An embedding theorem for some countable groups

By L. G. KOVÁCS and B. H. NEUMANN in Canberra (Australia)

Every countable soluble group can be embedded in a soluble 2-generator group, the solubility length increasing by no more than 2 in the process: this was shown in [5]. We here extend this result to some of the transfinite generalizations of soluble groups. The method of [5] has to be modified to do this, firstly as in [4] and secondly as in Hall's paper [1].

We use the following notation and terminology. An ascending series of subgroups of a group G is a family $\left\{L_{\lambda}\right\}_{0 \leq \lambda \leq \sigma}$ of subgroups of G indexed by the set of ordinals less than or equal to the ordinal σ, and such that $L_{0}=\{1\}$ and, for $0<\lambda \leqq \sigma$

$$
\begin{equation*}
L_{\lambda}=\bigcup_{\mu<\lambda} L_{\mu+1} \tag{1}
\end{equation*}
$$

[This condition ensures that $L_{\mu} \leqq L_{\lambda}$ whenever $\mu \leqq \lambda$, and simultaneously that L_{λ} is the union of its predecessors when λ is a limit ordinal.] If each L_{λ} is normal in its successor $L_{\lambda_{+1}}$, or even in G, the series is called "normal" or "invariant", respectively. If for $0 \leqq \lambda \leqslant \sigma$

$$
\left[L_{\lambda+1}, L_{\lambda+1}\right] \leqq L_{\lambda}, \quad \text { or even } \quad\left[G, L_{\lambda+1}\right] \leqq L_{\lambda},
$$

where $[A, B]$ stands for the mutual commutator group of A and B, then the series is called "soluble" or "central", respectively. A soluble series is necessarily normal, and a central series invariant.

If G has a soluble series with $L_{\sigma}=G$, then G is defined to be an $S N^{*}$-group; if the soluble series can be chosen invariant, then G is an $S I^{*}$-group; if G has a central series with $L_{\sigma}=G$, then G is a $Z A$-group. The ordinal σ is called a "length" of G - we do not assume it chosen minimal, and if G has $S N^{*}$-length or $S I^{*}$ length or $Z A$-length σ, then it has also every greater length.

We shall prove the following theorem.
Theorem. Every countable SI*-group G of length σ can be embedded in a 2generator SI* -group of length $\sigma+2$.

The method of proof yields rather more than the theorem. To every countable group G, we contruct a 2 -generator group H which embeds it. The new feature of H is. that its second derived group is contained in a certain interdirect power N_{σ} of G. Let \mathbb{C} be a class of groups which is closed under the operations of taking subgroups and taking interdirect powers like N_{σ}. (The reader has to refer to the first paragraph of the proof: an interdirect power F is selected there, and N_{σ} is a restricted
direct power of F.) It follows from our construction that every countable group in \mathfrak{C} can be embedded in a 2-generator group whose second derived group is in © . Some examples of classes which satisfy the conditions on \mathbb{C} are those of $S N^{*}$-groups, $Z A$-groups, locally nilpotent groups, locally finite groups, periodic groups, etc. In particular, it follows that every countable $S N^{*}$-group of length σ is embeddable in a 2-generator $S N^{*}$-group of length $\sigma+2$.

We mention an easy consequence of the theorem itself:
Corollary. There exist SI*-groups that are not locally soluble.
This fact was pointed out by Hall in [2]; in the present context it follows by applying the theorem to a countable insoluble $S I^{*}$-group G, for instance to one of the characteristically simple groups of McLain [3].

Proof of the Theorem. In addition to the notation introduced above, we also use the definitions and notation of [5]. In the complete wreath product $P=G \mathrm{Wr} C$ of the given $S I^{*}$-group G and an infinite cyclic group C generated by an element c, we single out a subgroup that contains the restricted wreath product $G \mathrm{wr} C$, but is not much larger. In the base group of P, that is the cartesian power G^{c} consisting of all functions on C to G, we single out those functions f that are constant for all sufficiently large positive powers of c, and also for all sufficiently large negative powers of c, the constant in this latter case being 1 ; thus we consider those f to which there is an integer $p \geqq 0$, depending on f, such that

$$
f\left(c^{n}\right)=1 \text { when } n<-p, \quad f\left(c^{n}\right)=f\left(c^{n+1}\right) \text { when } n>p .
$$

These functions form a subgroup F of G^{c}, and F is normalized by C. We put $F C=P^{0}$.
The cartesian powers L_{λ}^{c} are normal subgroups of G^{c}, but they will not in general form an ascending series in G^{c}, as the analogue of (1) may fail for limit ordinals λ. However, if we put, for $0 \leqq \lambda \leqq \sigma$,

$$
M_{\lambda}=F \cap L_{\lambda}^{C},
$$

so that M_{λ} consists of those functions $f \in F$ that take values in L_{2}, then each M_{λ} is a normal subgroup of $M_{\sigma}=F$ and indeed of P^{0}, and in fact $\left\{M_{\lambda}\right\}_{0 \leqq \lambda \leqq \sigma}$ is an ascending soluble invariant series of P^{0}. We omit the easy verification. If we put $M_{a+1}=P^{0}$, then the thus augmented series shows that P^{0} is an $S I^{*}$-group of length $\sigma+1$.

Next we take an infinite cyclic group B generated by an element b and form the complete wreath product

$$
Q=P^{0} \mathrm{Wr} B .
$$

This contains in its base group $P^{0 B}$ the direct powers N_{2} of the M_{λ}, that is the functions on B to M_{λ} with finite support. These are easily seen to form an ascending soluble invariant series $\left\{N_{\lambda}\right\}_{0 \leq \lambda \leq \sigma+1}$ in Q.

We now use the assumption that G is countable, and generate it by a family $\left\{g_{i}\right\}_{i \in I}$ of elements indexed by the set I of positive integers. To these we define elements $k_{i} \in F$ by

$$
k_{i}\left(c^{n}\right)=1 \text { when } n<0, \quad k_{i}\left(c^{n}\right)=g_{i}^{-1} \text { when } n \geqq 0 .
$$

Put $g_{i 1}=\left[k_{i}, c\right]$; then

$$
g_{i 1}(1)=g_{i}, \quad g_{i}\left(c^{n}\right)=1 \text { when } n \neq 0
$$

Thus the family $\left\{g_{i 1}\right\}_{i \in I}$ generates the coordinate subgroup G_{1} of G^{c}; clearly $G_{1} \cong G$. Next we define an element $a \in P^{0 B}$ by

$$
\begin{gathered}
a(b)=c, a\left(b^{2}\right)=k_{i} \text { when } i \in I \\
a\left(b^{n}\right)=1 \text { when } n \text { is not a power of } 2
\end{gathered}
$$

Let H be the subgroup of Q generated by a and b, and let A be the normal closure of a in H. Then A is generated by the conjugates

$$
a^{b^{n}}=a_{n},
$$

say, of a, where n ranges over all integers.
We now show that the derived group A^{\prime} of A is contained in N_{σ}. First we remark that A^{\prime} is generated by all commutators $\left[a_{m}, a_{0}\right.$] and their conjugates under powers of b; and as b normalizes N_{σ}; it suffices to show that every $\left[a_{m}, a_{0}\right]$ lies in N_{σ}. Now $\left[a_{m}, a_{0}\right.$] is a function on B to P^{0}, and we compute its value at b^{n} :

$$
\left[a_{m}, a_{0}\right]\left(b^{n}\right)=\left[a_{m}\left(b^{n}\right), a_{0}\left(b^{n}\right)\right]=\left[a\left(b^{n-m}\right), a\left(b^{n}\right)\right]
$$

this is 1 unless $n-m$ and n are distinct powers of 2 , say $n-\dot{m}=2^{i}, n=2^{j}$, with i, j non-negative integers. In this case $m=2^{j}-2^{i}$, and to any one m there is at most one such pair i, j. Thus the support of $\left[a_{m}, a_{0}\right]$ consists of at most one element of B; it only remains to show that the one non-trivial value of $\left[a_{m}, a_{0}\right]$, if it has one at all, lies in $M_{\sigma}=F$. Now if $m=2^{j}-2^{i} \neq 0$, then

$$
\begin{aligned}
{\left[a_{m}, a_{0}\right]\left(b^{2 j}\right)=\left[a\left(b^{2 i}\right), a\left(b^{2 j}\right)\right] } & =g_{j 1}^{-1} \text { if } \quad i=0 \\
& =g_{i 1} \text { if } \quad \ddot{j}=0, \\
& =\left[k_{i}, k_{j}\right] \quad \text { if } \quad i \neq 0, j \neq 0
\end{aligned}
$$

These values all lie in F, and it follows that $A^{\prime} \leqq N_{\sigma}$ as claimed.
Incidentally the above argument also shows how G can be embedded in H; for if we put, for $i \in I$,

$$
h_{i}=\left[\dot{a}_{1-2^{i}}, a_{0}\right],
$$

then

$$
h_{i}(b)=g_{i 1}, h_{i}\left(b^{n}\right)=1 \text { when } n \neq 1
$$

hence the subgroup of H generated by $\left\{h_{i}\right\}_{i \in I}$ is isomorphic to G_{1} and thus to G.
Finally we put $K_{\lambda}=H \cap N_{\lambda}$ for $0 \leqq \lambda \leqq \sigma$. Then, as $\left\{N_{\lambda}\right\}_{0 \leqq \lambda \leqq \sigma}$ is an ascending soluble invariant series of Q, also $\left\{K_{\lambda}\right\}_{0 \leq \lambda \leq \sigma}$ is an ascending soluble invariant series of H. Adding $K_{\sigma+1}=A$ and $K_{\sigma+2}=H$ to this series, we obtain an ascending soluble invariant series that terminates with H itself; for as we have just seen, $A^{\prime} \leqq N_{\sigma}$ and thus also $K_{\sigma+1}^{\prime} \leqq K_{\sigma}$; and obviously also $H^{\prime} \leqq A$. It follows that H is an $S I^{*}$-group of length $\sigma+2$, and the Theorem is proved.

142 L. G. Kovács and B. H. Neumann: An embedding theorem for some countable groups

References.

[1] P. Hall, The Frattini subgroups of finitely generated groups, Proc. London Math. Soc., (3) 11 (1961), 327-352.
[2] P. Hall, On non-strictly simple groups, Proc. Cambridge Philos. Soc., 59 (1963), 531-553.
[3] D. H. McLain, A characteristically simple group, Proc. Cambridge Philos. Soc., 50 (1954), 641-642.
[4] B. H. Neumann, Embedding theorems for ordered groups, 'J. London Math. Soc., 35 (1960), 503-512.
[5] B. H. Neumann and Hanna Neumann, Embedding theorems for groups, J. London Math. Soc., 34 (1959), 465-479.

THE AUSTRALIAN NATIONAL UNIVERSITY
(Received April 10, 1964).

