On certain classes of power-bounded operators in Hilbert space

By BÉLA SZ-NAGY in Szeged and CIPRIAN FOIAS in Bucarest

Dedicated to P. R. Halm's on his 50th birthday

1. Let $\mathscr{C}_{\varrho}(\varrho > 0)$ denote the class of those (bounded, linear) operators T in Hilbert space \mathfrak{H} , whose powers T^n (n=1, 2, ...) admit a representation

(1)
$$T^n = \varrho \cdot \operatorname{pr} U^n$$
 $(n = 1, 2, ...),$

where U is a unitary operator in some Hilbert space \Re containing \mathfrak{H} as a subspace. It is known that the class \mathscr{C}_1 consists precisely of the contraction operators T, i.e. for which

(2)

$$||T|| \leq 1$$
,

cf. [1], and that \mathscr{C}_2 consists precisely of those T for which

(3)

2 A

$$w(T) \leq 1$$
.

The latter fact was discovered by C. A. BERGER (not yet published); simplified proofs appear in [2] and [3]. Norm ||T|| and numerical radius w(T) of an operator are defined by

$$T = \sup \frac{\|Th\|}{\|h\|}, \quad w(T) = \sup \frac{|(Th, h)|}{\|h\|^2} \qquad (h \in \mathfrak{H}, h \neq 0).$$

Clearly, every operator T of class \mathscr{C}_{ϱ} is power-bounded, indeed we have $||T^n|| \leq \varrho$, but the converse is not true. We shall give an example of a power-bounded operator which is not contained in any of the classes $\mathscr{C}_{\varrho}(\varrho > 0)$.

2. First we give a characterization of the classes \mathscr{C}_{o} .

Theorem. In order that the operator T in \mathfrak{H} belong to the class \mathscr{C}_{ϱ} it is necessary and sufficient that the following conditions be satisfied:

$$(\mathbf{I}_{\varrho}) \quad \|h\|^2 - 2\left(1 - \frac{1}{\varrho}\right) \operatorname{Re}\left(zTh, h\right) + \left(1 - \frac{2}{\varrho}\right) \|zTh\|^2 \ge 0 \quad for \quad h \in \mathfrak{H} \quad and \quad |z| \le 1,$$

(II) the spectrum of T lies in the closed unit disk. For $\varrho \leq 2$ condition (I₀) implies (II).

Proof. Suppose that (1) holds. Since U is unitary, the series $I_{s} + 2zU + \cdots +$ $+2z^nU^n+\cdots$ converges in the norm for every z, |z|<1, its sum being equal to $(I_{\mathfrak{R}}+zU)(I_{\mathfrak{R}}-zU)^{-1}$. By virtue of (1), the series $I_{\mathfrak{H}}+\frac{2}{\rho}zT+\cdots+\frac{2}{\rho}z^{n}T^{n}+\cdots$ also will converge in the norm, its sum being then equal to $\left(1-\frac{2}{\rho}\right)I_{\mathfrak{H}}+\frac{2}{\rho}(I_{\mathfrak{H}}-zT)^{-1}$. Hence we infer first that $(\mu I_{\mathfrak{H}} - T)^{-1}$ exists as a bounded operator in \mathfrak{H} for $|\mu| > 1$, i.e. condition (II) is fulfilled. Moreover, we have

(4)
$$\left(1-\frac{2}{\varrho}\right)I+\frac{2}{\varrho}(I-zT)^{-1} = \operatorname{pr}(I+zU)(I-zU)^{-1} \quad (|z|<1).$$

Since

 $\operatorname{Re}((I+zU)k, (I-zU)k) = ||k||^2 - |z|^2 ||Uk||^2 = (1-|z|^2) ||k||^2 \ge 0 \text{ for } k \in \mathfrak{R}, |z| < 1,$ we have

$$\operatorname{Re}((I+zU)(I-zU)^{-1}k,k) \geq 0 \quad \text{for} \quad k \in \mathfrak{K}, \ |z| < 1,$$

thus, by (4),

(5)
$$\operatorname{Re}\left[\left(1-\frac{2}{\varrho}\right)(l,l)+\frac{2}{\varrho}\left((I-zT)^{-1}l,l\right)\right] \geq 0 \quad \text{for} \quad l \in \mathfrak{H}, \ |z| < 1.$$

Set $l = l_z = (I - zT)h$, where h is an arbitrary element of \mathfrak{H} . Then (5) yields

(6)
$$\left(1-\frac{2}{\varrho}\right)\|(I-zT)h\|^2+\frac{2}{\varrho}\operatorname{Re}\left(h,(I-zT)h\right)\geq 0 \quad \text{for} \quad h\in\mathfrak{H}, |z|<1,$$

whence (I_{o}) follows by a simple rearrangement, at least for |z| < 1. The limit case |z| = 1 can be included by continuity.

Suppose now, conversely, that (I_o) and (II) hold for T. By (II), $(I-zT)^{-1}$ exists as a bounded operator in \mathfrak{H} , for |z| < 1. From (I₀) we obtain (6) by the inverse of the above mentioned rearrangement. Setting $h = h_z = (I - zT)^{-1}l$ in (6), where l is an arbitrary element of \mathfrak{H} , we get (5). This means that the operator valued function

(7)
$$F(z) = \left(1 - \frac{2}{\varrho}\right)I + \frac{2}{\varrho}\left(I - zT\right)^{-1}$$

satisfies the condition (8)

Since, moreover, F(z) is holomorphic in the unit disc (|z| < 1), and F(0) = I, it follows from a theorem of F. RIESZ, generalized to operator valued functions, that there exists a unitary operator U in some space $\Re(\supseteq \mathfrak{H})$, such that

Re $F(z) \ge 0$.

(9)
$$F(z) = \operatorname{pr} (I + zU)(I - zU)^{-1} \quad (|z| < 1),$$

cf. e.g. [1]. Since

$$(I+zU)(I-zU)^{-1} = I+2zU+\dots+2z^nU^n+\dots$$
 for $|z|<1$,
and, by (7),

$$F(z) = I + \frac{2}{\varrho} zT + \dots + \frac{2}{\varrho} z^n T^n + \dots \text{ at least for } |z| ||T|| < 1,$$

On certain classes of power-bounded operators

it results from (9) by comparing coefficients that

$$\frac{1}{\varrho}T^n = \operatorname{pr} U^n \qquad (n = 1, 2, \ldots),$$

i.e. $T \in \mathscr{C}_{\rho}$.

Thus we have proved that (I_o) and (II) characterize the operators of class \mathscr{C}_o .

We have still to prove the last statement of the theorem. We start with relation (6) which is an equivalent form of (I_{ϱ}) . If $\varrho \leq 2$ we have $1-2/\varrho \leq 0$ so that (6) implies

 $\operatorname{Re}(h, (I-zT)h) \ge 0 \qquad (h \in \mathfrak{H}, |z| \le 1);$

choosing an adequate value for z we obtain hence

(10)
$$||h||^2 \ge |(Th, h)|$$
 $(h \in \mathfrak{H}).$

Consider the self-adjoint operator $R_z = \operatorname{Re}(I - zT)$. Since

$$(R_zh, h) = \operatorname{Re}((I - zT)h, h) = ||h||^2 - \operatorname{Re} z(Th, h) \ge (1 - |z|)||h||^2,$$

we have $R_z \ge (1-|z|)I$, thus if |z| < 1 then $Q_z = R_z^{1/2} \ge (1-|z|)^{1/2}I$, Q_z^{-1} exists as a bounded, everywhere defined operator, $||Q_z^{-1}|| \le (1-|z|)^{-1/2}$. We have for |z| < 1

$$I - zT = R_z + i \operatorname{Im} (I - zT) = R_z - i \operatorname{Im} (zT) = Q_z [I - iQ_z^{-1} \operatorname{Im} (zT)Q_z^{-1}]Q_z.$$

Since $Q_z^{-1} \operatorname{Im} (zT) Q_z^{-1}$ is selfadjoint, the operator in [] has an inverse, everywhere defined and bounded by 1. Thus I - zT also has a bounded and everywhere defined inverse; indeed,

$$||(I-zT)^{-1}|| \leq (1-|z|)^{-1}$$
 (|z|<1).

This implies (II), moreover the inequality

(10')
$$\|(\mu I - T)^{-1}\| \leq \frac{1}{|\mu| - 1}$$
 for $1 < |\mu| < \infty$.

This concludes the proof of the theorem.

It is clear that for $\rho = 1$ and $\rho = 2$, (I_o) reduces to condition (2) and (3), respectively. Thus our theorem generalizes the characterizations of the classes \mathscr{C}_1 and \mathscr{C}_2 mentioned in § 1.

We may complete this remark with the following ones:

Remark 1. If $0 < \varrho < 2$, $\varrho \neq 1$, (I_o) reduces to the condition

$$(\mathbf{I}'_{\varrho}) \qquad \|(\mu I - T)h\| \leq \frac{|\mu|}{|\varrho - 1|} \|h\| \quad for \quad \left|\frac{\varrho - 1}{\varrho - 2}\right| \leq |\mu| < \infty, \quad h \in \mathfrak{H},$$

while if $2 < \rho < \infty$, (I_o) reduces to the condition

$$(\mathbf{I}_{\varrho}'') \qquad \|(\mu I - T)h\| \ge \frac{|\mu|}{\varrho - 1} \|h\| \quad \text{for} \quad \frac{\varrho - 1}{\varrho - 2} \le |\mu| < \infty, \quad h \in \mathfrak{H}$$

Proof. If $0 < \varrho < 2$, $\varrho \neq 1$, multiplication by the negative factor $\varrho/(\varrho - 2)$, and an easy rearrangement transforms (I_{ϱ}) into the equivalent form

(11)
$$\left\| \left(\frac{\varrho - 1}{\varrho - 2} I - zT \right) h \right\|^2 - \frac{1}{(\varrho - 2)^2} \|h\|^2 \leq 0 \qquad (h \in \mathfrak{H}, |z| \leq 1).$$

Setting $z = \frac{\varrho - 1}{\varrho - 2} \frac{1}{\mu}$, (11) can be expressed in the equivalent form (I'_{ϱ}) .

If $2 < \varrho < \infty$, multiplication by the positive factor $\varrho/(\varrho - 2)$ and the same easy rearrangement transforms (I_{ϱ}) into the equivalent form

(12)
$$\left\| \left(\frac{\varrho - 1}{\varrho - 2} I - zT \right) h \right\|^2 - \frac{1}{(\varrho - 2)^2} \|h\|^2 \ge 0 \qquad (h \in \mathfrak{H}, |z| \le 1).$$

Setting, as above, $z = \frac{\varrho - 1}{\varrho - 2} \frac{1}{\mu}$, (12) transforms into the equivalent form (I_{ϱ}'') .

Remark 2. In order that T be of class \mathscr{C}_{ϱ} with $1 < \varrho < 2$, it is necessary and sufficient that the condition

(III'_{\varrho})
$$\|\mu I - T\| \leq |\mu| + 1 \quad for \quad \frac{\varrho - 1}{2 - \varrho} \leq |\mu| < \infty$$

hold.

Proof. (III_{ρ}) implies (I_{ρ}) since

$$\mu|+1 \leq \frac{|\mu|}{\varrho-1}$$

for $|\mu| \ge (\varrho - 1)(2 - \varrho)^{-1}$. On the other hand, if $|\mu| \ge (\varrho - 1)(2 - \varrho)^{-1}$ and $\mu = \varepsilon |\mu|$, (I'_{ϱ}) gives

$$\|\mu I - T\| \leq \left|\mu - \varepsilon \frac{\varrho - 1}{2 - \varrho}\right| + \left\|\varepsilon \frac{\varrho - 1}{2 - \varrho} I - T\right\| \leq |\mu| - \frac{\varrho - 1}{2 - \varrho} + \frac{1}{2 - \varrho} = |\mu| + 1,$$

thus (I'_{ρ}) implies (III'_{ρ}) .

Remark 3. In order that T be of class C_{ϱ} with $2 \leq \varrho < \infty$, it is necessary and sufficient that T verify the conditions (II) and

$$(III''_{\varrho}) \qquad \|(\mu I - T)^{-1}\| \leq \frac{1}{|\mu| - 1} \begin{cases} for \ 1 < |\mu| < \infty & if \ \varrho = 2, \\ for \ 1 < |\mu| \leq r_{\varrho} = \frac{\varrho - 1}{\varrho - 2} & if \ \varrho > 2. \end{cases}$$

Proof. Case $\varrho = 2$. We know already that (I_2) implies (10'), i.e. (III''_2) . Suppose, conversely, that (III''_2) holds. Then $\|(\mu I - T)h\| \ge (|\mu| - 1)\|h\|$ for $1 < |\mu| < \infty$ hence $\|(I - \varepsilon rT)h\| \ge (1 - r)\|h\|$ for 0 < r < 1, $|\varepsilon| = 1$. This gives

$$0 \le \|h - \varepsilon r Th\|^2 - (1 - r)^2 \|h\|^2 = 2r \|h\|^2 - 2 \operatorname{Re} \varepsilon r(Th, h) + r^2 \|Th\|^2 - r^2 \|h\|^2.$$

Dividing by 2r and letting $r \to 0$ it results $||h||^2 - \operatorname{Re} \varepsilon(Th, h) \ge 0$. Since this holds for arbitrary ε , $|\varepsilon| = 1$, we get $|(Th, h)| \le ||h||^2$ for any $h \in \mathfrak{H}$, i.e. $w(T) \le 1$. Thus $(\int II_2'')$ implies (3), i.e. (I_2) .

Case $\rho > 2$. Suppose first that (I_{ρ}) , i.e. (I_{ρ}'') holds. Then we have $||(\mu I - T)h|| \ge \frac{|\mu|}{\rho - 1} ||h||$ for $|\mu| \ge r_{\rho}$, in particular

$$\|(\varepsilon r_{\varrho}I-T)h\| \geq \frac{r_{\varrho}}{\varrho-1} \|h\| = \frac{1}{\varrho-2} \|h\| \qquad (|\varepsilon|=1, h \in \mathfrak{H}).$$

If $1 < |\mu| < r_{\varrho}$ and $\varepsilon = \mu/|\mu|$, we obtain hence

$$\|(\mu I - T)h\| \ge \|(\varepsilon r_{\varrho}I - T)h\| - \|(\varepsilon r_{\varrho} - \mu)h\| \ge \left\lfloor \frac{1}{\varrho - 2} - (r_{\varrho} - |\mu|) \right\rfloor \|h\|,$$

i. e.

$$\|(\mu I - T)h\| \ge (|\mu| - 1)\|h\|$$
 for $1 < \mu < r_{\varrho}$

This implies (III''_o) .

Suppose, conversely, that (III''_{o}) holds. Then we have in particular

(13)
$$\|(I-\zeta T)^{-1}\| = \frac{1}{|\zeta|} \left\| \left(\frac{1}{\zeta} I - T \right)^{-1} \right\| \leq r_{\varrho} \frac{1}{r_{\varrho} - 1} = \varrho - 1 \text{ for } |\zeta| = \frac{1}{r_{\varrho}}.$$

Since, by (II), $(I-zT)^{-1}$ is a holomorphic function of z for |z| < 1, we conclude from (13) by the maximum principle that

$$\|(I-zT)^{-1}\| \leq \varrho - 1 \quad \text{for} \quad |z| \leq \frac{1}{r_{\varrho}}.$$

Thus, if $|\mu| \ge r_{\varrho}$, we have

$$\|\mu\| \cdot \|(\mu I - T)^{-1}\| = \left\| \left(I - \frac{1}{\mu} T \right)^{-1} \right\| \leq \varrho - 1,$$

i.e. (I_{ρ}'') . This finishes the proof.

3. Let $||T|| \le 1$. Then for every complex μ we have $||\mu I - T|| \le |\mu| + ||T|| \le |\mu| + 1$; thus in virtue of Remark 2 we have

(14)
$$\mathscr{C}_1 \subset \mathscr{C}_\rho \quad \text{for } 1 \leq \rho < 2.$$

Let now $T \in \mathscr{C}_{\varrho_1}$ with $0 < \varrho_1 < \infty$, and let ϱ_2 be such that $\varrho_1 \leq \varrho_2 < 2\varrho_1$. Since $T \in \mathscr{C}_{\varrho_1}$, there exists a unitary operator U in some Hilbert space $\Re \supseteq \mathfrak{H}$ such that

(15)
$$T^n = \varrho_1 \cdot \operatorname{pr} U^n$$
 $(n = 1, 2, ...).$

Since $U \in \mathscr{C}_1$ and $1 \leq \varrho_2/\varrho_1 < 2$, we have $U \in \mathscr{C}_{\varrho_2/\varrho_1}$, by (14). Thus there exists a unitary operator V in a Hilbert space $\mathfrak{L} \supseteq \mathfrak{H}$ such that

(15')
$$U^n = \frac{\varrho_2}{\varrho_1} \text{ pr } V^n \qquad (n = 1, 2, ...).$$

Comparing (15) with (15') we obtain $T^n = \varrho_2$ pr V^n (n = 1, 2, ...,), i.e. $T \in \mathscr{C}_{\varrho_2}$. From this remark it follows readily the following

Proposition 1. The classes $\mathscr{C}_{\varrho}(0 < \varrho < \infty)$ form a non-decreasing scale, i.e. (16) $\mathscr{C}_{\varrho_1} \subset \mathscr{C}_{\varrho_2}$ if $0 < \varrho_1 < \varrho_2 < \infty$.

B. Sz.-Nagy-C. Foiaş

In order to complete this result let us consider a simple example. Let T_s (s>0) be the operator in complex Euclidean 2-space with the matrix $\begin{pmatrix} 0 & s \\ 0 & 0 \end{pmatrix}$. Obviously, $||T_s|| = s$, $T_s^2 = O$, and

$$(\mu I - T_s)^{-1} = \frac{1}{\mu^2} (\mu I + T_s).$$

Hence the spectrum of T_s consists of the single point 0, thus condition (II) is fulfilled. Moreover, we have

$$\|(\mu I - T_s)^{-1}\| \leq \frac{|\mu| + s}{|\mu|^2} = \left(1 + \frac{s}{|\mu|}\right) \frac{|\mu| - 1}{|\mu|} \frac{1}{|\mu| - 1} \leq \frac{1}{|\mu| - 1}$$

if $1 < |\mu| \le \frac{s}{s-1}$. Thus, if $s \ge 1$, condition (III_{ϱ}'') also is fulfilled, with $\varrho = s+1$. Thus $T_s \in \mathscr{C}_{s+1}$ if $s \ge 1$,

but, since $||T_s|| = s$, T_s does not belong to any of the classes \mathscr{C}_{ϱ} with $\varrho < s$.

This shows that the increasing scale of the classes \mathscr{C}_{ϱ} does not attain a maximum (indeed, \mathscr{C}_{ϱ} is properly contained in $\mathscr{C}_{\varrho'}$, if $1 \leq \varrho < \varrho' - 1$).

Now, let 0 < s < 1. Then, putting $\rho = \frac{2s}{1+s}$, we have

$$\|\mu I - T_s\| \le |\mu| + s \le \frac{|\mu|}{1-\varrho}$$
 for $\frac{1-\varrho}{2-\varrho} \le |\mu| < \infty$,

i.e. (I'_{ϱ}) is verified. Hence $T_s \in \mathscr{C}_{\varrho}$. Since $s = \frac{\varrho}{2-\varrho}$, this result also can be expressed in the form

$$T_{\frac{\varrho}{2-\varrho}} \in \mathscr{C}_{\varrho} \quad \text{if} \quad 0 < \varrho < 1.$$

But $||T_s|| = s$ again implies that $T_{\frac{\rho}{2-\rho}}$ does not belong to any of the classes $\mathscr{C}_{\rho'}$ with

$$\varrho' < \frac{\varrho}{2-\varrho}$$

This shows that none of the classes \mathscr{C}_{ϱ} is void and, moreover, that the scale of the classes \mathscr{C}_{ϱ} does not attain a minimum (indeed, \mathscr{C}_{ϱ} properly contains $\mathscr{C}_{\varrho'}$ if

$$1 > \varrho > 2 \frac{\varrho'}{\varrho'+1} \bigg).$$

Thus none of the classes $\mathcal{C}_{\varrho}(\varrho > 0)$ is void, and the scale of the classes \mathcal{C}_{ϱ} neither attains a minimum nor a maximum.

4. There exist power-bounded operators which do not belong to any of the classes \mathscr{C}_{ϱ} . More precisely, we shall give an example of an operator T such that $||T^n|| \leq 2$ for every integer n, and which is not contained in any of the classes $\mathscr{C}_{\varrho}(\varrho > 0)$.

On certain classes of power-bounded operators

Consider, to this effect, the space $L^{2}(-1, 1)$, and the operators V and A defined in this space by

$$(Vf)(x) = f(-x)$$
 and $(Af)(x) = a(x)f(x)$,

 $a(x) = 2^{1/2}$ if -1 < x < 0, and $= 2^{-1/2}$ if 0 < x < 1. where Set $T = AVA^{-1}$, i.e.

(17)
$$(Tf)(x) = \frac{a(x)}{a(-x)}f(-x).$$

Since $V^2 = I$, we have $T^2 = I$, i.e. $T^n = \begin{cases} T \text{ for } n \text{ odd,} \\ I \text{ for } n \text{ even.} \end{cases}$ Let us show that ||T|| = 2. Indeed, we have

$$\|Tf\|^{2} = \int_{-1}^{+1} \left| \frac{a(x)}{a(-x)} f(-x) \right|^{2} dx \leq 4 \|f\|^{2} \text{ for every } f \in L^{2},$$

$$\frac{a(x)}{a(-x)} = \begin{cases} 2 & \text{if } -1 < x < 0, \\ 1/2 & \text{if } 0 < x < 1, \end{cases}$$

 $||Tf||^2 = 4||f||^2$ if f(x) = 0 for -1 < x < 0.

We assert that T belongs to none of the classes \mathscr{C}_{ϱ} . Since ||T|| = 2, the values $\varrho < 2$ are a priori impossible. We shall show, using the condition (III_{ϱ}'') , that the values $\varrho \ge 2$ also are impossible. To this end, observe first that, since $T^2 = I$, we have

(18)
$$(\mu I - T)^{-1} = \frac{1}{\mu^2 - 1} (\mu I + T) \text{ for } \mu \neq \pm 1.$$

Choose the function $f_0(x) = \begin{cases} 0 \text{ for } -1 < x < 0 \\ 1 \text{ for } 0 < x < 1 \end{cases}$. Then

$$\|(\mu I + T)f_0\|^2 = \int_{-1}^{1} \left| \mu f_0(x) + \frac{a(x)}{a(-x)} f_0(-x) \right|^2 dx =$$

= $|\mu|^2 + 4 = (|\mu|^2 + 4) ||f_0||^2,$
 $\|\mu I + T\| \ge (|\mu|^2 + 4)^{1/2}$

whence

and by (18),
$$\|(\mu I - T)^{-1}\| \ge \frac{1}{|\mu^2 - 1|} (|\mu|^2 + 4)^{1/2}$$

Now, if μ is real, $\mu > 1$, we have

$$\frac{1}{\mu^2 - 1} (\mu^2 + 4)^{1/2} > \frac{1}{\mu - 1}$$

for μ sufficiently close to 1, namely for $1 < \mu < 1.5$, and this shows that condition (III_{ρ}^{ν}) is not satisfied for any $\rho \ge 2$.

5. Denote by A the class of the functions

$$u(z) = \sum_{0}^{\infty} a_n z^n$$
 with $\sum_{0}^{\infty} |a_n| < \infty$.

From (1) it follows for every $T \in \mathscr{C}_{\rho}$ and $u \in A$:

(19)
$$u(T) = \operatorname{pr} \left[\varrho \cdot u(U) + (1 - \varrho) \cdot u(0) I_{\mathfrak{R}} \right].$$

This relation implies, by virtue of the spectral theory for unitary operators, the following

Proposition 2. For $T \in \mathscr{C}_{p}$ and $u \in A$ we have

(20)
$$||u(T)|| \leq \max_{\substack{|z| \leq 1 \\ |z| \leq 1}} |u_{\varrho}(z)|$$

and

(21)
$$\left[\min_{\substack{|z| \leq 1}} \operatorname{Re} u_{\varrho}(z)\right] I_{\mathfrak{H}} \leq \operatorname{Re} u(T) \leq \left[\max_{\substack{|z| \leq 1}} \operatorname{Re} u_{\varrho}(z)\right] I_{\mathfrak{H}}$$

where

Then

$$u_{\varrho}(z) = \varrho \cdot u(z) + (1 - \varrho) \cdot u(0).$$

Obviously, (20) and (21) generalize, for the classes \mathscr{C}_{ϱ} , the inequalities of VON NEUMANN and HEINZ, respectively, on contractions, i.e. for the class \mathscr{C}_1 . *Cf.* [4], p. 431.

It is clear that if $\rho = 1$, (20) implies $||T|| \leq 1$: one has only to set u(z) = z. In the case $\rho \neq 1$, (20) does not seem to imply that $T \in \mathscr{C}_{\rho}$. But (21) does: in fact we shall prove the following

Proposition 3. Suppose T is a power-bounded operator which satisfies (21) for every function $u \in A$. Then $T \in \mathscr{C}_{o}$.

Proof. Since T is power-bounded, its spectrum is contained in the unit disc, i.e. T satisfies (II). Moreover, power-boundedness assures that $u(T) = a_0I + a_1T + \cdots$ $\cdots + a_nT^n + \cdots$ converges in norm. Concerning (I₀) it suffices to verify (5), or, equivalently, (8). To this effect, choose

$$u(z) = u(\zeta; z) = 1 - \frac{2}{\varrho} + \frac{2}{\varrho} \frac{1}{1 - \zeta z} = 1 + \frac{2}{\varrho} \zeta z + \frac{2}{\varrho} \zeta^2 z^2 + \cdots \qquad (|\zeta| < 1, |z| \le 1).$$

$$u_{\varrho}(z) = 1 + 2\zeta z + 2\zeta^2 z^2 + \dots = \frac{1+\zeta z}{1-\zeta z},$$

hence Re $u_o(z) \ge 0$ for $|z| \le 1$. Thus, by (21),

$$O \leq \operatorname{Re} u(T) = \left(1 - \frac{2}{\varrho}\right) I_{\mathfrak{H}} + \frac{2}{\varrho} \left(I - \zeta T\right)^{-1},$$

and this result coincides with (8).

Finally, we make the following

Proposition 4. Let $u(z) \in A$, with $|u(z)| \leq 1$ for $|z| \leq 1$, and u(0) = 0. Then $T \in \mathscr{C}_{\varrho}$ implies $u(T) \in \mathscr{C}_{\varrho}$.

Proof. Since $u_n(z) = [u(z)]^n$ also belongs to A for every n = 1, 2, ..., and since $u_n(0) = 0$, we have for $T \in \mathcal{C}_{\varrho}$ by (19):

(22)
$$u(T)^n = u_n(T) = \operatorname{pr} \varrho \cdot u_n(U) = \varrho \cdot \operatorname{pr} u(U)^n.$$

Now, since $|u(z)| \leq 1$ for $|z| \leq 1$, u(U) is a contraction. Thus there exists a unitary operator V such that $u(U)^n = \operatorname{pr} V^n$ (n=0, 1, ...). Comparing this with (22) we conclude that

$$u(T)^n = \varrho \cdot \operatorname{pr} V^n \qquad (n = 1, 2, \ldots),$$

i.e. $u(T) \in \mathscr{C}_{\varrho}$. For $\varrho = 2$, Proposition 4 reduces to a result obtained by STAMPFLI, cf. [2].

References

- B. Sz.-NAGY, Sur les contractions de l'espace de Hilbert, Acta Sci. Math., 15 (1953), 87-92.
 P. R. HALMOS, Positive definite sequences and the miracle of w. (A talk before the functional analysis seminar at the University of Michigan, 8. July 1965), 17 pages. (Mimeographed)
- [3] B. Sz.-NAGY, Positiv-definite, durch Operatoren erzeugte Funktionen, Wissenschaftliche Zeitschrift der Techn. Univ. Dresden (to appear).

[4] F. RIESZ et B. SZ.-NAGY, Lecons d'analyse fonctionnelle, 4. éd. (Paris-Budapest, 1965).

(Received November 1, 1965)