Convergence of random products of contractions in Hilbert space

By I. AMEMIYA and T. ANDO in Sapporo (Japan)

1. Introduction

Given two projections P_{1} and P_{2} in a Hilbert space, it is known that a product $T_{n} \cdots T_{2} T_{1}$ converges strongly as $n \rightarrow \infty$ where $T_{j}=P_{1}$ or $T_{j}=P_{2}$ at random. The problem in this paper is to observe the case of a finite number of projections. The result is that weak convergence is always valid, while strong convergence is still unsettled. After several comments on the convergence of the iterates of a single contraction, the convergence problem of random products will be discussed for a wider class of contractions, including all non-negative definite contractions.

2. Iterates

Let T be a contraction in a Hilbert space, i. e., a linear operator with $\|T\| \leqq 1$, then the so-called mean ergodic theorem shows that the average $\frac{1}{n} \sum_{j=1}^{n} T^{j}$ converges strongly, as $n \rightarrow \infty$, to the projection onto the subspace of all vectors invariant under T, i. e., the null space of $I-T$, and that the orthogonal complement of the null space of $I-T$ coincides with the closure of its range (see [6], n° 143).

When do the iterates T^{n} themselves converge strongly or weakly? Since T operates as the identity on the null space of $I-T, T^{n}$ converges if and only if $T^{n} f$ converges to 0 for all f in the range of $I-T$, so that T^{n} converges strongly or weakly according as $T^{n}(I-T)$ converges to 0 strongly or weakly.

Given $f,\left\|T^{n} f\right\|$ decreases monotonically with limit, say $\alpha \geqq 0$. If $\alpha=0$, clearly $T^{n}(I-T) f \rightarrow 0$ strongly, and if $\alpha>0$, with $g_{n}=\frac{T^{n} f}{\left\|T^{n} f\right\|}$, it follows $\left\|g_{n}\right\|=1$, $T^{n}(I-T) f=\left\|T^{n} f\right\|(I-T) g_{n}$, and $\left\|T g_{n}\right\|=\frac{\left\|T^{n+1} f\right\|}{\left\|T^{n} f\right\|} \rightarrow 1$. This observation leads to the following criterion.
T^{n} converges strongly or weakly, if T has the following property (S) or (W), respectively:

$$
\begin{align*}
& \left\|f_{n}\right\| \leqq 1,\left\|T f_{n}\right\| \rightarrow 1 \text { imply }(I-T) f_{n} \rightarrow 0 \text { strongly }, \tag{S}\\
& \left\|f_{n}\right\| \leqq 1,\left\|T f_{n}\right\| \rightarrow 1 \text { imply }(I-T) f_{n} \rightarrow 0 \text { weakly. } \tag{W}
\end{align*}
$$

A non-negative definite contraction, in particular, a projection, has the property (S); in fact, if T is a non-negative definite contraction,

$$
\begin{gathered}
\left\|(I-T) f_{n}\right\|^{2}=\left((I-T)^{2} f_{n}, f_{n}\right) \leqq \\
\leqq\left((I-T)(I+T) f_{n}, f_{n}\right)=\left\|f_{n}\right\|^{2}-\left\|T f_{n}\right\|^{2} \rightarrow 0
\end{gathered}
$$

whenever $\left\|f_{n}\right\| \leqq 1$ and $\left\|T f_{n}\right\| \rightarrow 1$.
The product of two (hence a finite number of) contractions, each of which has (S) or (W), also has the same property; in fact, if T_{1}, T_{2} are contractions with the property, say (S), and if $\left\|f_{n}\right\| \leqq 1$ and $\left\|T_{2} T_{1} f_{n}\right\| \rightarrow 1$, then $\left\|T_{1} f_{n}\right\| \leqq 1$ and $\left\|T_{1} f_{n}\right\| \rightarrow 1$, so that

$$
\left(I-T_{2} T_{1}\right) f_{n}=\left(I-T_{1}\right) f_{n}+\left(I-T_{2}\right) T_{1} f_{n} \rightarrow 0
$$

strongly. It should be mentioned that the statement about (S) was observed by Halperin [3] in proving the strong convergence of the iterates of a-product of a finite number of projections.

The condition (W) has a simpler equivalent form (W'):

$$
\|T f\|=\|f\| \text { implies } T f=f
$$

Only the implication $\left(W^{\prime}\right) \Rightarrow(W)$ needs a proof. Since

$$
\|f\|^{2}-\|T f\|^{2}=\left(\left(I-T^{*} T\right) f, f\right)
$$

and $I-T^{*} T$ is non-negative definite, $\|T f\|=\|f\|$ is equivalent to $\left(I-T^{*} T\right) f=0$, so that (W^{\prime}) implies that the null space of $I-T^{*} T$ is contained in that of $I-T$. By taking the orthogonal complements, it follows that the closure of the range of $I-T^{*} T$ contains the range of $I-T^{*}$. Now if $\left\|f_{n}\right\| \leqq 1$ and $\left\|T f_{n}\right\| \rightarrow 1$, then

$$
1 \geqq\left\|T^{*} T f_{n}\right\| \geqq\left\|f_{n}\right\| \cdot\left\|T^{*} T f_{n}\right\| \geqq\left(T^{*} T f_{n}, f_{n}\right)=\left\|T f_{n}\right\|^{2} \rightarrow 1,
$$

so that the property (S) for the non-negative definite contraction $T^{*} T$ shows $\left(I-T^{*} T\right) f_{n} \rightarrow 0$ strongly, which, in turn, implies $\left(f_{n} ; h\right) \rightarrow 0$ for all h in the closure of the range of $I-T^{*} T$. For an arbitrary g,

$$
\left((I-T) f_{n}, g\right)=\left(f_{n},\left(I-T^{*}\right) g\right) \rightarrow 0
$$

because $\left(I-T^{*}\right) g$ is in the closure of the range of $I-T^{*} T$. Thus (W^{\prime}) implies (W).
Clearly (S) implies (W) and equivalently (W^{\prime}). If a contraction T has (W^{\prime}), its adjoint T^{*} has (W^{\prime}) too. In fact, $\left\|T^{*} f\right\|=\|f\|$ implies $T T^{*} f=f$, so that

$$
\left\|T T^{\dot{*}} f\right\|=\|f\|=\left\|T^{*} f\right\|
$$

hence $T T^{*} f=T^{*} f$ by (W^{\prime}) of T, and the assertion follows.
A contraction T is called completely non-unitary if $\left\|T^{n} f\right\|=\left\|T^{* n} f\right\|=\|f\|$ for all $n \geqq 0$ implies $f=0$. The decomposition theorem, proved idenpendently in [4] and [7], is quite useful in analysing an arbitrary contraction; it says that for a contraction T there is a uniquely determined closed linear subspace such that it reduces T and that T is unitary on it and is completely non-unitary on its orthogonal complement. Indeed, the subspace consists of all vectors f for which $\left\|T^{n} f\right\|=$ $=\left\|T^{* n} f\right\|=\|f\|$ for all $n \geqq 1$. Moreover Sz.-NAGY and FoIAs [7] proved that the
spectral measure of the minimum unitary dilation of a completely non-unitary contraction is absolutely continuous with respect to the Lebesgue measure on the unit circle. This result can give the following improvement of the criterion (W^{\prime}) for the weak convergence of the iterates:
T^{n} converges weakly, if $\left\|T^{n} f\right\|=\left\|T^{* n} f\right\|=\|f\|$ for all $n \geqq 1$ implies $T f=f$.
Here is an alternative proof, not using spectral representation (cf. [2]). The hypothesis means that the unitary part of T in the decomposition mentioned above acts as the identity, so that there is no loss of generality in assuming the complete non-unitarity of T, which is, as in the proof of the implication $\left(\mathrm{W}^{\prime}\right) \Rightarrow(\mathrm{W})$, equivalent to the statement that the intersection of all null spaces of $A_{n}(n= \pm 1, \pm 2, \ldots)$ consists of 0 only, where $A_{n}=I-T^{* n} T^{n}$ and $A_{-n}=I-T^{n} T^{* n}$ for $n \geqq 0$. By taking orthogonal complement, the linear span of the union of all the ranges of A_{n} ($n= \pm 1, \pm 2, \ldots$) is dense, so that to prove the weak convergence, it suffices to show that for all non-zero integer n and vectors $f, g\left(T^{j} f, A_{n} g\right) \rightarrow 0$ as $j \rightarrow \infty$. Since $\left\|T^{j} f\right\|$ decreases as j increases, it results for $n \geqq 1$

$$
\left(T^{j} f, A_{n} T^{j} f\right)=\left\|T^{j} f\right\|^{2}-\left\|T^{n+j} f\right\|^{2} \rightarrow 0 \quad \text { as } \quad j \rightarrow \infty,
$$

so that the generalized Schwarz's inequality ([6], no 104) for the scalar product induced by A_{n} yields

$$
\left|\left(T^{j} f, A_{n} g\right)\right|^{2} \leqq\left(T^{j} f, A_{n} T^{j} f\right) \cdot\left(g, A_{n} g\right) \leqq\left(T^{j} f, A_{n} T^{j} f\right) \cdot\|g\|^{2} \rightarrow 0
$$

Since

$$
A_{-n} T^{j}=T^{n} A_{n} T^{j-n} \quad \text { for } \quad j \geqq n \geqq 1,
$$

the generalized Schwarz's inequality for the scalar product induced by A_{-n} yields

$$
\begin{gathered}
\left|\left(T^{j} f, A_{-n} g\right)\right|^{4} \leqq\left(T^{j} f, A_{-n} T^{j} f\right)^{2} \cdot\left(g, A_{-n} g\right)^{2} \leqq \\
\leqq\left(T^{j} f, T^{n} A_{n} T^{j-n} f\right)^{2} \cdot\|g\|^{4}=\left(T^{* n} T^{j} f, A_{n} T^{j-n} f\right)^{2}\|g\|^{4} \leqq \\
\leqq\left(T^{j-n} f, A_{n} T^{j=}{ }_{n} f\right) \cdot\left(T^{* n} T^{j} f, A_{n} T^{* n} T^{j} f\right) \cdot\|g\|^{4} \leqq \\
\leqq\left(T^{j-n} f, A_{n} T^{j-n} f\right) \cdot\|f\|^{2} \cdot\|g\|^{4} \rightarrow 0 .
\end{gathered}
$$

3. Random products

Let $T_{j}(j=1,2, \ldots, N)$ be a finite set of contractions. A mapping $r(\cdot)$ from the set of all positive integers to $\{1, \ldots, N\}$ will be called a (random) selection. Given a random selection $r(\cdot)$, construct the sequence of contractions $\left\{S_{n}\right\}$ by setting $S_{n}=T_{r(n)} \cdots T_{r(2)} \cdot T_{r(1)}$, then what can be said about the convergence of S_{n} or of the average $\frac{1}{n} \sum_{j=1}^{n} S_{j}$? The random ergodic theorem (cf. [1]) shows that if each selection is considered as a point of the infinite product of the copies of the probability space $\{1,2, \ldots, N\}$ (on which each point has the same probability N^{-1}), then the average $\frac{1}{n} \sum_{j=1}^{n} S_{j}$ converges strongly for almost all selections. Without any further restriction on the T_{j} 's this would be the best result.

Suppose now that each $T_{j}(j=1,2, \ldots, N)$ has (S). If a selection $r(\cdot)$ is periodic, i. e., $r(k+m)=r(k)$ for some m and all k, then $S_{m k}=\left(S_{m}\right)^{k}$, and since S_{m} has (S),
$S_{m k}$ converges strongly, as $k \rightarrow \infty$, to the projection onto the null space of $I-S_{m}$. For an index n, take k such that $m(k-1)<n \leqq m k$, then

$$
S_{n}=S_{n-m(k-1)} S_{m(k-1)}
$$

where it is assumed that $S_{0}=I$. If f is in the null space of $I-S_{m}$,

$$
\|f\|=\left\|S_{m(k-1)} f\right\| \geqq\left\|S_{n} f\right\| \geqq\left\|S_{m k} f\right\|=\|f\|,
$$

so that $S_{n} f=f$ because of $\left(\mathrm{W}^{\prime}\right)$ for S_{n}, and if f is in the closure of the range of $I-S_{m}$,

$$
\left\|\dot{S_{n}} f\right\| \leqq\left\|S_{m(k-1)} f\right\| \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty,
$$

because $k \rightarrow \infty$ as $n \rightarrow \infty$. Thus S_{n} converges strongly.
When every T_{j} is a projection, Prager [5] derived the weak convergence of S_{n} from a quasi-periodicity assumption on the selection $r(\cdot) ; S_{n}$ converges weakly, if there is m such that every m consecutive $r(k), r(k+1), \ldots, r(k+m-1)$ contains each j at least once $(j=1,2, \ldots, N)$. On starting with an observation that in his proof the hypothesis that T_{j} is a projection is not essential, but only the property (W) is necessary, the goal of this paper is to derive the weak convergence from (W) without any periodicity assumption on a selection. It should be mentioned that when the Hilbert space is of finite dimension, Prager attained the same goal in the case of projections; he proved the strong convergence, but strong convergence is equivalent to the weak one in the finite dimensional case.

Theorem. If T_{j} is a contraction with (W) or equivalently (W^{\prime}) $(j=1,2, \ldots, N)$, then for any random selection $r(\cdot)$ the sequence

$$
S_{n}=T_{r(n)} \cdots T_{r(2)} T_{r(1)}
$$

converges weakly as $n \rightarrow \infty$.
The proof will be divided into several steps.
(i) In what follows, by a weak neighborhood there is meant a convex symmetric neighborhood of 0 with respect to the weak topology. The condition (W) can be stated in the following form: for any weak neighborhood \mathfrak{F} there is an $\varepsilon>0$ such that $\|f\| \leqq 1,\left\|T_{j} f\right\| \geqq 1-\varepsilon$ imply $\left(I-T_{j}\right) f \in \mathfrak{P} j$.
(ii) The intersection of the null spaces of $I-T_{k}(k=1,2, \ldots, j)$ coincides with the null space of $I-T_{j} \ldots T_{2} T_{1}$. In fact, the former is obviously contained in the latter. If f is in the latter,

$$
\|f\|=\left\|T_{n} \cdots T_{2} T_{1} f\right\| \leqq\left\|T_{1} f\right\| \leqq\|f\|
$$

so that $T_{1} f=f$. by (W^{\prime}) of T_{1} and by induction $T_{k} f=f(k=1,2, \ldots, j)$. Let Q_{j} stand for the projection onto the null space of $I-T_{j} \ldots T_{2} T_{1}$, then $T_{k} Q_{j}=Q_{j}(k=1,2, \ldots, j)$ so that $T_{k}^{*} Q_{j}=Q_{j}$ because a vector invariant under a contraction is also invariant under its adjoint (cf. [6], $\mathrm{n}^{\circ} 143$). Thus from $T_{k} Q_{j}=Q_{j}$ and $T_{k}^{*} Q_{j}=Q_{j}$, the commutativity of Q_{j} with $T_{k}(k=1,2, \ldots, j)$ follows.
(iii) Let $P_{j}=I-Q_{j}$, then for any weak neighborhood \mathfrak{F}, there is another \mathfrak{W} such that $\|f\| \leqq 1,\left(I-T_{k}\right) f \in \mathfrak{W}(k=1,2, \ldots, j)$ imply $P_{j} f \in \mathfrak{B}$. In fact, since $\left(I-T_{k}\right) f=0(k=1,2, \ldots, j)$ is equivalent to $P_{j} f=0$ by (ii), the mapping which assigns to $P_{j} f$ the ordered j-tuple $\left\{\left(I-T_{1}\right) f, \ldots,\left(I-T_{j}\right) f\right\}$ is one-to-one. Since $\left(I-T_{k}\right) f=\left(I-T_{k}\right) P_{j} f(k=1,2, \ldots, j)$ by (ii), it is continuous from the image of
the unit ball under P_{j} into the product of j copies of the Hilbert space, when they are provided with their respective weak topologies. Since the domain is compact, the mapping is bi-continuous and the assertion is just the statement that the inverse mapping is continuous at the origin.
(iv) Let \mathfrak{M}_{j} be the collection of contractions which are in a multiplicative semi-group with unit generated by j of the contractions $\left\{T_{k}\right\}_{1}^{N}(j=1,2, \ldots, N)$ and let $\mathfrak{M}_{0}=\{I\}$. Given a weak neighborhood \mathfrak{B} and $S \in \mathfrak{M}_{j}$, there is a positive number $\varepsilon=\varepsilon(\mathfrak{B}, j)$ depending only on \mathfrak{Z} and j such that $\|f\| \leqq 1,\|S f\| \geqq 1-\varepsilon$ implies $(I-S) f \in \mathfrak{B}$. Proof proceeds by induction on j as follows. The assertion for $j=0$ is trivial. Suppose that the assertion is true up to $j-1$. Only S in M_{j} but not in \mathfrak{M}_{j-1} needs consideration. There is no loss of generality in assuming that S is in the multiplicative semi-group generated by $T_{1}, T_{2}, \ldots, T_{j}$. For any index $1 \leqq k \leqq j, S$ can be written in the form

$$
S=R_{1} T_{k} R_{2}=R_{3} T_{k} R_{4}
$$

where R_{1}, R_{4} are in \mathfrak{M}_{j-1}. Given a weak neighborhood \mathfrak{B}, take \mathfrak{W} which is in relation of (iii) to \mathfrak{B}, and choose a weak neighborhood $\mathfrak{l l}$ such that

$$
4 \mathfrak{U}+4 T_{i} \mathfrak{U} \subseteq \mathfrak{W} \quad(i=1, \ldots, j),
$$

which is possible because of the weak continuity of T_{i}. Now by the inductive assumption and (i) it is possible to take a positive number ε, independent of S, such that $\|g\| \leqq 1,\|R g\| \geqq 1-\varepsilon$ with $R \in \mathbb{M}_{j-1}$ or $R=T_{k}$ imply $(I-R) g \in \mathbb{U}$. Now if $\|f\| \leqq 1$ and $\|S f\| \geqq 1-\varepsilon$, obviously $1 \geqq\left\|R_{4} f\right\| \geqq 1-\varepsilon$ and $\left\|T_{k} R_{4} f\right\| \geqq 1-\varepsilon$, hence $\left(I-R_{4}\right) f \in \mathfrak{U}$ and $\left(I-T_{k}\right) R_{4} f \in \mathfrak{U}$, so that

$$
\left(I-T_{k}\right) f=\left(I-R_{4}\right) f+\left(I-T_{k}\right) R_{4} f-T_{k}\left(I-R_{4}\right) f \in 2 \mathfrak{U}+T_{k} \mathfrak{U} \subseteq \frac{1}{2} \mathfrak{W}
$$

and quite similarly

$$
\left(I-T_{k}\right) S f=\left(R_{1}-I\right) T_{k} R_{2} f+T_{k}\left(I-R_{1}\right) T_{k} R_{2} f+T_{k}\left(I-T_{k}\right) R_{2} f \in \mathfrak{U}+2 T_{k} \mathfrak{U} \subseteq \frac{1}{2} \mathfrak{W} .
$$

Since the relation is valid for $k=1,2, \ldots, j$, (iii) guarantees $P_{j} f \in \frac{1}{2} \mathfrak{B}$ and $P_{j} S f \in \frac{1}{2} \mathfrak{B}$, consequently $P_{j}(I-S) f \in \mathfrak{B}$. As in (ii), $I-P_{j}$ is just the projection onto the null space of $I-S$, because S has T_{k} as a factor ($k=1,2, \ldots, j$), so that

$$
(I-S) f=(I-S) P_{j} f=P_{j}(I-S) f \in \mathfrak{F} .
$$

(v) $S_{n} f$ converges weakly for all f. In fact, if $\left\|S_{n} f\right\| \rightarrow 0$, the assertion is trivial. If $\inf _{n}\left\|S_{n} f\right\|>0$, given a weak neighborhood \mathfrak{B}, take $\varepsilon=\varepsilon(\mathfrak{F}, N$) in (iv), then for sufficiently large $n \geqq m$ we have $\left\|S_{n} f\right\| \geqq(1-\varepsilon)\left\|S_{m} f\right\|$. Since $S_{n}=S \cdot S_{m}$ for some $S \in \mathfrak{M}_{N}$ and

$$
\|S g\|=\frac{\left\|S_{n} f\right\|}{\left\|S_{m} f\right\|} \geqq 1-\varepsilon \quad \text { with } \quad g=\frac{S_{m} f}{\left\|S_{m} f\right\|}
$$

(iv) guarantees $(I-S) g \in \mathfrak{B}$, so that

$$
S_{m} f-S_{n} f=\left\|S_{m} f\right\|(I-S) g \in\|f\| \mathfrak{P} .
$$

The weak convergence follows from the arbitrariness of \mathfrak{B}. This completes the proof.

When every index j appears infinitely many times in a selection $r(\cdot)$, the limit of the sequence S_{n} is the projection onto the subspace of vectors invariant under all $T_{j}(j=1,2, \ldots, N)$. In fact, with the notations in the proof of the Theorem, for sufficiently large $m S_{m} Q_{N}=Q_{N}$, and if $f=P_{N} f$ and $\inf _{n}\left\|S_{n} f\right\|>0$, for any weak neighborhood \mathfrak{B} and sufficiently large m there is $n>m$ such that $r(m+1), \ldots, r(n)$ contains every j at least once $(j=1,2, \ldots, N)$ and $\frac{\left\|S_{n} f\right\|}{\left\|S_{m} f\right\|} \geqq 1-\varepsilon$ where $\varepsilon=\varepsilon(\mathfrak{̉}, N)$, so that as in (iv) and (v) $P_{N}\left(\frac{S_{m} f}{\left\|S_{m} f\right\|}\right) \in \mathfrak{B}$, hence

$$
S_{m} f=S_{m} P_{N} f=P_{N} S_{m} f \in\|f\| \mathfrak{B}
$$

The arbitrariness of \mathfrak{B} implies the weak convergence of $S_{n} P_{N}$ to 0 . Thus S_{n} converges weakly to Q_{N}.
*

Corollary. If T_{j} is a contraction with (W) or equivalently (W^{\prime}) $(j=1,2, \ldots, N)$, then for any random selection $r(\cdot)$ the sequence
converges weakly as $n \rightarrow \infty$.

$$
S_{n}=T_{r(1)} T_{r(2)} \ldots T_{r(n)}
$$

Proof. It is proved in $\S 2$ that T_{j}^{*} has (W) $(j=1,2, \ldots, N)$, so that by the Theorem, the product $T_{r(n)}^{*} \ldots T_{r(2)}^{*} T_{r(1)}^{*}$ converges weakly, hence $\left(S_{n} f, g\right)=$ $=\left(f, T_{r(n)}^{*} \ldots T_{r(2)}^{*} T_{r(1)}^{*} g\right)$ converges for all f, g.

This completes the proof.

References

[1] A. Beck and J. T. Schwartz, A vector valued random ergodic theorem, Proc. Amer. Math. Soc., 8 (1957), 1049-1059.
[2] R. S. Foguel, Powers of a contraction in Hilbert space, Pacific J. Math., 13 (1963), 551-562.
[3] J. Halperin, The product of projection operators, Acta Sci. Math., 23 (1962), 96--99.
[4] H. Langer, Ein Zerspaltungssatz für Operatoren im Hilbertraum, Acta Math. Acad. Hungar., 12 (1961), 441 - 445.
[5] M. Prager, On a principle of convergence in a Hilbert space, Czech. Math. J., 10 (1960), 271-282.
[6] F. Riesz and B. Sz.-Nagy, Leçons d'analyse fonctionnelle (Budapest, 1952).
[7] B. Sz.-Nagy and C. Foiaş, Sur les contractions de l'espace de Hilbert. IV, Acta Sci. Math., 21 (1960), 251 -259.

