On products of normal subgroups

By GILBERT BAUMSLAG, L. G. KOVÁCS and B. H. NEUMANN in Canberra (Australia)*)

The purpose of this note is to demonstrate that the product of two "good" normal subgroups of a group need not be "good": we do this for the cases when "good" is interpreted, in turn, as locally soluble, locally SI^* , \overline{SI} , locally SN^* , locally residually nilpotent, and residually nilpotent. The first four interpretations answer questions recorded in section 2.4 of PLOTKIN's survey [3]¹); the fifth answers question 13. 1.3 of [3]; and the last contradicts an assertion of SESEKIN ([4], part of Corollary 1 to Lemma 8) quoted in [3] (in the paragraph immediately preceding 13. 1.3). In fact, we construct two examples which show even more:

Theorem 1. There exists a finitely generated group which is the product of two locally soluble normal subgroups but is neither an SI-group nor a radical group (in the sense of PLOTKIN [3]; note that, according to § 15 of [3], it follows that the group is not an SN^* -group).

Theorem 2. There exists a finitely generated (torsion-free, metabelian) group which is the product of two residually nilpotent normal subgroups but is not residually nilpotent.

The proofs depend on the following:

Lemma. To each group H which is a split extension of a group G by an abelian group A, it is possible to construct a group H^* which contains a subgroup isomorphic to H and is the product of two normal subgroups isomorphic to the restricted (standard) wreath product G wr A. Moreover, if H is finitely generated, then so is the corresponding H^* .

A similar construction has been used independently by HALL (unpublished) for dealing with some of PLOTKIN's questions which are answered by Theorem 1. A result similar to Theorem 2 can also be deduced from a theorem of HALL and HARTLEY (to appear) according to which every group is embeddable in a suitable product of two normal free subgroups.

Proof of the Lemma. Let H be a split extension of a group G by an abelian group A; it can be assumed that G is a normal subgroup of $H, A \cap H = 1$, and there

*) The first author acknowledges support from the National Science Foundation of the U.S.A.

¹) We note that the remaining question of this type in 2. 4 of [3], namely the question relating to the class \overline{SN} , has a positive answer: it is straightforward to see that even all extensions of \overline{SN} -groups by \overline{SN} -groups are \overline{SN} -groups.

10 A

G. Baumslag, L. G. Kovács and B. H. Neumann

is a monomorphism $\beta: A \to H$ for which $G \cap A\beta = 1$ and $G(A\beta) = H$. Consider the unrestricted (standard) wreath product P of H and A, and write its base group H^A as the group of functions from A to H with valuewise multiplication. Call K that subgroup of H^A which consists of those functions whose values are all in G and are in fact equal to 1 at all but finitely many elements of A. This K is normal in P, and $KA \cong G$ wr A. For each element a in A, let $a\delta$ be the constant function on A with value $a\beta$; then $\delta: A \to H^A$ is a monomorphism; moreover, $A\delta$ and A generate an abelian subgroup in P. We need next the element f of H^A defined by

 $f(a) = a\beta$ for every a in A.

Straightforward calculation shows that

(*) $f^{-1}af = a\delta \cdot a$ for every a in A,

so that $A^f \leq (A\delta)A$, and therefore A and A^f commute elementwise. Consequently, KA and KA^f normalize each other, and so their product H^* is a subgroup of P. As $KA^f = (KA)^f$, we have that H^* is the product of two normal subgroups isomorphic to G wr A. To each element g of G, let the element $g\gamma$ of H^A be defined by

$$(g\gamma)(1) = g, (g\gamma)(a) = 1$$
 whenever $1 \neq a \in A$.

Then $\gamma: G \to H^A$ is a monomorphism; moreover, $G\gamma \leq K$. Each element of H is uniquely a product $g(a\beta)$ with $g \in G$, $a \in A$; the mapping $\alpha: g(a\beta) \to (g\gamma)(a\delta)$ is therefore well defined; in fact, it is a monomorphism of H into H^A . As $G\gamma \leq K$, and as (*) shows that $A\delta \leq AA^f$, it follows that $H\alpha \leq H^*$: so H has a subgroup isomorphic to H. Finally, suppose that H is finitely generated, and note that in this case so is A. It is easily seen that $G\gamma$ and A generate KA; hence H^* is generated by G_{γ} , A, and A^f . By (*), A and A^f generate the same subgroup as A and $A\delta$; hence H^* is generated by $G\gamma$, $A\delta$, and A. The subgroup generated by $G\gamma$ and $A\delta$ is precisely $H\alpha$. Thus we conclude that H^* is generated by the finitely generated subgroups $H\alpha$ and A_i and so H^* itself is finitely generated.

Proof of Theorem 1. We use the terminology and results of HALL [1]. Let G be the wreath power Wr C^Z of an infinite cyclic group C corresponding to the naturally ordered set Z of rational integers, and let A be the group of all orderpreserving permutations of Z. Then A is again an infinite cyclic group, and there is a natural split extension H of G by A. Clearly, this H is finitely generated. According to Theorem D of HALL [1], G' is a minimal normal subgroup of H. It is easy to see that G' is not locally nilpotent; consequently, no group containing H can be an SI-group or a radical group. On the other hand, G is locally soluble and therefore so is G wr A. The corresponding group H^* of the Lemma provides the example required for the theorem.

Proof of Theorem 2. Let G be the group defined on the generators $g_1, g_2, ...$ by the relations $g_i = g_{i+1}^2$, i = 1, 2, ...; then G is an abelian group of rank 1. Let A be the group of automorphisms of G generated by the automorphism $\alpha: g \rightarrow g^2$, and let H be the natural split extension of G by A, with a an element from that coset of G in H which corresponds to α . Then g_1 and a generate H; moreover, the relation

[g, a] = g for every g in G

146

On products of normal subgroups

shows that G lies in every term of the lower central series of H: consequently, H is not residually nilpotent, and so no group containing H can be residually nilpotent. On the other hand, according to Lemma 14 of HALL [2], G wr A is residually nilpotent. Thus the corresponding group H^* of the Lemma provides the required example.

References

[1] P. HALL, Wreath powers and characteristically simple groups, *Proc. Cambridge Philos. Soc.*, 58 (1962), 170–184.

[2] P. HALL, On non-strictly simple groups, Proc. Cambridge Philos. Soc., 59 (1963), 531-553.
[3] B. I. PLOTKIN, Generalized soluble and generalized nilpotent groups, Uspehi Mat. Nauk (N. S.), 13 (1958), 89-172 [Russian]; Amer. Math. Soc. Translations, (2) 17 (1961), 29-117.
[4] N. F. SESEKIN, On locally nilpotent torsion-free groups, Mat. Sbornik (N. S.), 32 (74) (1953), 407-442 [Russian].

THE AUSTRALIAN NATIONAL UNIVERSITY

(Received August 12, 1964)