity of the shift component of U.

If U is a unilateral shift, then the spectrum of U is the closed unit disc, the
point spectrum of U is empty, and the point spectrum of U* is the open unit disc.
Each number in the open unit disc is a proper value of U* of multiplicity equal to
the multiplicity of U. The proper vectors of U* form a-total set (that is, they span
the entire .underlying Hilbert space). All these facts are known; see [l, 2, 4].

There are several ways of characterizing simple unilateral shifts (that is, uni-

lateral shifts of multiplicity 1). For our purposes the most convenient one is this:
an operator U is a simple unilateral shift if and only if (1) U is an isometry, (2) the
co-rank of U is 1, and (3) U* has a total set of proper vectors with proper values
of modulus strictly less than 1. Indeed, a unilateral shift has these three properties.
If, conversely, U is an operator satisfying (1), (2), and (3), then, by (1), it is he
direct sum of a unilateral shift and a unitary operator, and, by (2), its shift component
is simple. It remains only to use (3) to prove that its unitary component is absent.
Suppose therefore that W is a unitary direct summand of U. If U*f= )fw1th 1Al <1,
and if g is the component of f in the domain of W, then W*g=1g; since W* is
" unitary, it follows that g=0. Thus each proper vector of U* corresponding to a
proper value of modulus strictly. less than 1 belongs to the domain of the shift
component of U; if such vectors span the whole space then the unitary component
of U cannot be present.’ ‘

Theorem 4. The operator 1 —CY is a simple unilateral shift.
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Proof. Since C, is given by the kernel k,, where kl(x,‘y)zl/x if0<y=x
and k,(x, y)=0 otherwise, it follows that C} is given by the kernel k¥, where

0 if O<y=uyx,
« _
e =11 4 goxoy,
y .
In other words if f€ L2(0, 1), then
(C*f)(X) / f(y) dy

The operétor CiCf is given by ‘the kernel

1 ) . min (x,y)
. ) : 11 min(x’y)
£ —_ R, =
/k1(x, u)ki(u, y) _d” = / Xy du Xy
§ . o 0 :
Since : '
' . % if 0<y=x,
Rk =10 -
y - ' g

it follows that C,C* = C, +C%, and hence that
| (1-C)-Cp =

Conclusion: 1—C¥ is an isometry.
If we write 1| —Cf = U, then U*U UU* = C,Cf—-C¥C,. Since C*¥C, is
given by the kernel ’

1. . ’ 1

o ’ du' . 1.
. * — o
/ i il ) e = / 2 max ()

Q . . max(x,y)

1t follows th'at the kernel of Cl'C* C*C, is the constant functlon 1. Conclusion:
the co-rank of 1 —C is equal to 1.

Before completing the proof: of the theorem, we remark on the kernel techni-
- ques used in the proof so far. Since the kernels in question are neither in L2 (that
is, the-operators are not in the Hilbert—Schmidt class), nor symmetric (the two
textbook cases), it is not quite automatic ‘that if an operator is given by a kernel,
then its adjoint is given by the conjugate transpose kernel, and that the product
of two operators given by kernels is given by the product kernel. Since, however,
the kernels k in question (that is, &, and kf) have positive values, and have the
property that if f and g are in L2, then the function given on the unit square by
k(x,y) f(x) g(») is in L', no unboundedness or infinity pathology can occur; the
necessary changes in the order of integration -are lmmedlate consequences of
FuBiNrs theorem.
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To complete the proof of the theorem it is sufficient to show that 1 —C, has a
total set of proper vectors corresponding to proper values of modulus strictly less
. than 1. This is trivial modulo the Weierstrass approximation theorem. If f,(x) = x",
n=0,1,2, ..., then the set {fo,fl,fz, ...} is total in L2(0, 1). Since (C,f)(x) =

1/, x" .
= /y dy =TT n+1ﬂ,(x) it follows that (1. C.l)ﬁ = (1 T )f,,,
and. the proof is complete.

It may be worth while to remark that Theorem 4 implies that all the spectral
assertions of Theorem 2 ((3), (4), (5) and (6)) remain true, word for word, if in
their statement C, is replaced by C¥. The norm assertion (1) is also invariant under
this change; the only part of the theorem that changes is (2). Since 1=C¥ is an
isometry, |l(1—C*)f]| = |If|| always and [|(1—C,)f]l = ||f]l often. What can be
+ said, however, is that if [ f||=1, then|C,f||<2 and lCEf 1| <2. This follows either
by an examination of the cases of equality in the Schur test, or by .a direct argument
wvalid for isometries with no proper values.

Here is another useful comment about unilateral shlfts and hence about 1 — Ct.
The basis that a simple unilateral shift shifts is uniquely determined to within a
multiplicative constant. The reason is that the co-range is one-dimensional and e,
is in the co-range.-Since the projection on. the co-range of 1 —C¥ is C,C¥~C¥C,,
and since, as we have seen, this projection is given by the kernel that is identically 1,
it follows that the co-range of 1 —C¥ is the set of all constant functions. The most
natural choice for e, is the constant function 1. Once ¢, is chosen, the other terms of
the shifted basis are determined; they are the successive images of e, under iterations'
of 1 —-C¥.

' There is another approach to Theorem 4, more analytic than the one gwen
above; we proceed to sketch it If U = . 1—-CF and f(x) x* whenever Re o> —1%,

then U*f, = — —f,. A change of arameters is convenient: if /3— a+% and
a = 1 g p
-1
2

& -—f,, % whenever Re/}>0 then U*gﬁ—(p(ﬂ)gﬂ, where @(f) = /f’+l

" By means of these proper vectors, the operator U can be represented as a mul-
tiplication on a Hilbert space of analytic functlons on the right half plane, as follows

For fin L2(0, 1) deﬁnef by .

fB =(f, 80 = ff(t)z”*zm

the transform of U by the mapping f—»fls multxpllcatlon by ¢. Indeed,
(U By = (Uf. gp) = (f U*gp)'— @ (B)S(B).

Making the change of’variables. t = e~ (0 <u—<-wo); we obtain

) - [ rerye=rize=wt du = [ g@uye=+s du,
’ o . Y .
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where g is the element of L2(0, =) defined by g(u)=f(e~*)e~*/2. Thus the space
.of functions f is the space of Laplace transforms of functions in L2(0, =). By the"
Paley—Wiener theorem [6, Chapter VIII] this is precisely the space H? of the right
half plane, and therefore the .preceding paragraph exhibits U as multlphcatlon by
@ on that /2 space. Switching to the unit disc via the conformal mapping w = (),
“‘we obtain a representation of U as multiplication by the independent variable on
H? of the disc, and Theorem 4 follows.
‘ We conclude our discussion of the finite continuous.Cesaro operator by mentlon-_
ing a curious by-product of Theorem 4. One of our earlier proofs of that theorem
made use of the completeness ‘of the set of Laguerre functions in L2(O ). The
proof actually offered above is.independent of such considerations; since it turns
out that our earlier argument is reversible, Theorem 4 can be used to prove that the
Laguerre funct1ons span L2 (O =). Here is how it goes. If /¢ L2 (O 1), write

(Tf)(X) fle)ex

for 0 < x < o, and verify that 7 is-an isometry from L2 (0, - 1) onto L2 (0, ==). Transform
“the shift 1 — C¥ by T; that is, consider on L2 (0, =) the operator V = T(l — C*)T L
If fe L2 (0, oo), then Vf can be calculated expllcnly

) = () - [rerera.

If, as usual, the Laguerre polynomials are defined by

ne

(x7e =),

o |
L) = o ex P

and the Laguerre funclions’ by
Sw)=e 2L (), n=0,1,2,.

- then the f.’s form an orthonormal set in L2(0, =), A stralghtforward araument _
" based on the standard identity .

. Ln (X) : % (Ln (X)_ Ln +l1_ (X))

(see [8, Cha'pter‘Vl]) implies that Vf, =f,.,. Since Te, =/, it follows that Te, =/,
for n=0,1,2, ..., and the completeness of the f,’s follows from that of the e,’s.

- The infinite continuous Cesaro operator. -

We shall get at the facts about C. by reducing its study to that of C,. It is
convenient to begin by establishing a simple result about the relation between uni-
lateral shifts and bilateral shifts. An operator W on a Hilbert space K is a simple
bilateral shift if K has an orthonormal basis {...,e_;, e_,, ey, e;, €,, ...} such that
We=e,, for all n. 1t follows from this definition that a simple bilatéral shift is
a unitary operator. If H is the span of {ey, e, e,, ...}, then H is invariant under
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W and the restriction of W to H'is a unilateral shift. If R is the operator on K such -
that Re,=e_,_, for-all n, then R is a symmetry (a unitary involution). The symmetry
"R is related to the shlft W in the followmg three ways:

(1) Rey=W-re,, @) RH=H-  (3) RW=W-'R,

What makes these assertions important is that they serve to characterize simple
bilateral-shifts, in the fol]owmg sense. Suppose that K is a Hilbert space, W is a
unitary operator-on K, R is'a symmetry on K, H is a subspace of K invariant under
W, and e, is a vector in H. If the vectors W",, n=0, 1, 2, ..., form an orthonormal
basis for H, and if the condltlons (1), (2), and (3) are satlsﬁed then W is a simple
bilateral shift.

The proof is straightforward. We begin by wrltmg e, = = W', for all n-
(=0, +1, £2,. ..). If n and m are arbitrary integers, find a posmve mtegerj such
that both n+j and m -l-j are positive; it follows that ,

(8,,, em) = (W"eO’ W"’eo) = (W"+je07 Wm+j@0) = (en-f-j’ enl'l'j) = 5n+j,m+j = (511111;

and hence that the e,’s form an orthonormal set in K. By assumption {e, ¢;, e, ...}
spans H; it follows that {Re,, Re,, Re,, ...} spans. H*. Since Re,=RW'"e,=

=W-"Reg=W7"W-'es=e_,_,, it follows that {e_,,e_,,e_3,...} spans H™,
and hence that the ¢,’s form an orthonormal basis for K. Since the deﬁnition_ of the .
e,’s makes it obvious that W shifts them, the proof of the characterization of simple
bilateral shifts is complete. : .

Theorem 5. The operator | —C% is a.simple bilateral shift.

Proof. We apply the preceding characterization of simple bilateral shifts w1th
K=12(0, ), W=1~C¥k, and

(RI)(x) = —lf[l.]

whenever f¢€ K. The role of H is played by those elements of K that vanish on (1, =),
and the role of ¢, is played by the characteristic function of (0, 1). We observe that
H differs from L2(0, 1) in notatlon ‘only.

If feK, then

w1 =ra- [ Lra

for 0 <x <=, With this explicit representation of W, the verifications needed to
justify the application of the. characterization theorem for bilateral shifts become
a matter of routine integrations. They are not only routine, but they are almost
identical with the integrations indicated in our study of C,. (Note that if # is identi-
fied with £2(0, 1), then the restriction of W to H must be identified with 1 —C¥}.)
With these remarks we consider the proof of Theorem 5 complete,

It follows from Theorem 5 (just as the corresponding facts for C, followed
from Theorem 4) that ||| —C.| = I and . ||C.||=2; if || f]|=1, then ||C..f||<2 and
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|C% fll <2. Using in addition well known (and easily recaptured) facts about the.
spectrum of a bilateral shift, we obtain the following description of the spectrum
of C..: the point spectra of both C.,, and C are empty, and the -spectrum of C. is
the circle {/1 -2 = I} ‘ R
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