
On representing functions by Darboux functions 
By JACK G. CEDER in Santa Barbara (California, U. S. A.) 

In 1953 W. SiERPiriSKi [7,8] proved that each real-valued function on a 
connected, separable metric space could be expressed as (1) a sum of two functions 
each of which maps each closed, connected subset onto the real line R, and (2) 
a pointwise limit of a sequence of functions each of which maps each closed, connected 
subset onto R. These results were later generalized by S . M A R C U S [6] to apply to a 
more general situation, where, in particular, the domain space is not topologized. 
However, when the domain space is a real interval, both of S IERPINSKI 'S results 
follow immediately f rom a general theorem of H. F A S T [4] namely: If is a family 
of functions of cardinality ^ c, then there exists a func t ion / such t h a t / is Darboux 
for each g € 3>. (A function h is Darboux on a real interval if it maps connected sets 
onto connected sets.) 

The main purpose of this article is to extend F A S T ' S result in two directions. 
In one direction, we will extend F A S T ' S result to the more general setting considered 
by S . M A R C U S (see the paragraphs preceding Theorem 4 ) . And, secondly, we extend 
F A S T ' S result to apply to Baire functions and measurable functions on a real interval 
(see Theorems 1 and 2). From this latter extension we will deduce that when a > 1 
each Baire a (or measurable) function is both the suni of two Baire a + 1 (resp. 
measurable) D.arboux functions and a pointwise limit of a sequence of Baire a + 1 
(resp. measurable) Darboux functions. We will also show that when a > 1 a Baire 
a (or measurable) function on an interval is the product of two Baire a + 1 (resp. 
measurable) functions each of which assumes each- non-zero number on each sub-
interval. 

Throughout the sequel unless otherwise specified the domain space is assumed 
to be a real interval I and measurable means Lebesgue measurable. For the defini-
tion of and facts about Baire Functions of class a, Borel sets of class a, etc. see 
K U R A T O W S K I [5] . We will consider cardinals to be ordinals which are not equi-
potent with smaller ordinals. Thus the cardinal c is the first ordinal equipotent 
with R. We will say that a set B is c-dense in A if each open interval which intersects 
A contains c points of B. 

We begin by invoking the following lemma proven in B R U C K N E R , C E D E R and 
WEISS [2] . The first part was first proven by B O B O C and M A R C U S [1] . 

D e c o m p o s i t i o n L e m m a . If A is any c-dense m itself subset of I, then A 
can be decomposed into c disjoint, non-void subsets each of which is c-dense in A. 
Moreover, if A is any c-dense in itself measurable set (or Borel set of class a), then 
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A can be decomposed into countably many disjoint, non-void, subsets each of which 
is c-dense in A and is measurable (resp. a Borel set of class max (a, 2)). 

Now we prove our main theorems, both of whose proofs are patterned after 
F A S T ' S proofs. 

T h e o r e m I.' Let s4 be any family of measurable functions having cardinality 
c. Then there exists a function f .such that f+g is measurable and Darboux for 

each g£jtf. 

P r o o f . By taking a Cantor set of zero-measure in each rational subinterval 
of I and then taking their union we obtain a c-dense subset A of / having zero-
measure. According to the Decomposition Lemma we can then decompose A into 
disjoint, non-void sets {Aa}a<c each of which is c-dense in A. Since A has zero-
measure, each A a will be measurable. Next enumerate the rational subintervals of 
I as {/,}," i and further decompose each Aa into countably many disjoint c-dense, 
measurable subsets {Aa„}™=1. Now let h„, be any function mapping / „ f M M onto 
R (the real line). Clearly hxn is measurable. Now define ha on Ax by putting hjx) = 
— han(x), if jc€-/„ DA x „ for some n, and ha(x) = 0 elsewhere in Aa. Again ha is measur-
able and each ha maps AaC\J onto R for each subinterval J. Next define h on / by 
h(x) = htt(x), if x£Aa, and h(x)= 0 elsewhere in /. Since A has zero-measure h will 
be measurable. 

Now let {j a} a £ / i be an enumeration of R and define the function k on I by 
k(x-)=ya if x£Ax and k(x) = 0 otherwise. Next represent si as {F(x, y): y£R} 
where F is a real-valued function defined on IX R. Put f ( x ) = h(x) —F(x, k(x)). 
Now choose any g£si. Then g(x) — F(x, ya) for some a. Consider the function 
G(x) — f ( x ) + F(x, y^). To complete the proof we must show G is both Darboux 
and measurable. 

To show G is Darboux, we note that G(x)=h(x) = hx(x) for x£k~1(yt)=Ac 
But hx clearly maps AXC\J onto R for each subinterval J, hence so does G. To show 
G is measurable, let M be any interval in R. Then Gil—A is measurable since 
G(x) = F(x, y j — F(x, 0) on / — A. Now since A has zero-measure, it follows 
that G~1(M) is measurable. This finishes the proof. 

Theorem 1 may not be true if si has cardinality 2C. For example, let si be all 
measurable functions. Then, if there were a f u n c t i o n / such that f+g were Darboux 
and measurable for each g£si, then by taking g = 0 we would have t h a t / i s measur-
able. Then define h(x) = - f ( x ) if x^O and //(0) = - / ( 0 ) + l . Then but 
f+h fails to be Darboux. 

T h e o r e m 2. Let si be a countable family of Baire a junctions. Then there 
exists a function f such that f+g is a Darboux function of Baire class max ( a + 1, 3) 
for any g^si. 

• P r o o f . First, using the Decomposition Lemma, we decompose / into countably 
many disjoint, non-void subsets {^4mn}"m = i each of which is c-dense in / and is 
a Borel set of class 2. Now enumerate the open rational subintervals of / as {/,„},~= i . 
Now pick a Baire function h„m to map a subset of ImC\Anm onto R as follows: Since 
I„,r\Anm is a Borel set of cardinality c, we can find a no-where dense perfect subset 
P„,„ of it (see KURATOWSKI [3] p. 387). Next we can map P„m continuously onto 
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[0, 1] by a function <P. Then <P maps the F„ set Pnm — «P'-XO)- $ _ 1 ( 1 ) continuously 
onto (0, 1), which in turn is homeomorphic to R by a function "P. Hence, 
maps an Fa subset, F„„,, of Im f l Amn onto R continuously. Now put hnm = Wo<]>. 

Next put A„ = [J A„m and define hn= ¡J h„m: Then clearly h„ maps each 
m - 1 m = 1 

A„ f l / o n t o R where / is any open subinterval of I. Define h by h(x)=hn(x), if 
x£A„m. Now if F is closed in R and contains 0 we have 

h-\F)=[ U (hnmlFnnJT^F)) U p - U 
\n,m= 1 J V. «, m = 1 ) 

which is a F„ union a Gs. Hence, at worst, h~1(F) for any closed set is an Fa}, so 
h is a Baire 2 function. 

Now let us enumerate si as { g n } a n d enumerate the rationals in I as 
{/"„},?= i - Define F{x, y) =g„(x), if y = rn, and F(x, y) = 0 , if y is irrational. Now 
define k by k(x) = r„, if x£An, and put f{x) = h(x)-F(x, k(x)). Now let 
Then g=g„ for some n so that g(x) = Fix, /'„). Put G(x) = g(x) + / ( x ) . To complete 
the proof we need show that G is both Darboux and Baire of class max (a + 1 , 3). 

To show G is Darboux we note that G(x) = h„(x) for x in the c-dense subset 
A„ of 7. But h„ maps A„DJ onto R for each open interval J, hence, so does G. To 
show G is Baire of class max (a + 1, 3), we note that 

(G1 A,„)(x) = F(x, /•„) +f(x) = F(x, /'„) + h(x) — F(x, r j . 

Hence G~\Am is of Baire class max (a, 2). Hence G~l(U) for any open set U is the 
countable union of Borel sets belonging to class max (a, 2), Hence, G is Baire of 
class max (a, 2) + 1 = max ( a + 1,3). 

It is unkown whether or not we can improve upon the number max ( a + 1, 3) 
in both Theorems 2 and 3. As an aside, we note that the function h in the proof of 
Theorem 2 is a Baire 2 function which maps each subinterval onto R. Clearly this 
can not be accomplished by a Baire 1 function. 

Now we have the obvious consequence 

C o r o l l a r y 1. If sd is a countable family of Baire functions, then there exists 
a function f such that f+g is Darboux and Baire for each g€ 

The above corollary may not be valid when si is uncountable. For example, 
by a similar example to that following Theorem 1, it cannot be valid when s i is 
taken to be all Baire functions. We do not know, however, whether or not Theorem 
2 itself can be valid for families si with cardinality c. 

C o r o l l a r y 2. Every measurable (or Baire a) function is the sum of two Dar-
boux, measurable functions (resp. Darboux functions of Baire class max (a + 1, 3 ) j . 

P r o o f . Let g be any measurable function. Then put si = {g, 0}. Then accord-
ing to Theorem 1 there exists a function / s u c h that f+g and / are Darboux and 
measurable. Hence g is the sum of the two Darboux, measurable functions f+g' 
and —/. Similarly with the case when g is Baire a. 

The above corollary without the refinement of the Baire class has been proved 
also by E R D O S [3]. 
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C o r o l l a r y 3. Every measurable (or Baire a) function is the pointwise limit 
of a sequence of Darboux, measurable functions (resp. Darboux functions of Baire 
class max (a + 1 , 3 ) / 

P r o o f . Let g be any measurable function. Put si = {«g}r=i • So by Theorem 1 

there will exist / such that h„ = ^ 1 — -^-j g + f is Darboux and measurable for 

any n. But obviously {/f„}7=i approaches g pointwise. Similarly with the case when 
g is Baire a. 

No t every function can be the product of two Darboux functions, as was 
pointed out by S. M A R C U S in [41- For example, it is easily seen that the Baire 1 
function / defined by / ( 0 ) = — 1 and f ( x ) = + 1 for x^O cannot be the product 
of two Darboux functions. However, if a f u n c t i o n / were always positive (or negative) 
then it can be factored into two Darboux functions. For then there are two Darboux 
functions g and h so that l o g / — g + h. Hence , /=e»e* where eB and e1' are Darboux 
(and, moreover, are Baire of class max (a + 1, 3) or measurable if / is Baire a oi 
measurable resp.). However, S. M A R C U S [4] has proven that each function on / 
is the product of two functions each of which assumes every non-zero number on 
each subinterval. We shall now give another . proof of Marcus' result, but one 
which can easily be modified so as to apply to Baire a and measurable functions. 

T h e o r e m 3. Each function is the product of two functions each of which assumes 
' every non-zero number on. each subinterval. Moreover, if the original function is 
measurable of Baire a, then the factoring functions can be taken to be measurable 
or of Baire class max (a + 1, 3) respectively. 

P r o o f . We first prove the result for an arbitrary function / o n I and then 
note the modifications required for the measurable and Baire cases. 

Let C be the closed set consisting of all points x € / such that each neighborhood 
of x contains c points of / - 1 ( 0 ) - Let A = C f l / _ 1 ( 0 ) . Then either A is empty or 
c-dense in itself. In the latter case we decompose A into two c-dense subsets A1 

and A2 by the Decomposition Lemma. Then, again by the Decomposition Lemma 
we decompose A1 into c-dense subsets {^4j,},7=i and A2 into c-dense subsets i . 
Now enumerate all open rational intervals which hit A as {J„} Let h„ and 
g„ be functions which map A},P\J„ and A2C\Jn respectively onto R. Next define 
hA(x)=hn(x), if x£A\ f l / n for some n, and put hA(x)= 0 elsewhere in A. Also define 
gA(x)—gn(x), if x^A2

nC\J„ for some n, and gA(x) = 0 elsewhere in A. Clearly 
hA{x)gA(x)—f(x) for A and for any interval J hitting A both hA and gA map 
JC\A onto R. 

Now consider B = J—A. If B is non-empty it is c-dense in itself. Hence we 
can decompose B into c-dense subsets B1 and B2. Next decompose B1 and B2 into 
c-dense subsets {B)}~=i (i = 1,2, ...) respectively. Let {/n}T= i be all open rational 
intervals which hit B. Let h'n and g'n be functions mapping Bl

nC\J„ and B2 Pi Jn 

respectively onto R — {0}; Next define hB and gB as follows: 

hB(x) = h'„(x) if x^Bl C\Jn for some n, 
= 1 if x^B\ — Jn for some/7, 
= 0 elsewhere in B, 
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and 
gB(x) = g!,(x) if xCB2C\J„ for some n, 

= 1 if x£B2—J„ for some n, 
= 0 elsewhere in B. 

Then h^1(0)=B2 and gg1(0)=B1 and hH maps JOB1 and gB maps JOB2 onto 
either R or R — {0} for any subinterval J which intersects B. 

Now define h and g as follows: 

h(x) = hA(x) if x€A, . • 
= hB(x) i f x £ B \ 
= f(x)lgll(x) if x£B2, 
= 1 if x£A—A, 

and 
g(x) = gA(x) if x £ A , 

= gB(x) if x£B2, 
= f(x)lhB(x) if xeB1, 
= / ( x ) if x £ A — A. 

Clearly f{x) =h(x) g(x) for each x£l. Now let J be any subinterval of I. If 
J hits A, it also hits A. But hA and gA map J DA onto R; hence so do h and g. 
On the other hand if JQB, both hB and gB map JOB onto R or R — {0}. Hence 
we have i? — {0} Q g ( J ) f ] h(J). 

Now suppose / is measurable. Since A — C f ) / _ 1 ( 0 ) , A must be measurable. 
F rom the fact that for any measurable set C of cardinality c and any set DQR 
of cardinality c there exists a measurable function mapping C onto D, we can 
clearly make the functions hn, gn, hA, gA, ..., h and g measurable. 

Now suppose / is Baire a. Since A — C 0 / _ 1 ( 0 ) , A must be of Borel class a. 
Hence, the sets A'n can be taken to be of class max (a, 2). Then we choose hA,gA, hB 
and gB similar to the h in the proof of Theorem 2, so that hA,gA, hB and gB are of 
class max (a + 1,3). Since quotients of Baire functions of class = [1 are of Baire 
class ^P, both f(x)/gn(x) and f(x)/hB(x) are of Baire class max (a + 1, 3). It follows 
then that h and g will be of Baire class max ( a + 1 , 3). This finishes the proof of 
Theorem 3. 

Let X and Ybe arbitrary sets and be a family of subsets of X. Then a function 
f r o m X to Y has, according to M A R C U S [6], "the Darboux property in the strong 
sense relative to 0> and Y", if f(0>) = Y for all P^Sf. Fo r brevity let us call such 
a function (SP, r ) -Darboux . If m is an infinite cardinal we will say that & is an 
m-family if & and each member of 5P has cardinality m. In [6] S. M A R C U S has 
proved that if & is an m-family of subsets of some set X, and Y is an additive group 
of cardinality m, then each function / f rom X to Y is (1) the sum of two Y)-
Darboux functions and (2) the pointwise limit of a sequence {/„}T=i of (3P, Y)-
Darboux functions, where for each x€X {/„(x)}r=i is eventually constant. 

If one takes Y=R and 0> to be the family of all infinite, closed, connected 
subsets of a connected, separable metric space X, then one gets the above cited 
results of SIERPINSKI. Another interesting case is when Y=R and 3P is the family 
of all perfect subsets of X = R n . In this case, S . M A R C U S [6] also proved that each 
funct ion is the product of two functions each of which maps each perfect subset 
onto either R or R-{0}. 
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Since each measurable function on I is continuous when restricted to some 
closed set of positive measure, there are no measurable functions which map each 
perfect subset of / onto R. Hence we can't extend Theorems 1 and 2 to give (éP, R)-
Darboux functions, where 2P is the family of all perfect subsets of I. However, it is 
clear that we can easily extend Theorems 1 and 2 to apply, for example, to (S, R)-
Darboux functions where (2 is the family of all non-void open subsets of R". 

Now we extend F A S T ' S Theorem to apply to general {0>,T)-Darboux functions. 
Then, not only F A S T ' S Theorem but also the above result of M A R C U S follows 
immediately (in the same way corollary 2 followed from. Theorem 1). 

T h e o r e m 4. Let Y be an additive group of cardinality m. Let SP be an m-family 
of sets. Let $ be a family of functions of cardinality S m from X = Uá 3 into Y. 
Then, there exists a function f from Y to X such that f+g is Y)-Darboux for 
each 

P r o o f . According to the Lemma of [6] we can decompose X into m disjoint 
sets {B^x<m each of which meets each member of 3P. Since m X m X m has the 
same cardinality as m we can resxpress this family as {B x p y } x j y < m . Now put 
Aap = (J Bxfiy for each a, /?<m. Then each Ax/1 meets each in exactly m 

y<m 
points. Now well order 0> as {Pp}p<a. For a, / ? < m let fxp be a function mapping 
AapC\Pp onto Y. Define h(x)=fp(x), if x£ some A^DPp, and h(x)= 0 otherwise. 

Next well order Y as {yx}x<m and put Ax = (J Aap. Define a function k f rom 
P<m 

X to Y by k(x)=yx if xÇAx. Now represent í j , which we can assume without loss 
of generality to have cardinality m, as {F(x, y) : y £ Y} where F is a function on 
XX Y to Y. Put f{x) = h(x) - F(x, k(x)). Now suppose Then g(x) = F(x , ya) 
for some a. Then f ( x ) + g ( x ) = h(x) — F ( x , k ( x ) ) + F ( x , y a ) = h(x) for all x£Ax. 
But h maps each PClAa for P£0> onto 7. Hence, g+f maps each member of SP 
onto Y, which finishes the proof. 

Theorem 4 does not imply MARCUS' result (2), but in case F i s , say, a normed 
linear space of cardinality m, it clearly does imply that each function f rom U & to 
Y is a pointwise limit of a sequence of (3P, F)-Darboux functions, where 0* is an 
m-family of sets. 
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