Asymptotic values of entire functions of finite order with density conditions

By T. KÕVÁRI in London (Englạd)

1. Introduction

Let

$$
f(z)=\sum_{1}^{\infty} c_{n} z^{\lambda_{n}}
$$

be an entire function of finite order ϱ, and let the sequence $\left\{\lambda_{n}\right\}$ satisfy the density condition:

$$
\begin{equation*}
\lambda_{n+1}-\lambda_{n} \geqq p=\frac{1}{\Delta} \tag{1.1}
\end{equation*}
$$

Pólya (1) has proved (under a somewhat less restrictive density-condition) ${ }^{1}$) the following result:

Theorem A. [1, Satz VII, p. 625] If $f(z)$ is of mean-type, and $|f(z)|$ is bounded on the positive real axis, then

$$
\begin{equation*}
\Delta \cdot \varrho \geqq \frac{1}{2} . \tag{1.2}
\end{equation*}
$$

Actually the assumption that $f(z)$ is of mean-type can be omitted [3, Theorem 1].
It seems very likely that if $|f(z)|$ is bounded on any curve joining 0 and ∞, conclusion (1.2) still holds. However, we can only prove the following weaker result:

Theorem 1. If Γ is a continuous curve without self-intersections joining 0 and ∞, and $|f(z)|$ is bounded on Γ, then

$$
\begin{equation*}
\Delta \cdot \varrho \geqq \frac{1}{\pi^{2}} \tag{1.3}
\end{equation*}
$$

Corollary. If $\Delta \cdot \varrho<\frac{1}{\pi^{2}}, f(z)$ has no finite asymptotic value.

[^0]
2. Statement and proof of Lemmas

We use the notations:
$M(r)=\max _{0 \leqq \theta \leqq 2 \pi}\left|f\left(r e^{i \theta}\right)\right| ; \quad M(r, \alpha, \beta)=\max _{\alpha \leqq 0 \leqq \beta}\left|f\left(r e^{i \theta}\right)\right| ; \quad \mu(r)=\max _{n}\left|c_{n}\right| r^{n}$.
Lemma 1. If the condition (1.1) is satisfied, and if

$$
\begin{equation*}
\beta-\alpha>2 \pi \Delta \tag{2.1}
\end{equation*}
$$

then we have for entire functions of finite order, that

$$
\begin{equation*}
\log M(r, \alpha, \beta) \sim \log M(r) \tag{2.2}
\end{equation*}
$$

Proof. According to the Wiener--Ingham inequality [4],

$$
\int_{0}^{2 \pi}\left|f\left(r e^{i \vartheta}\right)\right|^{2} d \vartheta<K(\alpha, \beta, \Delta) \cdot \int_{\alpha}^{\beta}\left|f\left(r e^{i \vartheta}\right)\right|^{2} d \vartheta .
$$

Thus

$$
\mu^{2}(r) \leqq \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{2} d \vartheta<K \int_{\alpha}^{\beta}\left|f\left(r e^{i \theta}\right)\right|^{2} d \vartheta \leqq K(\beta-\alpha) M^{2}(r, \alpha, \beta)
$$

$$
\begin{equation*}
\mu(r) \leqq K^{\prime} M^{2}(r, \alpha, \beta), \quad \log \mu(r) \leqq C+\log M(r, \alpha, \beta) \tag{2.3}
\end{equation*}
$$

On the other hand it is well known [5, p. 34] that for entire functions of finite order:

$$
\begin{equation*}
\log \mu(r) \sim \log M(r) \tag{2.4}
\end{equation*}
$$

(2.3), (2.4), and the trivial inequality

$$
M(r, \alpha, \beta) \leqq M(r)
$$

immediately give (2.2).
Lemma 2. Let D_{0} be the unit disc.slit along the positive real axis, and let $\omega_{0}(z)$ be the harmonic measure of $0 \leqq x \leqq 1$ in D_{0}. Then

$$
\begin{equation*}
\cot \left\{\frac{\pi}{2} \omega_{0}\left(r e^{i \vartheta}\right)\right\}=\frac{2 \sqrt{r}}{1-r} \sin \frac{\vartheta}{2} \tag{2.5}
\end{equation*}
$$

Lemma 3. Suppose that $m(R)=\underset{0 \leqq x \leqq R}{\max }|f(x)|$ and $\omega_{0}(z)$ is defined as in the previous lemma. Then we have:

$$
\begin{equation*}
\log \left|f\left(r e^{i \theta}\right)\right| \leqq \omega_{0}\left(\frac{r}{R} e^{i \vartheta}\right) \log m(R)+\left\{1-\omega_{0}\left(\frac{r}{R} e^{i \theta}\right)\right\} \log M(R) \tag{2.6}
\end{equation*}
$$

Lemma 4. If $f(z)$ is of lower order ϱ and $\varrho^{\prime}>\varrho$, then there is a sequence: $R_{n} \rightarrow \infty$ such that ${ }^{2}$)

$$
\begin{equation*}
R_{n}\left\{\frac{d}{d r} \log M(r)\right\}_{r=R_{n}} \leqq \varrho^{\prime} \log M\left(R_{n}\right) . \tag{2,7}
\end{equation*}
$$

Proof. Suppose that for $r \geqq r^{\prime}$

$$
r\left\{\frac{d}{d r} \log M(r)\right\}>\varrho^{\prime} \log M(r)
$$

Then

$$
\begin{gathered}
\log \log M(r)-\log \log M\left(r^{\prime}\right)=\int_{x^{\prime}}^{x} \frac{\frac{d}{d t} \log M(t)}{\log M(t)} d t>\varrho^{\prime} \int_{x^{\prime}}^{\pi} \frac{d t}{t}=\varrho^{\prime}\left(\log r-\log r^{\prime}\right), \\
\underline{\lim } \\
r \rightarrow \infty \\
\frac{\log \log M(r)}{\log r} \geqq \varrho^{\prime}>\varrho
\end{gathered}
$$

which is impossible.

3. Proof of Theorem 1

Suppose that $\left\{R_{n}\right\}$ is the sequence defined in Lemma 4 and that $R_{n} e^{i \alpha}$ is the first intersection of Γ and the circle $\left|z_{n}\right|=R_{n}$. Without loss of generality we can assume that $\alpha=0$.

We have assumed that $f(z)$ is bounded on Γ, without loss of generality we can assume that $|f(z)| \leqq 1$ on Γ.

If $\bar{f}(z)=\overline{f(\bar{z})}$ we find that $|f(z) \vec{f}(z)| \leqq M(R)$ on Γ and also on $\bar{\Gamma}$ which is the reflection of Γ into the real axis. The earlier intersections of Γ with the real axis partition $0 \leqq x \leqq R_{n}$ into a finite number of segments. (If there is no intersection, there is only one segment.) Each segment is the bisector of a domain bounded by an arc of Γ and an arc of $\bar{\Gamma}$. Hence, by the maximum principle we have:

$$
\begin{gather*}
|f(x)|^{2}=|f(x) f(x)| \leqq M(R), \\
m(R)=\max _{0 \leqq x \leqq R}|f(x)| \leqq \sqrt{M(R)} \tag{3.1}
\end{gather*}
$$

Since $r \frac{d}{d r} \log M(r)=\frac{d}{d \log r} \log M(r)$ is an increasing function of r, the application of Lemma 4 gives for $0<h \leqq 1$:

$$
\underline{\log M\left(R_{n}\right)-} \frac{\log M\left(R_{n} e^{-h}\right)}{h} \leqq R_{n}\left\{\frac{d}{d r} \log M(r)\right\}_{x=R_{n}} \leqq \varrho^{\prime} \log M\left(R_{n}\right)
$$

[^1]Hence, writing $r_{n}=R_{n} e^{-h}$, we have.

$$
\begin{equation*}
\frac{\log M\left(r_{n}\right)}{\log M\left(R_{n}\right)} \geqq 1-\varrho^{\prime} h \tag{3.2}
\end{equation*}
$$

From (2.6), (3.1), and (3.2) we obtain

$$
\begin{gathered}
-\log \left|f\left(r_{n} e^{i \theta}\right)\right| \leqq\left\{\frac{1}{2} \omega_{0}\left(\frac{r_{n}}{R_{n}} e^{i \theta}\right)+\left(1-\omega_{0}\left(\frac{r_{n}}{R_{n}} e^{i \theta}\right)\right)\right\} \log M\left(R_{n}\right)= \\
=\left\{1-\frac{1}{2} \omega_{0}\left(e^{-h} e^{i \theta}\right)\right\} \log M\left(R_{n}\right) \leqq\left\{1-\frac{1}{2} \omega_{0}\left(e^{-h} e^{i \theta}\right)\right\}\left(1-\varrho^{\prime} h\right)^{-1} \log M\left(r_{n}\right) .
\end{gathered}
$$

In view of (2.5), $\omega_{0}\left(e^{-h} e^{i \vartheta}\right)$ is a decreasing function of ϑ for $0 \leqq \vartheta \leqq \pi$, and hence for $0<\Delta^{\prime}<1$:
(3. 3) $\log M\left(r_{n},-\pi \Delta,+\pi \Delta^{\prime}\right) \leqq\left\{1-\frac{1}{2} \omega_{0}\left(e^{-h} e^{i \pi \Delta^{\prime}}\right)\right\}\left(1-\varrho^{\prime} h\right)^{-1} \log M\left(r_{n}\right)$.

On the other hand, if $\varrho^{\prime \prime}>\varrho^{\prime}$ and $\Delta^{\prime}>\Delta$, we obtain from Lemma 1 , that for $n \geqq n_{0}$

$$
\begin{equation*}
\log M\left(r_{n}\right) \leqq \frac{1-\varrho^{\prime} h}{1-\varrho^{\prime \prime} h} \log M\left(r_{n},-\pi \Delta^{\prime},+\pi \Delta^{\prime}\right) \tag{3.4}
\end{equation*}
$$

From (3.3) and (3.4) we conclude that

$$
\begin{gather*}
\log M\left(r_{n}\right) \leqq \frac{1-\frac{1}{2} \omega_{0}\left(e^{-h} e^{i \pi A^{\prime}}\right)}{1-\varrho^{\prime \prime} h} \log M\left(r_{n}\right) \tag{3.5}\\
\omega_{0}\left(e^{-h} e^{i \pi \alpha^{\prime}}\right) \leqq 2 \varrho^{\prime \prime} h
\end{gather*}
$$

Substituting the value of ω_{0} from (2.5) we obtain:

$$
\cot \left(\pi \varrho^{\prime \prime} h\right) \leqq \frac{2 \cdot e^{-h / 2}}{1-e^{-h}} \sin \frac{\pi}{2} \Delta^{\prime}
$$

$$
\begin{equation*}
\sin \frac{\pi}{2} \Delta^{\prime} \geqq \frac{1}{2}\left(e^{h / 2}-e^{-h / 2}\right) \cot \left(\pi \varrho^{\prime \prime} h\right) \geqq \frac{h}{2} \cot \pi \varrho^{\prime \prime} h \tag{3.6}
\end{equation*}
$$

Since:

$$
\lim _{h \rightarrow 0} \frac{h}{2} \cot \pi \varrho^{\prime \prime} h=\frac{1}{2 \pi \varrho^{\prime \prime}}
$$

we have that for $\varrho^{\prime \prime \prime}>\varrho^{\prime \prime}$ and $h<\varepsilon_{0}\left(\varrho^{\prime \prime}, \varrho^{\prime \prime \prime}\right)$:

$$
\frac{\pi}{2} \Delta^{\prime} \geqq \sin \frac{\pi}{2} \Delta^{\prime} \geqq \frac{1}{2 \pi \varrho^{\prime \prime \prime}}, \quad \varrho^{\prime \prime \prime} \Delta^{\prime} \geqq \frac{1}{\pi^{2}}
$$

This is valid for every $\varrho^{\prime \prime \prime}>\varrho, \Delta^{\prime}>\Delta$, hence:

$$
\varrho \cdot \Delta \geqq \frac{1}{\pi^{2}}
$$

which proves (1.3).

References

[1] G. Pólya, Über Lücken und Singularitäten von Potenzreihen, Math. Zeitschr., 29 (1929), 549-640.
[2] A. Edrei, Gap and density theorems for entire functions, Scripta Math., 28 (1957), 1-25.
[3] T. Kövári, On the growth of entire functions of finite order with density conditions. (To be published.)
[4] A. E. Ingham, Some trigonometrical inequalities with applications to the theory of series, Math. Zeitschr., 73 (1936), 367-379.
[5] G. Valiron, Lectures on the general theory of integral functions (Toulouse, 1923).
(Received December 20, 1964)

[^0]: ${ }^{1}$) In a recent paper [2], A. Edrei has replaced the Pólya density condition by a more precise one.

[^1]: ${ }^{2}$) The left-hand side of (2.7) may have isolated discontinuities but this does not affect the argument.

