An embedding theorem for some countable groups

By L. G. KOVÁCS and B. H. NEUMANN in Canberra (Australia)

Every countable soluble group can be embedded in a soluble 2-generator group, the solubility length increasing by no more than 2 in the process: this was shown in [5]. We here extend this result to some of the transfinite generalizations of soluble groups. The method of [5] has to be modified to do this, firstly as in [4] and secondly as in HALL's paper [1].

We use the following notation and terminology. An ascending series of subgroups of a group G is a family $\{L_{\lambda}\}_{0 \leq \lambda \leq \sigma}$ of subgroups of G indexed by the set of ordinals less than or equal to the ordinal σ , and such that $L_0 = \{1\}$ and, for $0 < \lambda \leq \sigma$

(1)
$$L_{\lambda} = \bigcup_{\mu < \lambda} L_{\mu+1}.$$

[This condition ensures that $L_{\mu} \leq L_{\lambda}$ whenever $\mu \leq \lambda$, and simultaneously that L_{λ} is the union of its predecessors when λ is a limit ordinal.] If each L_{λ} is normal in its successor $L_{\lambda+1}$, or even in G, the series is called "normal" or "invariant", respectively. If for $0 \leq \lambda < \sigma$

 $[L_{\lambda+1}, L_{\lambda+1}] \leq L_{\lambda}$, or even $[G, L_{\lambda+1}] \leq L_{\lambda}$,

where [A, B] stands for the mutual commutator group of A and B, then the series is called "soluble" or "central", respectively. A soluble series is necessarily normal, and a central series invariant.

If G has a soluble series with $L_{\sigma} = G$, then G is defined to be an SN^* -group; if the soluble series can be chosen invariant, then G is an SI^* -group; if G has a central series with $L_{\sigma} = G$, then G is a ZA-group. The ordinal σ is called a "length" of G — we do not assume it chosen minimal, and if G has SN^* -length or SI^* length or ZA-length σ , then it has also every greater length.

We shall prove the following theorem.

Theorem. Every countable SI*-group G of length σ can be embedded in a 2-generator SI*-group of length $\sigma + 2$.

The method of proof yields rather more than the theorem. To every countable group G, we contruct a 2-generator group H which embeds it. The new feature of H is that its second derived group is contained in a certain interdirect power N_{σ} of G. Let \mathfrak{G} be a class of groups which is closed under the operations of taking subgroups and taking interdirect powers like N_{σ} . (The reader has to refer to the first paragraph of the proof: an interdirect power F is selected there, and N_{σ} is a restricted

L. G. Kovács and B. H. Neumann

direct power of F.) It follows from our construction that every countable group in \mathfrak{C} can be embedded in a 2-generator group whose second derived group is in \mathfrak{C} . Some examples of classes which satisfy the conditions on \mathfrak{C} are those of SN^* -groups, ZA-groups, locally nilpotent groups, locally finite groups, periodic groups, etc. In particular, it follows that every countable SN^* -group of length σ is embeddable in a 2-generator SN^* -group of length $\sigma + 2$.

We mention an easy consequence of the theorem itself:

Corollary. There exist SI*-groups that are not locally soluble.

This fact was pointed out by HALL in [2]; in the present context it follows by applying the theorem to a countable insoluble SI^* -group G, for instance to one of the characteristically simple groups of MCLAIN [3].

Proof of the Theorem. In addition to the notation introduced above, we also use the definitions and notation of [5]. In the complete wreath product P = G Wr C of the given SI^* -group G and an infinite cyclic group C generated by an element c, we single out a subgroup that contains the restricted wreath product G wr C, but is not much larger. In the base group of P, that is the cartesian power G^C consisting of all functions on C to G, we single out those functions f that are constant for all sufficiently large positive powers of c, and also for all sufficiently large negative powers of c, the constant in this latter case being 1; thus we consider those f to which there is an integer $p \ge 0$, depending on f, such that

$$f(c^n) = 1$$
 when $n < -p$, $f(c^n) = f(c^{n+1})$ when $n > p$.

These functions form a subgroup F of G^c , and F is normalized by C. We put $FC = P^o$.

The cartesian powers L_{λ}^{c} are normal subgroups of G^{c} , but they will not in general form an ascending series in G^{c} , as the analogue of (1) may fail for limit ordinals λ . However, if we put, for $0 \le \lambda \le \sigma$,

$$M_{\lambda} = F \cap L_{\lambda}^{c},$$

so that M_{λ} consists of those functions $f \in F$ that take values in L_{λ} , then each M_{λ} is a normal subgroup of $M_{\sigma} = F$ and indeed of P^0 , and in fact $\{M_{\lambda}\}_{0 \leq \lambda \leq \sigma}$ is an ascending soluble invariant series of P^0 . We omit the easy verification. If we put $M_{\sigma+1} = P^0$, then the thus augmented series shows that P^0 is an SI^* -group of length $\sigma + 1$.

Next we take an infinite cyclic group B generated by an element b and form the complete wreath product

$$Q = P^0$$
 Wr B.

This contains in its base group P^{0B} the direct powers N_{λ} of the M_{λ} , that is the functions on B to M_{λ} with finite support. These are easily seen to form an ascending soluble invariant series $\{N_{\lambda}\}_{0 \le \lambda \le \sigma+1}$ in Q.

We now use the assumption that G is countable, and generate it by a family $\{g_i\}_{i \in I}$ of elements indexed by the set I of positive integers. To these we define elements $k_i \in F$ by

$$k_i(c^n) = 1$$
 when $n < 0$, $k_i(c^n) = g_i^{-1}$ when $n \ge 0$.

An embedding theorem for some countable groups

Put $g_{i1} = [k_i, c]$; then

$$g_{i1}(1) = g_i, \quad g_i(c^n) = 1 \text{ when } n \neq 0.$$

Thus the family $\{g_{i1}\}_{i \in I}$ generates the coordinate subgroup G_1 of G^c ; clearly $G_1 \cong G$. Next we define an element $a \in P^{0B}$ by

$$a(b) = c$$
, $a(b^{2^i}) = k_i$ when $i \in I$,

 $a(b^n) = 1$ when n is not a power of 2.

Let H be the subgroup of Q generated by a and b, and let A be the normal closure of a in H. Then A is generated by the conjugates

say, of a, where n ranges over all integers.

We now show that the derived group A' of A is contained in N_{σ} . First we remark that A' is generated by all commutators $[a_m, a_0]$ and their conjugates under powers of b; and as b normalizes N_{σ} , it suffices to show that every $[a_m, a_0]$ lies in N_{σ} . Now $[a_m, a_0]$ is a function on B to P^0 , and we compute its value at b'':

$$[a_m, a_0](b^n) = [a_m(b^n), a_0(b^n)] = [a(b^{n-m}), a(b^n)];$$

this is 1 unless n-m and n are distinct powers of 2, say $n-m = 2^i$, $n=2^j$, with i, j non-negative integers. In this case $m = 2^j - 2^i$, and to any one m there is at most one such pair i, j. Thus the support of $[a_m, a_0]$ consists of at most one element of B; it only remains to show that the one non-trivial value of $[a_m, a_0]$, if it has one at all, lies in $M_{\sigma} = F$. Now if $m = 2^j - 2^i \neq 0$, then

$$[a_m, a_0](b^{2^j}) = [a(b^{2^j}), a(b^{2^j})] = g_{j1}^{-1} \text{ if } i = 0,$$

= g_{i1} if $j = 0,$
= $[k_i, k_i]$ if $i \neq 0, j \neq 0.$

These values all lie in F, and it follows that $A' \leq N_{\sigma}$ as claimed.

Incidentally the above argument also shows how G can be embedded in H; for if we put, for $i \in I$,

$$h_i = [a_{1-2^i}, a_0],$$

then

$$h_i(b) = g_{i1}, h_i(b^n) = 1$$
 when $n \neq 1$;

hence the subgroup of H generated by $\{h_i\}_{i \in I}$ is isomorphic to G_1 and thus to G. Finally we put $K_{\lambda} = H \cap N_{\lambda}$ for $0 \leq \lambda \leq \sigma$. Then, as $\{N_{\lambda}\}_{0 \leq \lambda \leq \sigma}$ is an ascending soluble invariant series of Q, also $\{K_{\lambda}\}_{0 \leq \lambda \leq \sigma}$ is an ascending soluble invariant series of H. Adding $K_{\sigma+1} = A$ and $K_{\sigma+2} = H$ to this series, we obtain an ascending soluble invariant series that terminates with H itself; for as we have just seen, $A' \leq N_{\sigma}$ and thus also $K'_{\sigma+1} \leq K_{\sigma}$; and obviously also $H' \leq A$. It follows that H is an SI^* -group of length $\sigma + 2$, and the Theorem is proved. 142 L. G. Kovács and B. H. Neumann: An embedding theorem for some countable groups

References

- [1] P. HALL, The Frattini subgroups of finitely generated groups, Proc. London Math. Soc., (3) 11 (1961), 327-352.
- [2] P. HALL, On non-strictly simple groups, Proc. Cambridge Philos. Soc., 59 (1963), 531-553.

[3] D. H. McLAIN, A characteristically simple group, Proc. Cambridge Philos. Soc., 50 (1954), 641-642.

- [4] B. H. NEUMANN, Embedding theorems for ordered groups, J. London Math. Soc., 35 (1960), 503-512.
- [5] B. H. NEUMANN and HANNA NEUMANN, Embedding theorems for groups, J. London Math. Soc., 34 (1959), 465-479.

THE AUSTRALIAN NATIONAL UNIVERSITY

(Received April 10, 1964)