Asymptotic values of entire functions of finite order with density conditions

By T. KŐVÁRI in London (England)

1. Introduction

Let

$$f(z) = \sum_{1}^{\infty} c_n z^{\lambda_n}$$

be an entire function of finite order ρ , and let the sequence $\{\lambda_n\}$ satisfy the density condition:

(1.1)
$$\lambda_{n+1} - \lambda_n \ge p = \frac{1}{4}.$$

Pólya (1) has proved (under a somewhat less restrictive density-condition)¹) the following result:

Theorem A. [1, Satz VII, p. 625] If f(z) is of mean-type, and |f(z)| is bounded on the positive real axis, then

$$(1.2) \qquad \qquad \Delta \cdot \varrho \ge \frac{1}{2}.$$

Actually the assumption that f(z) is of mean-type can be omitted [3, Theorem 1]. It seems very likely that if |f(z)| is bounded on any curve joining 0 and ∞ ,

conclusion (1.2) still holds. However, we can only prove the following weaker result:

Theorem 1. If Γ is a continuous curve without self-intersections joining 0 and ∞ , and |f(z)| is bounded on Γ , then

(1.3)
$$\Delta \cdot \varrho \ge \frac{1}{\pi^2}.$$

Corollary. If
$$\Delta \cdot \varrho < \frac{1}{\pi^2}$$
, $f(z)$ has no finite asymptotic value.

¹) In a recent paper [2], A. EDREI has replaced the Pólya density condition by a more precise one.

16 A

T. Kővári

2. Statement and proof of Lemmas

We use the notations:

$$M(r) = \max_{0 \le \theta \le 2\pi} |f(re^{i\theta})|; \quad M(r, \alpha, \beta) = \max_{\alpha \le \theta \le \beta} |f(re^{i\theta})|; \quad \mu(r) = \max_{n} |c_n| r^n.$$

Lemma 1. If the condition (1.1) is satisfied, and if

$$(2.1) \qquad \qquad \beta-\alpha > 2\pi\Delta,$$

then we have for entire functions of finite order, that

(2.2)
$$\log M(r, \alpha, \beta) \sim \log M(r).$$

Proof. According to the Wiener-Ingham inequality [4],

$$\int_{0}^{2\pi} |f(re^{i\vartheta})|^2 \, d\vartheta < K(\alpha, \beta, \Delta) \cdot \int_{\alpha}^{\beta} |f(re^{i\vartheta})|^2 \, d\vartheta.$$

Thus

$$\mu^{2}(r) \leq \int_{0}^{2\pi} |f(re^{i\vartheta})|^{2} d\vartheta < K \int_{\alpha}^{\beta} |f(re^{i\vartheta})|^{2} d\vartheta \leq K(\beta - \alpha) M^{2}(r, \alpha, \beta),$$

(2.3) $\mu(r) \leq K' M^2(r, \alpha, \beta), \quad \log \mu(r) \leq C + \log M(r, \alpha, \beta).$

On the other hand it is well known [5, p. 34] that for entire functions of finite order:

$$\log \mu(r) \sim \log M(r).$$

(2.3), (2.4), and the trivial inequality

$$M(r, \alpha, \beta) \leq M(r)$$

immediately give (2.2).

Lemma 2. Let D_0 be the unit disc slit along the positive real axis, and let $\omega_0(z)$ be the harmonic measure of $0 \le x \le 1$ in D_0 . Then

(2.5)
$$\cot\left\{\frac{\pi}{2}\omega_0(re^{i\theta})\right\} = \frac{2\sqrt{r}}{1-r}\sin\frac{\theta}{2}.$$

Lemma 3. Suppose that $m(R) = \max_{0 \le x \le R} |f(x)|$ and $\omega_0(z)$ is defined as in the previous lemma. Then we have:

(2.6)
$$\log |f(re^{i\theta})| \leq \omega_0 \left(\frac{r}{R} e^{i\theta}\right) \log m(R) + \left\{1 - \omega_0 \left(\frac{r}{R} e^{i\theta}\right)\right\} \log M(R).$$

234

Lemma 4. If f(z) is of lower order ϱ and $\varrho' > \varrho$, then there is a sequence: $R_n \to \infty$ such that ²)

(2.7)
$$R_n \left\{ \frac{d}{dr} \log M(r) \right\}_{r=R_n} \leq \varrho' \log M(R_n).$$

Proof. Suppose that for $r \ge r'$

$$r\left\{\frac{d}{dr}\log M(r)\right\} > \varrho'\log M(r)$$

Then

$$\log \log M(r) - \log \log M(r') = \int_{x'}^{x} \frac{d}{dt} \log M(t) \\ \log M(t) dt > \varrho' \int_{x'}^{\pi} \frac{dt}{t} = \varrho' (\log r - \log r'),$$

$$\lim_{r\to\infty}\frac{\log\log M(r)}{\log r}\geq \varrho'>\varrho\,,$$

which is impossible.

3. Proof of Theorem 1

Suppose that $\{R_n\}$ is the sequence defined in Lemma 4 and that $R_n e^{i\alpha}$ is the first intersection of Γ and the circle $|z_n| = R_n$. Without loss of generality we can assume that $\alpha = 0$.

We have assumed that f(z) is bounded on Γ , without loss of generality we can assume that $|f(z)| \leq 1$ on Γ .

If $\overline{f}(z) = \overline{f(\overline{z})}$ we find that $|f(z)\overline{f}(z)| \leq M(R)$ on Γ and also on $\overline{\Gamma}$ which is the reflection of Γ into the real axis. The earlier intersections of Γ with the real axis partition $0 \leq x \leq R_n$ into a finite number of segments. (If there is no intersection, there is only one segment.) Each segment is the bisector of a domain bounded by an arc of Γ and an arc of $\overline{\Gamma}$. Hence, by the maximum principle we have:

(3.1)
$$|f(x)|^{2} = |f(x)\overline{f}(x)| \leq M(R),$$
$$m(R) = \max_{\substack{0 \leq x \leq R}} |f(x)| \leq \sqrt{M(R)}.$$

Since $r \frac{d}{dr} \log M(r) = \frac{d}{d\log r} \log M(r)$ is an increasing function of r, the application of Lemma 4 gives for $0 < h \le 1$:

$$\frac{\log M(R_n) - \log M(R_n e^{-h})}{h} \leq R_n \left\{ \frac{d}{dr} \log M(r) \right\}_{x=R_n} \leq \varrho' \log M(R_n).$$

 2) The left-hand side of (2.7) may have isolated discontinuities but this does not affect the argument.

T. Kővári

Hence, writing $r_n = R_n e^{-h}$, we have.

(3.2)
$$\frac{\log M(r_n)}{\log M(R_n)} \ge 1 - \varrho' h.$$

From (2.6), (3.1), and (3.2) we obtain

$$\log |f(r_n e^{i\theta})| \leq \left\{ \frac{1}{2} \omega_0 \left(\frac{r_n}{R_n} e^{i\theta} \right) + \left(1 - \omega_0 \left(\frac{r_n}{R_n} e^{i\theta} \right) \right) \right\} \log M(R_n) =$$
$$= \left\{ 1 - \frac{1}{2} \omega_0 (e^{-h} e^{i\theta}) \right\} \log M(R_n) \leq \left\{ 1 - \frac{1}{2} \omega_0 (e^{-h} e^{i\theta}) \right\} (1 - \varrho' h)^{-1} \log M(r_n).$$

In view of (2.5), $\omega_0(e^{-h}e^{i\vartheta})$ is a decreasing function of ϑ for $0 \leq \vartheta \leq \pi$, and hence for $0 < \Delta' < 1$:

(3.3)
$$\log M(r_n, -\pi\Delta, +\pi\Delta') \leq \left\{ 1 - \frac{1}{2} \omega_0(e^{-h}e^{i\pi\Delta'}) \right\} (1 - \varrho'h)^{-1} \log M(r_n).$$

On the other hand, if $\varrho'' > \varrho'$ and $\Delta' > \Delta$, we obtain from Lemma 1, that for $n \ge n_0$

(3.4)
$$\log M(r_n) \leq \frac{1-\varrho' h}{1-\varrho'' h} \log M(r_n, -\pi\Delta', +\pi\Delta').$$

From (3.3) and (3.4) we conclude that

(3.5)
$$\log M(r_n) \leq \frac{1 - \frac{1}{2} \omega_0(e^{-h} e^{i\pi \Delta'})}{1 - \varrho'' h} \log M(r_n), \\ \omega_0(e^{-h} e^{i\pi \Delta'}) \leq 2\varrho'' h.$$

Substituting the value of ω_0 from (2.5) we obtain:

$$\cot\left(\pi\varrho''h\right) \leq \frac{2 \cdot e^{-h/2}}{1 - e^{-h}} \sin\frac{\pi}{2} \Delta',$$

(3.6)

$$\sin\frac{\pi}{2}\,\Delta' \ge \frac{1}{2}\,(e^{h/2} - e^{-h/2})\cot\left(\pi\varrho''\,h\right) \ge \frac{h}{2}\cot\pi\varrho''\,h.$$

Since:

$$\lim_{h \to 0} \frac{h}{2} \cot \pi \varrho'' h = \frac{1}{2\pi \varrho''}$$

we have that for $\varrho'' > \varrho''$ and $h < \varepsilon_0(\varrho'', \varrho''')$:

$$\frac{\pi}{2} \, \Delta' \ge \sin \frac{\pi}{2} \, \Delta' \ge \frac{1}{2\pi \varrho'''}, \quad \varrho''' \Delta' \ge \frac{1}{\pi^2}.$$

Asymptotic values of entire functions

This is valid for every $\varrho'' > \varrho$, $\Delta' > \Delta$, hence:

$$\varrho \cdot \varDelta \geq \frac{1}{\pi^2}$$

which proves (1.3).

References

[1] G. Pólya, Über Lücken und Singularitäten von Potenzreihen, Math. Zeitschr., 29 (1929), 549-640.

[2] A. EDREI, Gap and density theorems for entire functions, Scripta Math., 28 (1957), 1-25.

- [3] T. KŐVÁRI, On the growth of entire functions of finite order with density conditions. (To be published.)
- [4] A. E. INGHAM, Some trigonometrical inequalities with applications to the theory of series, Math. Zeitschr., 73 (1936), 367-379.

[5] G. VALIRON, Lectures on the general theory of integral functions (Toulouse, 1923).

(Received December 20, 1964)