On spectral sets having connected complement

By DONALD SARASON.in Berkeley (California, U.S. A) 1)

1. Introduction

Let X be a compact subset of the plane with a-connected complement. The:
present paper is based on the following result, which was dlscovered mdependently
by Forag [3], LeBow [8] and BERGER [1].

* Theorem 0. Every Hilbert space operator having X as a spectral set has a nor-
mal dilation whose spectrum is contained in 0X.

(We recall briefly a few definitions. If T is an operator [=bounded linear trans-
formation] on a Hilbert space §, then a compact subset of the plane Y is called a
spectral set for T if it contains the spectrum of T and satisfies

o | le(T)I = suplo(2)

for all rational functions ¢ having no poles on Y. If Y has a connected complement
then it suffices that (1) hold whenever ¢ is a polynomial. A dilation of T is an operator
A which acts on a Hilbert space ® containing § as a subspace and which satisfies.
T"P=PA"P for all positive integers n, where P is the orthogonal projection in
® with range $. This dilation is called minimal if § is contained in no proper reduc-
ing subspace of 4. The dilation in Theorem 0 becomes unique to within isomorphism
" if one imposes on it the condition of minimality. A dilation 4 of T is called a
Y-dilation if its spectrum is contained in dY and if ¢(4) is a dilation of ¢(T) for
every rational function ¢ having no poles on Y. If Y has a connected complement,
then every dilation of 7 with spectrum on 8Y is automatically a Y-dilation.)

In the present paper we use Theorem 0 to study operators having X as a spectral
set. We-eventually obtain a characterization of all such operators (Theorem 4).
For the case where X is the closed unit disc, this characterization reduces to a well-
known theorem (see LANGER [7] and Sz.-NaGY—Foiag [12]) which states that.
every contraction operator on a Hilbert space has a decomposition into the direct
sum of a unitary operator and a completely non-unitary contraction.

1) This research was performed while the author was supported by the Natlonal Science
Foundation under a Postdoctoral Fellowship. :
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Our arguments depend largely on properties of the algebra P(0X), the space
.of functions on 0X that can be uniformly approximated by polynomials. The
required results about P(0X) are exposed in Section 2, where we also introduce
certain notations which are retained throughout the paper. Section 2 is rather
lengthy as it seemed best to give a fairly complete discussion. Section 3 is devoted
'to three lemmas concerning the invariant subspaces of normal operators with
spectra on 0X. The main results are in -Section 4. These relate chiefly to direct sum
-decompositions of operators having X as a spectral set. We also dlscuss briefly a
functional calculus for a subclass of these operators.

To conclude this section we obtain a useful lemma concerning semi-invariant
subspaces. This result will be stated in somewhat greater generality that is needed
for our immediate purposes. Suppose ‘that S is a semi-group of operators on a
Hilbert space . Then a subspace § of & is called semi-invariant under S if the
.orthogonal projection P onto  satisfies PAPBP=PABP for all. 4 and B in S. .
‘Of interest in the present paper is the case where S consists of the non-negative
integral powers of some fixed operator A4; we then call a semi-invariant subspace
-of S a semi-invariant subspace of 4. This notion bears an obvious relation to that
-of an operator dilation.- :

Lemma 0. Let S be a semi-group of operators on a Hilbert space . Then a
Ssubspace § of ® is semi-invariant under S if and only if it has the form $ = MON
where IN and N are invariant subspaces of S such that N IM.

Proof. The proof that § is semi-invariant if it has the described form is
straightforward and we therefore omit it. To prove the other half of the lemma,
let § be a semi-invariant subspace of S and assume without loss of generality that
'S contains the identity operator. Let I be the smallest invariant subspace of S
-containing , and let P and Q be the orthogonal projections onto § and M res-
pectively. We can complete the proof by showing that the subspace i = MO
is invariant under S, or equivalently, that )

(Q—P)A(Q—P) = A(Q—P)

for all A in S. From now on, let A denote a fixed operator in S. As the equalities
QAQ = AQ and QAP = AP clearly hold, it will be enough to show that PAP=PAQ.
Now if B isin S and y is in. §, then by semi-invariance,

PAPBy=PAPBPy = PABPy=PABy.

But by its definition, I is the subspace spanned by all the vectors By with y in
and B in S. We may conclude that PAPx=PAx for all x in I, and this implies
‘the desired equahty PAP=PAQ. The proof is complete.
The author is grateful to Professor FoiAg for pointing out the precedmg proof,
which is simpler than the one originally submitted. In spite of its elementary charac-
“ter, Lemma 0 seems to have been thus far overlooked.
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2. The algebra P(0X)

Let P(0X) denote the algebra of all functions on 6X that can be uniformly
approximated by polynomials. We give P(0X) the supremum norm. The set X is
(with the usual abuse of language) the maximal ideal space of this algebra. We
list below as propositions the needed properties of P(6X) and provide proofs where
none exist in the literature. In terminology we follow WERMER [15] and HOFFMAN [6].

Proposition 1. P(0X) is a Dirichlet algebra, that is, every real continuous '
Sfunction on 8X can be uniformly approximated by the real parts of polynomials.

This result is due to WALsH [14].

Let Gy, G, Gy, .. . be the components of the interior of X, and for each. j
choose a point g; in G Let m; denote the (unique by Proposition 1) representing
measure on 0X for the functional of evaluation at a; on P(0X). We denote by
Hr(m;), p=1, 2, the closure of P(dX) in L?(m;), and’ by H{ (m) the subspace of
H?(m;) consisting of those functions that are ‘annihilated by m;

Prop051t10n 2. The measure m; is supported by 0G;.

Proof. Lét m/ be a representing measure on 0G; for the functional of .
evaluation at a; on P(0G)) (the algebra of functions on 6G that can be uniformly
approximated by polynomials). Since 0G;CdX, the measure mj; also represents
the functional of evaluation at a; on P(@X ). Therefore m/ =m; by the uniqueness
of the latter. N

Proposition 3. The non-degenerate Gleasen parts. of P(0X) are precisely
 the sets Gy, G,, Gy, ....

Proof. It is easy to show that each point of 0X constitutes by itself a Gleason .
part of P(0X). Hence the Gleason part containing a; is contained in X —0X. By
the Wermer embedding theorem [15], each Gleason part in a Dirichlet algebra is
a continuous image of the open unit disc, and therefore is connected. Hence the
Gleason part containing a; is contained in G;. On the other hand, it follows imme-
diately from HARNACK’s inequality that G; is contained in a single Gleason part [2].

Proposition 4. If i#j then the measures m; and m; are mutually szngular
The measures m; contain no atoms.

For the proof, se€ [4, Proposition 4].

Proposition 5. If the finite complex Borel measure p on 0X annihilates P(oX),
then p has the form
J

where each h; is a function in Hi(m;) and

. | 3 inldmy<es.
J .
This is proved in [4].
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For convenience in notation we henceforth let G stand for any one of the
domains G;, and we let a denote the correspending point a; and m the correspond-
ing measure m;. For zin G we let m, denote the representmg measure for the functio-

nal of eValuatlon at z on P(0X).

Proposition 6. If z is in G then the measure m, is absolutely continuous
with respect to m and dm,/dm is bounded. As z varies over any compact subset of G
the derivatives dm_{dm remain uniformly bounded.

For the proof, see [2].

If fis a function in H?(m) (p=1,2) and {f,,}1 is a sequence of functions in
P(0X) converging in L?(m) to f, then it follows from Proposition 6 that {f,} con-
verges uniformly on every compact subset of G. The limit function is thus analytic
in G and clearly depends only on f; not on the approximating sequence {f,}. We
denote the analytic function associated in this manner with f by f;; obviously

fo@) = [fam,  zea.

Let H=(m) denote the weak-star closure of P(0X) in L=(m). An equivalent
definition is H=(m)=H?(m) L=(m). The space H=(m) is easily seen to be an
algebra. We let H*(G) denote the algebra of all analytic functions fi; with fin H=(m).
A function in H=(m) is called an inner function if it has unit modulus almost every-
where (m).

Proposition 7. There is an inner function w in H=(m) with the following prop- -
erties.

() If [ is in HY(m) and f(a) =0, then fiw is in H'(m).

(ii) The function wg is a unwalent map of G onto the open unit dlsk D, with
wela)=0.

(i) If [ is in H%(m), then for z in G

h@=§@ﬂ%@m

"~ The furiction w is unique to within a multiplicative constant of unit modulus.

These results are due to WERMER [15]. Actually, WERMER only proves (i) for
functions f in H2(m), but the-result for functions in H!(m) follows immediately.

From now on we let w stand for a fixed function with the propertles described
in the precedmg proposition, and we define Yy =wg, p= 1/1 1.1t is easy to see that
{w"}g is an orthonormal sequence in H2(m).

For 0<r<1 let I, be the image under ¢ of the circle C,={z:|z| =r} in the
unit disc D, and let m, be the measure on I, obtamed by transplantmg normallzed
Lebesgue measure from C,.

Proposrtlon 8. limm,=m in the weak—star topology of the dual of C(G).

r—=1
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Proof. If fis in P(0X), then for 0 <r<1 we have

2m .
. 1 . 1
/fdmr = 2—n/(f0 p)(ret)dt = f(p(0)) = f(a).
0 .
© Hence every weak-star cluster point m’ of the net {m,}y<,<, satisfies

Jram = f@

. for all fin P(0X). Also every weak-star cluster point of {m,} is clearly a positive
measure supported by 0G. Since the functional of evaluation at a on P(dX) has
a unique representing measure, we may conclude that no measure other than m
can be a weak-star cluster point of the net {m,}. But every subnet of this net has
a weak-star cluster point because the closed unit ball in C(G)* is weak-star compact.
This proves the proposition. -

(For j)’ in H?(m) (p=1, 2) we define the analytxc function f;, in. D by f(z) =.
= /o9

Prop051tlon 9. For p=1, 2 the mapf—»jD is an iso metry of H?(m) onto HP(D)
Proof. If fis. a function in P(0X) then

St dm = tim [ 1£17 dm,

by Proposition 8. On the other hand

/If!"dm /Ifo(re”)l"df L 0=<r<l,

and as r—1 the right side here goes to the p-th power of the norm of f, in H?(D).
Thus our map is an isometry of a dense subset of H?(m) into- H?(D), and so is iso-
metric on all of H?(m). From part (iii) of Proposition 7 we see that the image of
H2(m) under the isometry contains all functions with square-summable Taylor
coefficients and thus consists of all of H2(D). Since H?(D) is dense in H‘(D) the
image of H!(m) consists of all of H(D).

Actually Proposition 9 holds for general p, but that is superﬂuous to our present
needs.

Proposn:lon 10. If the funcnonf in H(m) does not vanish almost everywhere
{m), then it is non-zero almost everywhere (m).

Proof. When fg(a) #0 this follows from [6, Theorem 6. 4]. Suppose on the
-other hand that f;(a)=0 but that / does not vanish -almost everywhere. Then by
Proposition 9 the function f; is not identically zero, and therefore it has a zero of
some finite order k at a. By Proposition 7, the function g=f/w* then belongs to
Hl(m) and furthermore gg(a) #0. Hence g is non-zero almost everywhere, and

.since |w|=1 a.e. this proves the result forf
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Proposition 11. The following topologies on H=(m) are identical.

(T,) The weak-star. topology on H=(m) as a subspace of the dual of L(m)

(B;) The weak operator topology on H=(m) as an algebra of multiplication
operators on L%(m)

(B,) The weak operator topology on H°°(m) as an algebra of multiplication
operators on H¥(m).

Proof. That (TB,) and (W,) are identical follows immediately from their
definitions. Also it is obvious that (2;) is courser than (8,). Now a basic neigh-
borhood of the origin for (I,) is a finite intersection of sets of the form

V(. g:¢) =,{hE-H°°(m): ‘fhfg'dm‘%s},

where f and g are functions.in L2(m) and ¢ is a positive real number, It only remains
to show that any such V(f, g; ¢) contains a neighborhood of the origin for (8,),
that is, a finite intersection of sets V(f”, g’; &) with f” and g’ in H2(m). Consider
first the special case where f and g are positive and bounded from zero. Then by
[6, Theorem S. 9] there is a function f” in H?(m) such-that |f’|2=fg a.e. (m), and
.we have V(f,f;9)=V(f g;¢), as desired. In the general case we can write
f=U1—fD+i(fs—fs) § = (g1—82)+i(g3—g4), where f; and g; are positive
and bounded from zero. We then have

ﬂ= V({f;, & e[16)C V(f, g; ¢),

which reduces the general case to the special case’ Just treated. The proof of the
proposition is complete.

Proposition 12. (i) The space H=(G) consists of all bounded analytic functions
in G. ' :
. (i1) The polynomials in w are weak-star dense in H=(m).

Proof. We consider the isometry of H2(m) onto H3(D) defined by f—f; (see
Proposition 9). This transformation at the same time sends H>(m) onto a certain
subalgebra of H=(D), and in partlcular sends the function w onto the coordinate
function in D (i. e. wy(z) =z). Also it is obvious that the transformation on H>(m)
is a homeomorphism relative to the weak topologies of H=(m) and its image as
.algebras of multiplication operators on H2(m) and H2(D) respectively. Since, as
is well-known, the polynomials are weak-star dense in H=(D), the present proposi-

tion now follows from the preceding one.

Proposition 13. Let h be a function in Hi(m). Then the measure hdm anmht-
lates all rational functions having no poles in G

Proof. By the same argument as used in the proof of Proposition 2, the measure
m represents evaluation at a on the algebra of rational functions w1th no poles in
G. Now h=lim h, where each A, is a polynomial vanishing at a and the limit is in
the norm of Ll(m) Hence if ¢ is a rational function without poles in G then

fgh dm = limfgh,, dm = lim g(a)h,(a) = 0.
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3. Normal operators with spectra on 0.X

Let ® be a Hilbert space and let A be a normal operator on & whose spectrum:
is contained in 0X. Let E be the spectral measure of 4, and for each pair of vectors
x, y in ® let (Ex, ¥) denote the Borel measure on 0X that assigns to the Borel set S
the mass (E(S)x, ). For j=1, 2,3, ...let ; be the set of all x in & such that (Ex, x)
is absolutely continuous with respect to m;, and let &, be the set of all x in & such
that (Ex, x) is singular with respect to every m;. The sets §; are mutually orthogonal

reducing subspaces of Aand & = Z' @ R [58 6612). We denote by A; the restric--
0

tion of 4 to &; and by R; the orthogonal projection in & with range f;,7=0,1,2,.

For any two vectors X, y in &, the measure (ER;x, ), j=0, is the absolutely contl-
nuous component of (Ex, y) with respect to m;, while (ER,x, y) is the singular
component of (Ex, y) with respect to the famlly of measures- {m; ]-1 2,3,...}

Lemma 1.Let M be an invariant subspace of A. Then

@ , sm:Z@R.Sm.'

Moreover the subspace R, Ik reduces A, and for j=0 the subspace R is invariant
under. 9(A;) for every rational functions ¢ having no poles in G;.

Proof. Let x be any vector in . Then for y in I+ we have

0=(rx,) = [7dEGDx ), n=0,1,2,.

and so the measure (Ex, y) annihilates P(@X ). It thus follows from Proposmons 5
and 13 that
' (a) the measure (ERyx, y) vanishes identically, .
G(b) the measure (ER;x, y) annihilates all rational functrons having no poles.
in. =1,2,3,.
it follows from (a) and (b) that R;x is orthogonal to M~", and therefore that.
Rjx isin M (j=0,1,2,...). In other words M is invariant under every R;. Since

Z' R;=1, the decomposrtlon (2) follows immediately.

From (a) it follows that E(S)R,x is orthogonal to EUEJ', and is therefore in.
M, for every Borel subset S of dX. This implies that 4* Ryx is in MM, and hence in
Ry, Thus Ry reduces A.

‘Suppose finally that g is a rational functron without poles in G; (j fixed, j>0)..
Then from (b) it follows that .

(e(4)R;x, y) = f 0d(ER;x,y) = 0.
Therefore o(A; )R x is in R;IR, and we may conclude that R, is invariant under
Q(AJ) -

2) We shall always write « for the upper limit in summations over j, even though these are-
actually finite summations in cases where the interior of X has only finitély many components..
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Lemma 2. Suppose that none.of the measures m; are absolutely continuous
with respect to E. Then every invariant subspace of A is a reducing subspace of A.

Proof. Let I be an invariant subspace of A4, let x be any vector in I, and
let y be any vector in M. Then the measure (Ex, y) is orthogonal to P(6X). Since
none of the measures m; are absolutely continuous with respect to (Ex, y), it follows
from Propositions 5 and 10 that (£x, y) vanishes identically. This implies that
A*x is orthogonal to MM+ and therefore in M. We may conclude that 9 reduces A.

If § is a subspace of &, then by the projection of A onto § we mean the operator
T on § defined by Tx=PAx, where P is the orthogonal projection in § with range
§. Thus A is a dilation of its projection onto §) if and only if § is semi-invariant
under A.

Lemma 3. Assume that § is a semi-invariant subspace of A such that the pro-
Jection T of A onto § is normal and has its spectrum on dX. Then  reduces A.

Proof. Let F be the spectral measute of 7. Suppose x is a vector in §. Then
for every non-negative integer n we have .

fz" d(F(z)x, x) = (T"x, x) = (A".X X) = fz" d(E(2)x, x).

Since P(6X) is a Dirichlet algebra, and since (Ex, x) and (Fx, x) are real measures,
it follows that (Ex, x) =(Fx, x). '

Now by Lemma 0 we have .S;) = MON where M and N are invariant sub-
spaces of A such that R M. Let § be the set of all x in § such that none of the
measures m; are absolutely continuous with respect to (Ex x). It follows from the
-observation of the precedmg paragraph and from well known properties of normal
.operators that S is dense in §. Let x be any vector in I. Then it follows from Lemma 2

that the two subspaces \/A X, \/A*"x coincide with one another and with the
0

0
smallest reducing subspace of A containing x. Since obviously

VArxcO, VAmxc Nt
(8] 1]

we may conclude that Ax ‘and A*x are in $. Hence we have shown that AJ<H
and A*§cH. This together with the denSIty of § in O implies that § reduces A.

4. On operators having X as a spectral set

Theorem 1. Let the operator T on the Hilbert space  have X as a spectral
set. Then T has a decomposition

6 T=3or,,

where
(a) T, is a normal operator whose spectrum is contained in 0X and whose spectral
measure is singular with respect to every m;,
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(b) for j=0, T; has G; as a spectral set, '
(c) for j=0, the spectral measure oj the minimal normal G| -dilation of T; is
absolutely continuous with respect to m;

Proof. By Theorem O, there is a minimal normal X-dilation 4 of T acting
on a Hilbert space § containing . We carry over the notations introduced in the
preceding section. By Lemma 0 we have § = MO N where 9)2 and M are invariant
subspaces of 4 such that i)?cim By Lemma 1 .

M= ORM, %K= ORN,
. i=0 . j=0

and therefore.

DMz

9=>@p

1]
<
[

i

where §; = RIMORM. It is evident that each H; reduces 7, and - therefore (3)
holds with T, =T9;.

Cons1der a fixed j>0. By Lemma 1, if ¢ is a rational functlon with no poles
in G;, then R and R;M are invariant under the operator ¢(4;). As is easily seen,
this 1mphes that the prOJectlon of ¢(4;) onto §; equals o(T}). (In partlcular o(T)
ex1sts) Property (b) now follows by Proposition 2: Moreover it is clear that A;
. is_a minimal normal G;-dilation of T;, and therefore (c) holds.

Finally, (a) follows 1mmed1ately from the fact that $, reduces A (see Lemma 1). .

If Tis an operator having X as a spectral set, then we shall say that T is X-pure
provided there is no invariant subspace £’ #{0} of T such that T|9’ is normal
and has its spectrum on 0X. For the case where X is the closed unit disk, the concept
of X-purity reduces to that of complete non-unitarity. If 7 has X as a spectral set
and is X-pure, then the operator T, of Theorem 1 must be trivial, and therefore T
has the closure of the interior of X as a spectral set. This conclusion also follows
from a result of Foias (see the last proposition in [3]).

Theorem 2. Let T be a Hilbert space operator having X as a spectral set. Then
T has a unique decomposition as. the direct sum of an X-pure operator and a normal
operator with spectrum on 0X. °

Proof. By Theorem 0 there is a normal X-dilation 4 of T. If £’ is an invariant
subspace of T such that 71§’ is normal and has its spectrum on 0X, then §’ reduces
A by Lemma 3. Therefore the span & of all such subspace §’ is a reducing subspace -
of T such that 7”=T'|& is normal and has its spectrum on 0X. It follows immediately
from the definition of & that the operator T7=T|2" is X-pure, and thus the
decomposition T = T’@T" is of the required form. The uniqueness of this decom-
position follows immediately from the definition of 2. .

Theorem 3. Let the operator T on the Hilbert space § have X as a spectral
set, and assume that T is X-pure. Let the subspaces ; of ,j=1,2, ..., be as defined
in the proof of Theorem 1. (It follows from the proof of Theorem 1 that D, is trivial.)
Let A be a normal X-dilation of T acting on a Hilbert space § containing 9, and let
E be the spectral measure of A. Then for any non-zero vector x in 9;, the measure
- {Ex, x) is mutually absolutely continuous with m; .

20 A
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Proof. By Lemma 0 we have = MO where M and N are invariant
subspaces of 4 such that #<IN. Let x be a non-zero vector in ;. We know from
Theorem 1 that (Ex, x) is absolutely continuous with respect to m;. Suppose that
(Ex, x) is strictly absolutely continuous with respect to m;. Then, lettmg $’ denote
the smallest reducing subspace of 4 containing x, we have

&= e = o

by Lemma 2. Since obviously V A"x I and V A*"\CCER'L, we have ' 9. There-

fore § is a non-trivial reducmg subspace of T such that T [©” is normal and has
its spectrum on 0X. But this contradicts our hypotheses. We may conclude that
(Ex, x) is not strictly absolutely continuous with respect to m;.

Now let G denote a particular one of the domains G; and let m denote the
corresponding measure m;. Consider an operator T on a Hllbert space § which
has G as a spectral set and which is G- -pure. Let 4 be a minimal normal G-dilation
of T. If h is a function in H>(m), then since the spectral measure of A is absolutely
continuous with respect to m (Theorem 3), the operator h(A) is defined by the
standard functional calculus for normal operators. We thus have a natural map
of H=(m) onto the operator algebra H*(A)={h(4):heH=(m)}. This map is an
algebra isomorphism and is a homeomorphism relative to the weak-star topology
on H=(m) and the weak operator topology on H*(4). The last assertions follow -
* readily from the fact that not only is the spectral measure of A4 absolutely continuous
with respect to m, but also m is absolutely continuous with respect to the spectral
measure of A (Theorem 3). Now each operator A(4) in H~(4) corresponds by
projection to an operator on £, which we denote by A(T). We thus have a natural
map from H>=(m) onto the class of operators H*(T) = {h(T): h¢ H=(m)}. It is easily
seen that H=(T) is an algebra, and that the map of H*(m) onto H=(T) is an
algebra homomorphism and is continuous relative to the +weak-star topology
on H=(m) and the weak operator topology on H=(T). If w is a bounded analytic
function in G, then by Prop'osition 12 we have w = hg for some (unique) / in H>(m),
and we shall write w(T) in place of A(T).

Consider in particular the functions w, i = =Wg, and p=y~! (see Proposmon
7 and the remarks following it). Since w is an inner function the operator w(4)
is unitary, and therefore the operator S= /(T) is a contraction. The operators
A and w(4) have the same invariant subspaces since each is a weak limit of poly-
nomials in the other (Proposition 12). This makes it clear that w(4) is a minimal
unitary dilation of S and that S is completely non-unitary. If @ is a bounded analy-
tic function in the unit disc, then we have the composition law w(S)=(woy)(T).
Indeed, this is easy to verify if @ is a polynomial, and therefore it holds in general
by weak continuity. In particular ¢(S)=T.

By combining the preceding observations with Theorems 1 and 2, we obtain
the following characterization of those operators having X as a spectral set.

Theorem 4. The Hilbert space operator T has X as a spectral set if and only
if it has the form
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where Ty is a normal operator with its spectrum on 0X, the S; are completely non-
unitary contractions, and ; is for each j a conformal map of the unit disc onto G;.

Actually we have only proved half of this theorem, the half which asserts that
T has the form (4) if it has X as a spectral set. But the other half follows easily from
well-known properties of contraction operators.

In conclusion we mention that if the operator T has X as a spectral set and
is X-pure, then the above discussion shows us how to define w(T) whenever w
is a bounded analytic function in the interior of X. The functional calculus used
above is an extension of and was motivated by the functional calculus for con-
tractions developed by Sz.-NaGY and Foias [11], [13], and by SCHREIBER [9], [10].
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