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1. Introduction 

Let I be a compact subset of the plane with a connected complement. The-
present paper is based on the following result, which was discovered independently 
b y F O I A § [3] , L E B O W [8] a n d B E R G E R [1] . 

T h e o r e m 0. Every Hilbert space operator having X as a spectral set has a nor-
mal dilation whose spectrum is contained in dX. 

(We recall briefly a few definitions. If T is an operator [= bounded linear trans-
formation] on a Hilbert space then a compact subset of the plane Y is called a 
spectral set for T if it contains the spectrum of T and satisfies 

( l ) HeCDH s s u p | e ( z ) | 
zt=Y 

for all rational functions Q having no poles on Y. If Y has a connected complement 
then it suffices that (1) hold whenever Q is a polynomial. A dilation of 7" is an operator 
A which acts on a Hilbert space ® containing § as a subspace and which satisfies 
T"P = PA"P for all positive integers n, where P is the orthogonal projection in 
$ with range This dilation is called minimal if § is contained in no proper reduc-
ing subspace of A. The dilation in Theorem 0 becomes unique to within isomorphism 
if one imposes on it the condition of minimality. A dilation A of T is called a 
Y-dilationif its spectrum is contained in DY and if Q(A) is a dilation of Q(T) for 
every rational function Q having no poles on Y. If Y has a connected complement, 
then every dilation of T with spectrum on DY is automatically a Y-dilation.) 

In the present paper we use Theorem 0 to study operators having J a s a spectral 
set. We eventually obtain a characterization of all such operators (Theorem 4). 
For the case where X is the closed unit disc, this characterization reduces to a well-
known theorem (see L A N G E R [7] and S Z . - N A G Y — F O I A § [ 1 2 ] ) which states that 
every contraction operator on a Hilbert space has a decomposition into the direct 
sum of a unitary operator and a completely non-unitary contraction. 

*) This research was performed while the author was supported by the National Science 
Foundation under a Postdoctoral Fellowship. 
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Our arguments depend largely on properties of the algebra P(dA'), the space 
of functions on dX that can be uniformly approximated by polynomials. The 
required results about P(<9X) are exposed in Section 2, where we also introduce 
certain notations which are retained throughout the paper. Section 2 is rather 
lengthy as it seemed best to give a fairly complete discussion. Section 3 is devoted 
to three lemmas concerning the invariant subspaces of normal operators with 
spectra on dX. The main results are in Section 4. These relate chiefly to direct sum 
decompositions of operators having l a s a spectral set. We also discuss briefly a 
functional calculus for a subclass of these operators. 

To conclude this section we obtain a useful lemma concerning semi-invariant 
subspaces. This result will be stated in somewhat greater generality that is needed 
for our immediate purposes. Suppose that S is a semi-group of operators on a 
Hilbert space KB. Then a subspace § of Si is called semi-invariant under S if the 
orthogonal projection P onto § satisfies PAPBP—PABP for all A and B in S. 
•Of interest in the present paper is the case where S consists of the non-negative 
integral powers of some fixed operator A; we then call a semi-invariant subspace 
of S a semi-invariant subspace of A. This notion bears an obvious relation to that 
•of an operator dilation. 

L e m m a 0. Let S be a semi-group of operators on a Hilbert space Si. Then a 
subspace ¡Q of S is semi-invariant under S if and only if it has the form § = WQ^t 
where 9J1 and are invariant subspaces of S such that 9? cz9Ji. 

P r o o f . The proof that § is semi-invariant if it has the described form is 
straightforward and we therefore omit it. To prove the other half of the lemma, 
let § be a semi-invariant subspace of S and assume without loss of generality that 
S contains the identity operator.. Let 3JJ be the smallest invariant subspace of S 
containing and let P and Q be the orthogonal projections onto $Q and 931 res-
pectively. We can complete the proof by showing that the subspace Si = 9Ji©i) 
is invariant under S, or equivalently, that 

. (Q-P)A{Q-P)=A(Q-P) 

for all A in S. F rom now on, let A denote a fixed operator in S. As the equalities 
QAQ =AQ and QAP=AP clearly hold, it will be enough to show that PAP = PAQ. 
N o w if B is in S and y is in ip, then by semi-invariance, 

PA PBy = PA PBPy = PABPy = PABy. 

But by its definition, SIR is the subspace spanned by all the vectors By with y in ¡Q 
a n d B in S. We may conclude that PAPx = PAx for all x in and this implies 
the desired equality PAP = PAQ. The proof is complete. 

The author is grateful to Professor F o i a § for pointing out the preceding proof, 
which is simpler than the one originally submitted. In spite of its elementary charac-
ter, Lemma 0 seems to have been thus far overlooked. 
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2. The algebra P(5X) 

Le t ~P(8X) denote the algebra of all functions on oX that can be uniformly 
approximated by polynomials. We give P(<3X) the supremum norm. The set X is 
(with the usual abuse of language) the maximal ideal space of this algebra. We 
list below as propositions the needed properties of P ( 5 Z ) and provide proofs where 
none exist in the literature. In terminology we follow W E R M E R [ 1 5 ] and H O F F M A N [6]. 

P r o p o s i t i o n 1. P(őX) is a Dirichlet algebra, that is, every real continuous 
function on 8X can be uniformly approximated by the real parts of polynomials. 

This result is due to W A L S H [ 1 4 ] . 

Let Gx, G2, G3, ... be the components of the interior of X, and for each ./' 
choose a point as in Gj. Let m} denote the (unique by Proposition 1) representing 
measure on 8X for the functional of evaluation at aj on P(dX). We denote by 
H p ( m j ) , p = 1,2, the closure of P(8X) in ~Lp(mj), and by W0(mj) the subspace of 
H " ( m j ) consisting of those functions that are annihilated by nij. 

P r o p o s i t i o n 2. The measure mj is supported by 8Gj. 

P r o o f . Lét mj be a representing measure on 8Gj for the functional of 
evaluation at a,- on P ( 8 G j ) (the algebra of functions on cGj that can be uniformly 
approximated by polynomials). Since 8Gj a 8X, the measure mj also represents 
the functional of evaluation at aj on F(8X). Therefore mj = mj by the uniqueness 
of the latter. 

P r o p o s i t i o n 3. The non-degenerate Gleason parts of P(öX) are precisely 
the sets , G2, G3, — 

P r o o f . It is easy to show that each point of 8X constitutes by itself a Gleason 
part of P(<5X). Hence the Gleason part containing ĉ - is contained in X—8X. By 
the Wermer embedding theorem [15], each Gleason part in a Dirichlet algebra is 
a continuous image of the open unit disc, and therefore is connected. Hence the 
Gleason part containing a s is contained in G} . On the other hand, it follows imme-
diately f rom H A R N A C K ' S inequality that Gj is contained in a single Gleason part [2]. 

P r o p o s i t i o n 4. If i ^ j then the measures m ; and mj are mutually singular. 
The measures m} contain no atoms. 

For the proof, see [4, Proposition 4]. 

P r o p o s i t i o n 5. If the finite complex Borel measure ¡x on 8X annihilates PidX), 
then fi has the form 

d/x = 2hjdmj, 
J 

where each hj is a function in H J ( m j ) and 

2 f \hj\ dmj<=°. 
j 

This is proved in [4]. 
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For convenience in notation we henceforth let G stand for any one of the 
domains Gj, and we let a denote the corresponding point aj and m the correspond-
ing measure rrij. For z in G we let mz denote the representing measure for the functio-
nal of evaluation at z on P ( 5 Z ) . 

P r o p o s i t i o n 6. If z is in G then the measure m, is absolutely continuous 
with respect to m and dmjdm is bounded. As z varies over any compact subset of G 
the derivatives dmjdm remain uniformly bounded. 

For the proof, see [2]. 
If / is a function in №(«?) (p = 1,2) and {f„}™ is a sequence of functions in 

P(cUQ converging in Lp(m) to / , then it follows f rom Proposition 6 that {/„} con-
verges uniformly on every compact subset of G. The limit function is thus analytic 
in G and clearly depends only on / , not on the approximating sequence {/„}. We 
denote the analytic function associated in this manner with / b y / G ; obviously 

/GOO = Jfdm2, z£G. 

Let H~(m) denote the weak-star closure of F(dX) in L~(m). An equivalent 
definition is H~(m) — H2(m) PlL~(m). The space H~(w) is easily seen to be an 
algebra. We let H°°(<7) denote the algebra of all analytic functions fG with / i n H°°(m). 
A function in H°°(m) is called an inner function if it has unit modulus almost every-
where (m). 

P r o p o s i t i o n 7. There is an inner function w in H°°(w) with the following prop-
erties. 

(i) I f f is in H 1 (m) and fc(d)= 0, then f f w is in H x (m) . 
(ii) The function wG is a univalent map of G onto the open unit disk D, with 

»v c(a)=0. 
(iii) If f is in H2(m), then for z in G 

fa 00 • = 2 ( f , w") l>c (z)]n. 
n = 0 

The function w is unique to within a multiplicative constant of unit modulus. 

These results are due to W E R M E R [ 1 5 ] . Actually, W E R M E R only proves (i) for 
functions / in H 2 ( m ) , but the result for functions in Yll(m) follows immediately. 

From now on we let w stand for a fixed function with the properties described 
in the preceding proposition, and we define \j* = wG, = It is easy to see that 
{iv"}o is an orthonormal sequence in H2(m). 

For let rr be the image under tp of the circle Cr = {z:\z\-r} in the 
unit disc D, and let mr be the measure on Fr obtained ,by transplanting normalized 
Lebesgue measure from Cr. 

P r o p o s i t i o n 8. lim mr = m in the weak-star topology of the dual of C(G). 
r->l 
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P r o o f . I f / i s in P(dA'), then for 0 < r < l we have 

j'f dmr = ~ j ( f o <P) (re") dt = f((P (0)) = f(a). 
o 

Hence every weak-star cluster point m' of the net { w r } 0 < r < 1 satisfies 

Jfdm' =f(a) 

for all / in Also every weak-star cluster point of {mr} is clearly a positive 
measure supported by dG. Since the functional of evaluation at a on P(SA') has 
a unique representing measure, we may conclude that no measure other than m 
can be a weak-star cluster point of the net {mr}. But every subnet of this net has 
a weak-star cluster point because the closed unit ball in C(G)* is weak-star compact. 
This proves the proposition. 

For / in Hp(m) (p = 1, 2) we define the analytic function fD in D by fD(z) = . 

=M?(z)). 

P r o p o s i t i o n 9. For p = 1 ,2 the map f -+fD is an isometry of№(m) onto №(Z>) 

P r o o f . If / i s a function in Y(dX) then 

f \f\p dm = lim f \f\p dmr 

by Proposition 8. On the other hand 
2K 

J\f\"dmr = ~ J\fD(re")\»dt, 0 < r < l , 
o 

and as r — 1 the right side here goes to the p-th power of the no rm of fD in №(!)) . 
Thus our map is an isometry of a dense subset of Hp(m) into №(Z>), and so is iso-
metric on all of №(«?). From part (iii) of Proposition 7 we see that the image of 
H2(m) under the isometry contains all functions with square-summable Taylor 
coefficients and thus consists of all of H 2 ( D ) . Since H 2 ( D ) is dense in H ^ D ) , the 
image of H ' (m) consists of all 'of H1(Z)). 

Actually Proposition 9 holds for general p, but that is superfluous to our present 
needs. 

P r o p o s i t i o n 10. If the function f in H l ( m ) does not vanish almost everywhere 
(m), then it is non-zero almost everywhere (m). 

P r o o f . When f d a ) ^ 0 this follows from [6, Theorem 6.4]. Suppose on the 
•other hand that fa(a)= 0 but that / does not vanish almost everywhere. Then by 
Proposition 9 the function fG is not identically zero, and therefore it has a zero of 
some finite order k at a. By Proposition 7, the function g=fjwk then belongs to 
H 1(m), and furthermore gG(a) ^ 0. Hence g is non-zero almost everywhere, and 

..since M = 1 a. e. this proves the result for / 
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P r o p o s i t i o n 11. The following topologies on H°°(m) are identical. 
(StBO The weak-star topology on H°°(m) as a subspace of the dual of L l ( m ) 
(SB2) The weak operator topology on H°°(m) as an algebra of multiplication 

operators on L2(m) 
(2B3) The weak operator topology on H~(w) as an algebra of multiplication 

operators on H2(m). 

P r o o f . That (SBj) and (3B2) are identical follows immediately f rom their 
definitions. Also it is obvious that (283) is courser than (SB2). Now a basic neigh-
borhood of the origin for (SB2) is a finite intersection of sets of the form 

V(J,g\e) = \h£H°°(m): \fhfgdm\<e}, 

where / and g are functions, in L 2 (m) and £ is a positive real number. It only remains 
to show that any such V ( f , g; e) contains a neighborhood of the origin for (283), 
that is, a finite intersection of sets V(f',g'; e') with / ' and g' in H2(m). Consider 
first the special case where / and g are positive and bounded f rom zero. Then by 
[6, Theorem 5. 9] there is a funct ion / ' in H 2 (m) such that \f'\2 =fg a. e. (m), and 
we have V ( f , f ' , s) — V ( f , g; e), as desired. In the general case we can write 
/ = ( / 1 - / 2 ) + ¿ ( / 3 - / 4 ) . 8 = (gi-g2) + Kg3-sd' where f j and gj are positive 
and bounded f rom zero. We then have 

r\ V(fj,gk;ell6)czV(f,g-,£), 
j,k = l 

which reduces the general case to the special case just treated. The proof of the 
proposition is complete. 

P r o p o s i t i o n 12. (i) The space H~(G) consists of all bounded analytic functions 
in G. 

• (ii) The polynomials in w are weak-star dense in H~(m). 

P r o o f . We consider the isometry of H 2 (m) onto H 2 (D) defined b y / — / , (see 
Proposit ion 9). This t ransformation at the same time sends H°°(m) onto a certain 
subalgebra of H°°(Z>), and in particular sends the funct ion w onto the coordinate 
function in D (i. e. >vD(z) = z). Also it is obvious that the t ransformation on H~(m) 
is a homeomorphism relative to the weak topologies of H°°(m) and its image as 
algebras of multiplication operators on H 2 (m) and H2(£>) respectively. Since, as 
is well-known, the polynomials are weak-star dense in H°°(D), the present proposi-
tion now follows f rom the preceding one. 

P r o p o s i t i o n 13. Let h be a function in HJ(m). Then the measure hdm annihi-
lates all rational functions having no poles in G. 

P r o o f . By the same argument as used in the proof of Proposit ion 2, the measure 
m represents evaluation at a on the algebra of rational functions with no poles in 
G. Now h = \imhn where each h„ is a polynomial vanishing at a and the limit is in 
the norm of L 1(m). Hence if g is a rational function without poles in G, then 

Jghdm = lim f ghndm = lim g(a)hn(a) - 0. 
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3. Normal operators with spectra on dX 

Let $ be a Hilbert space and let A be a normal operator on £ whose spect rum 
is contained in dX. Let E be the spectral measure of A, and for each pair of vectors 
x, y in ® let (Ex, y) denote the Borel measure on 8X that assigns to the Borel set S 
the mass ( E ( S ) x , y). For j = 1, 2, 3 , . . . let be the set of all x in & such that (Ex, x) 
is absolutely continuous with respect to rrij, and let be the set of all x in S such 
that (Ex, x) is singular with respect to every mj. The sets S j are mutually or thogonal 

reducing subspaces of A and it! = 2 © [5, § 66]2). We denote by AJ the restric-
0 

t ion of A to Sj- and by RJ the or thogonal projection in .fi with range = 0, 1 , 2 
For any two vectors x, y in Si\ the measure (ERjX, y), j 0, is the absolutely conti-
nuous component of (Ex, y) with respect to mj, while (ER0x, y) is the singular 
component of (Ex, y) with respect to the family of measures {m7-:j= I, 2, 3, ...}.. 

L e m m a 1 .Let 3ft be an invariant subspace of A. Then 

(2) m= 
J = 0 

Moreover the subspace R03Jt reduces A, and for 7 >0 the subspace RjiR is invariant 
under Q (AJ) for every rational functions q having no poles in GJ. 

P r o o f . Let x be any vector in 3ft. Then for y in we have 

0 = (Anx,y)=fz"d(E(z)x,y), n = 0 , 1 , 2 , . . . , 

and so the measure (Ex, y) annihilates P(dX). I t thus follows f r o m Proposit ions 5: 

and 13 that 
(a) the measure (ER0x, y) vanishes identically, 
(b) the measure (ERjX, y) annihilates all rat ional funct ions having no poles-

in Gj, 7 = 1, 2, 3, 
I t follows f r o m (a) and (b) that R j x is or thogonal to Sift-1", and therefore t h a t 

RjX is in 3ft (j=0, 1, 2, ...). In other words, 2ft is invariant under every Rj. Since 

2 R j —1> the decomposition (2) follows immediately. 
0 

F r o m (a) it follows that E(S)R0x is or thogonal to 9}?^, and is therefore in. 
3ft, for every Borel subset S of 8X. This implies that A* R0x is in 3ft, and hence in 
i?03ft. Thus i?03ft reduces A. 

Suppose finally that Q is a rat ional funct ion without poles in GJ (J fixed, J > 0). 
Then f r o m (b) it follows that 

(e(Aj)RjX, y ) = f Q d(ERjX,y) = 0 . 

Therefore Q(AJ)RJX is in RJ^FFL, and we may conclude that RJWT is invariant u n d e r 
Q(Aj). 

2) We shall always write ~ for the upper limit in summations over j, even though these are-
actually finite summations in cases where the interior of X has only finitely many components-
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L e m m a 2. Suppose that none of the measures mj are absolutely continuous 
with respect to E. Then every invariant subspace of A is a reducing subspace of A. 

P r o o f . Let 3JJ be an invariant subspace of A, let x be any vector in and 
let y be any vector in SOI-1". Then the measure (Ex, y) is orthogonal to P(5X). Since 
none of the measures mj are absolutely continuous with respect to (Ex, y), it follows 
from Propositions 5 and 10 that (Ex, y) Vanishes identically. This implies that 
A*x is orthogonal to StJi-1" and therefore in SR. We may conclude that 3JI reduces A. 

If ip is a subspace of Si, then by the projection of A onto £) we mean the operator 
T on ig defined by Tx = PAx, where P is the orthogonal projection in Si with range 

Thus A is a dilation of its projection onto ig if and only if ip is semi-invariant 
under A. 

L e m m a 3. Assume that § is a semi-invariant subspace of A such that the pro-
jection T of A onto Jp is normal and has its spectrum on dX. Then $g reduces A. 

P r o o f . Let F be the spectral measuie of T. Suppose x is a vector in ip. Then 
for every non-negative integer n we have 

Jz" d(F(z)x, x) = (T"x, x) = (Anx, x) = Jz" d(E(z)x, x). 

:Since is a Dirichlet algebra, and since (Ex, x) and (Fx, x) are real measures> 
it follows that (Ex, x) = (Fx, x). 

Now by Lemma 0 we have ip = 9Jf©9i where Sift and 91 are invariant sub-
spaces of A such that 9ic9!Jf. Let Q be the set of all x in § such that none of the 
measures mj are absolutely continuous with respect to (Ex, x). It follows from the 
observation of the preceding paragraph and f rom .well-known properties of normal 
•operators that $ is dense in ip. Let x be any vector in ft. Then it follows from Lemma 2 

that the two subspaces V A"x, V A*"x coincide with one another and with the 
o o. 

smallest reducing subspace of A containing x. Since obviously 

yA"xc.m, \/A*"xczf< 
0 0 

we may conclude that Ax "and A*x are in Hence we have shown that Aft dig 
and This together with the density of ft in ig implies that § reduces A. 

4. On operators having Z as a spectral set 

Theorem 1. Let the operator T on the Hilbert space Sg have X as a spectral 
.set. Then T has a decomposition 

<3) t = 2 ® T j , 
j-0 

where 
(a) T0 is a normal operator whose spectrum is contained in dX and whose spectral 

measure is singular with respect to every mJy 
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(b) for . / > 0 , Tj has Gj as a spectral set, 
(c) for 7 > 0 , the spectral measure of the minimal normal G¡-dilation of Tj is 

absolutely continuous with respect to mj. 

P r o o f . By Theorem 0, there is a minimal normal X-dilation A of T acting 
on a Hilbert space it1 containing We carry over the notations introduced in the 
preceding section. By Lemma 0 we have § = where 931 and are invariant 
subspaces of A such that -JicSJt. By Lemma 1 

3W = 2 ®Rj'M, m = 2®Rj% 
j=0 j=0 

and therefore 

J = 0 

where ¡QJ = J I J W Q RFIL. It is evident that each £)_,• reduces T , and therefore (3) 
holds with TJ = T\$J. . 

Consider a fixed / > 0 . By Lemma 1, if Q is a rational function with no poles 
in Gj, then RjdUl and Rj3l are invariant under the operator Q ( A J ) . A S is easily seen, 
this implies that the projection of Q ( A J ) onto ¡QJ equals G ( T J ) . (In particular Q ( T 3 ) 

exists.) Property (b) now follows by Proposition 2. Moreover, it is clear that A j 
is a minimal normal G^-dilation of Tj , and therefore (c) holds. 

Finally, (a) follows immediately f rom the fact that £)'0 reduces A (see Lemma 1). . 
If T is an operator having J a s a spectral set, then we shall say that T is X-pure 

provided there is no invariant subspace £>V {0} of T such that T\isf is normal 
and has its spectrum on 6X. For the case where X is the closed unit disk, the concept 
of X-purity reduces to that of complete non-unitarity. If T has l a s a spectral set 
and is X-pure, then the operator T0 of Theorem 1 must be trivial, and therefore T 
has the closure of the interior of X as a spectral set. This conclusion also follows 
f rom a result of FOIA§ (see the last proposition in [3]). 

T h e o r e m 2. Let T be a Hilbert space operator having X as a spectral set. Then 
T has a unique decomposition as the direct sum of an X-pure operator and a normal 
operator with spectrum on dX. 

P r o o f . By Theorem 0 there is a normal Jf-dilation A of T. If .£)' is an invariant 
subspace of T such that T\$q' is normal and has its spectrum on dX, then ig' reduces 
A by Lemma 3. Therefore the span 2 of all such subspace is a reducing subspace 
of T such that T'= T\Q is normal and has its spectrum on dX. It follows immediately 
f rom the definition of S 

that the operator T " = T \ Q X ~ is A-pure, and thus the 
decomposition T = T' © T" is of the required form. The uniqueness of this decom-
position follows immediately f rom the definition of 

T h 
e o r e m 3., Let the operator T on the Hilbert space have X as a spectral 

set, and assume that T is X-pure. Let the subspaces $Qj of$Q,j= 1, 2, ..., be as defined 
in the proof of Theorem 1. (It follows from the proof of Theorem 1 that is trivial.) 
Let A be a normal X-dilation of T acting on a Hilbert space S containing and let 
E be the spectral measure of A. Then for any non-zero vector x in ¡Qj > the measure 
(Ex, x) is mutually absolutely continuous with nij. 

20 A 
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P r o o f . By Lemma 0 we have = 9ft ©9? where 93? and are invariant 
subspaces of A such that S i c SR. Let x be a non-zero vector in We know f r o m 
Theorem 1 that (Ex, x) is absolutely continuous with respect to nij. Suppose that 
(Ex, x) is strictly absolutely continuous with respect to mj. Then, letting denote 
the smallest reducing subspace of A containing x, we have 

= y A" x = \/A*nx 
0 0 

CO oo 

by Lemma 2. Since obviously V Anxa'iSl and V A*"xal>}l-1-, we have There-
o o 

fore is a non-trivial reducing subspace of T such that T i s normal and has 
its spectrum on dX. But this contradicts our hypotheses. We may conclude that 
(Ex, x) is not strictly absolutely continuous with respect to trij. 

Now let G denote a particular one of the domains Gj and let m denote the 
corresponding measure mj. Consider an operator T on a Hilbert space § which 
has G as a spectral set and which is G-pure. Let A be a minimal normal (/-dilation 
of T. If h is a function in H " ( M ) , then since the spectral measure of A is absolutely 
continuous with respect to m (Theorem 3), the operator h (A) is defined by the 
standard functional calculus fo r normal operators. We thus have a natural m a p 
of H ° ° ( / M ) onto the operator algebra H ° ° ( ^ 4 ) = {h(A):h£\i'"(m)}. This map is an 
algebra isomorphism and is a homeomorphism relative to the weak-star topology 
on H°°(m) and the weak operator topology on The last assertions follow 
readily f rom the fact that not only is the spectral measure of A absolutely continuous 
with respect to m, but also m is absolutely continuous with respect to the spectral 
measure of A (Theorem 3). N o w each operator h(A) in H"(A) corresponds by 
projection to an operator on which we denote by h(T). We thus have a natural 
map f rom onto the class of operators H°°(T) = {h(T)\h eH">(m)}. I t is easily 
seen that H°°(T) is an algebra, and that the m a p of H°°(m) onto H ° ° ( J ) is an 
algebra homomorphism and is continuous relative to the • weak-star topology 
on H°°(m) and the weak operator topology on H°°( r ) . If co is a bounded analytic 
function in G, then by Proposition 12 we have co = /i c for some (unique) h in H°°(w), 
and we shall write co(T) in place of h(T). 

Consider in particular the functions w,\p = wG, and (p = \jj~i (see Proposit ion 
7 and the remarks following it). Since w is an inner funct ion the operator w(A) 
is unitary, and therefore the operator S= i l / ( T ) is a contraction. The operators 
A and w(A) have the same invariant subspaces since each is a weak limit of poly-
nomials in the other (Proposit ion 12). This makes it clear that w(A) is a minimal 
unitary dilation of S and that S is completely non-unitary. If co is a bounded analy-
tic funct ion in the unit disc, then we have the composition law ca(S) =(coo ij/)(T). 
Indeed, this is easy to verify if co is a polynomial, and therefore it holds in general 
by weak continuity. In particular <p(S) = T. 

By combining the preceding observations with Theorems 1 and 2, we obtain 
the following characterization of those operators having l a s a spectral set. 

T h e o r e m 4. The Hilbert space operator T has X as a spectral set if and only 
if it has the form 

(4) T= T0® 2 ®Vj(SJ), 
j= i 
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where T0 is a normal operator with its spectrum on dX, the Sj are completely non-, 
unitary contractions, and <pj is for each j a conformai map of the unit disc onto Gj. 

A c t u a l l y we h a v e o n l y p r o v e d ha l f o f th is t h e o r e m , t h e h a l f wh ich asser t s t h a t 
T h a s t he f o r m (4) if it h a s X as a spec t ra l set . B u t t h e o t h e r ha l f fo l lows easily f r o m 
w e l l - k n o w n p r o p e r t i e s of c o n t r a c t i o n o p e r a t o r s . 

I n c o n c l u s i o n w e m e n t i o n t h a t if t h e o p e r a t o r T h a s X a s a spect ra l set a n d 
is X - p u r e , t h e n t h e a b o v e d iscuss ion shows u s h o w t o def ine co(T) w h e n e v e r co 
is a b o u n d e d a n a l y t i c f u n c t i o n in t he in t e r io r o f X. T h e f u n c t i o n a l ca l cu lus used 
a b o v e is a n e x t e n s i o n of a n d w a s m o t i v a t e d by t h e f u n c t i o n a l ca lcu lus f o r c o n -
t r a c t i o n s d e v e l o p e d by S Z . - N A G Y a n d FOIAÇ [ 1 1 ] , [13], a n d b y S C H R Ë I B E R [9], [10]. 
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