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1. Let %, (¢ >0) denote the class of those (boundéd, linear) operators 7 in Hilbert
space $, whose powers 7" (n=1, 2, ...) admit a representation

[6)) Tr=g-prU"  (n=1,2,..),

.where U is a unitary operator in some Hilbert space { containing $ as a isubspace.

It is known that the class €, consists precisely of the contraction operators 7,
i.e. for which

) : ' ' ITl=1, _
<f. [1], and that %, consists precisely of those T for which
3) . w(T)= L

The latter fact was dlscovered by C. A. BERGER (not yet pubhshed) 51mp11ﬁed
proofs appear in [2] and .[3]. Norm | Tl and numerical radius w(T) of an operator
are defined by :
1Tk
Al

I(Th, h)|

T= A
IAl1?

w(T) = sup (heH, h=0).

Clearly, every operator T of class %, is power-bouded 1ndeed we have | T = o,
but the converse is not true. We shall. g1ve an example of a power-bounded operator
which is not contained in any of the classes € 2(¢=0).

2. FlI’St we give a characterization of the classes €,.

Theorem. In order that the operator T in $ belong to the class €, it is necessary
and suﬁ?czem‘ that the following conditions be satisfied:

,(Ie) B ) [1 —E] Re (zTh, h)+(1 _E] 1zTh|>=0 for he$H - and |z]=1, |

(1) the spectrum of T lies in the closed unit disk.

For 9=2 condition (1,) implies (II).

"2 A
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Proof. Suppose that (1) holds. Since U is unitary, the series Iq +2zU+ --- +
+2z"U" 4 .. converges in the norm for every z, |zj<1, its sum being equal to

(g +zU)(Iqg—zU)~1. By virtue of (1), the series Ig+ %zT—I— . +—%z"T" +
-also will converge in the norm, its sum being then equal to (1 — E) Ig+ iz- Ug—2zT)~ 1.

"Hence we infer first that (plg—T)~' exists as a bounded operator in § for [u|>1,.
i.e. condition (II) is fulfilled. Moreover, we have

4 [1 ——Z—]I—i—%(l——zT)“ = pr (H—zU)(I——zU)"1 (zl=D.
Since
Re((I+zU)k, (I—zU)k) = k| — 22| Uk|? = (1 —|z]?)|k||*=0 fork€ K, |z|'<1,.

we have
Re((I+zU)I—zU)"*k, k)=0 for k€S, |z]<1,
thus, by (4), ' »

(5) Re[(1—%](1,l)+%((1—zT)‘ll,l)]20 for 168, |7/ <1.

Set! = I, = (I—zT)h, where h is an arbitrary element of §. _Then (5) yields
(6) [1 - %] I —zT)h||?+ % Re(h, {—zT)h) = 0 for heH,lzl<l, -

whence (I,) follows by a simple rearrangement, at least for |z| <1. The limit case
|z]=1 can be included by continuity.

Suppose now, conversely, that (I,) and (II) hold for 7. By (II), (/— zT)“ :
exists as a bounded operator in 9, for [z] <1. From (I,) we obtain (6) by the inverse
of the above mentioned rearrangement. Setting 2 = h,=(I—zT)~*/in (6), where /
is an arbltrary element of H, we get (5). This means that the operator valued functlon

0 : - F(Z):[I_EJI-I__Q_(I_ZT)—I
satisfies the condmon ‘
8) Re F(z)= 0.

Since, moreover, F(z) is holomorphic in the unit disc (|z| <1), and F(0)=1, it
follows from a theorem of F. Riesz, generalized to operator valued functions, that
there exists a unitary operator U in some space R(=29), such that

©) | F@)=pr I+zU0)I-zU)"" (] <D),
¢f. e.g. [1]. Since
o (J+zU0)(I=2z0) ' = 1+2zU+ - +22"U"+ .. for |z]<l1,
and, by (7), :
F(z) = I+§zT+---+%z”T"+--- at least for |z]|T|| <1,
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it results from (9) by comparing coefficients that

%T” = prU" (n‘ =12,..),

re. T¢%,. '
Thus we have proved that (I,) and (II) characterize the operators of class €,.
We have still to prove the last statement of the theorem. We start with relation
(6) which is an equivalent form of (I,). If p=2 we have 1-—-2/¢=0 so that ®) .
implies

Re(h,(I—zD)W)=0  (h€H, |z|=1);
choosing an adequate value for z we obtain hence
(10) . A2 = (Th, )] (h€H).
Consider the self-adjoint operator R, = Re (/—zT). Since
(R'zh., k) = Re((I—zT)h, k) = ||h|> —Re z(Th, k) = (1~ |z])|4]>,

we have R =(1—|[z])], thus if |z]<1 then O, = Ri>= (1 —|z|)*2I, Q7! exists as
a bounded, everywhere defined operator, [Q; | =(1 —|z[)~"/2. We have for |z] <1

I—zT =R +ilm(I—zT) = R.—iIlm (zT) =Q, I —iQ; ' Im (zT)Q;le:.
Since Q7' Im (zT) Q; 1 is selfadjoint, the operator in [] has an inverse, everywhere

defined and bounded by 1. Thus 7 —zT also has a bounded and everywhere defined
inverse; indeed,

IU=2T) ==~ (el <D.

This implies (II), moreover the inequality

(10°) II(#I—T)“H = for 1<|u|<ee.

1
=1
Th1s concludes the proof of the theorem.
It is clear that for ¢=1 and ¢=2, (I,) reduces to condltlon (2) and (3), res-
pectively. Thus our theorem generalizes the characterizations of the classes ¢, and %,

mentioned in §1.
- We may complete this remark with the following ones:

Remark 1. If 0<g<2, 921, (,) reduces to the condztzon

= lul<e, hES,

@G II-1H = IQ'“’ n Wl for ’-——

while 1f 2< Q<°°, (I;) reduces to the condition

@ Y T = SV I S
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Proof. If 0<g<2, o1, multiplication by the negative factor g/(¢—2),
and an easy rearrangement transforms (I,) into the equivalent form

. 1 ] " . ] .
11 £ 1—zT|h|| - H2=0  (heS, 1

ay ”{Q_z : ez M (heS, 12 = 1).

~ Setting z = —g:—; % , (11) can be expressed in the equivalent form (I,).

If 2 < @< <, multiplication by the positive factor g/(¢ —2) and the same easy
rearrangement transforms (I,) into the equivalent form
Q———ll—zT'h 2'——1———Ilhllz>‘0 heD, Izl = 1)
-2 ~2)? = =0

2 (e

. 1
Setting, as above, z= 5_2% (12) transforms into the equlvalent form (1;).

Remark 2. In order that T be of class €, with 1 <o <2, it is necessary and
sufficient that the condition

ag) - IW=T) = W+1 for 5= = |ul<e
hold. )
Proof. (III;) implies (I,) since
=i
lul+ 1= Py}

for |u|=(e —1)(2—9)~'. On the other hand, if |u|=(¢—1)2—¢)~"' and p=¢lul,
(Ig) gives
o—1" o—1 o—1 |

IIIuII—THé'u—‘e ‘4_-”82_9 I—TH =+ lul+1

2o 2—¢ 2-
thus (I,) implies (ILI).

Remark 3. In order that T be of class €, with 2= g <eos, it is necessary and
sufficient that T verify the conditions (1I) and

for 1< uf = o i e=2,
() iu=17)- = ul=1for 1<yl =r,= %:—; if o0=2.

Proof. Case g =2. We know already that (I,) implies (10'), i.e. (I113). Suppose,
conversely, that (I1I3) holds. Then ||(ul— T)hll >(]u| —D|h| for 1<|u| <o hence
I\(I— erD)h| =(1 —r)|\h}| for O<r<1, l¢|=1. This gives

0 = |h—erTh|*—(1 —r)*|Al? = 2r|Al* -2 Re er(Th, h) +r?|| Th||>—r2|\hl12.

D 1v1d1i1g by 2r and letting r -0 it results ||A||> — Re &(Th, k) =0. Since this holds
for arbltrary &, le|=1, we get |[(Th, m\=(h|? for any IzESj, ie. w(T)=1. Thus
(I I13) implies (3) i.e. (Iz)
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Case ¢ >2. Suppose first that (1), i.e. (I’;) holds. Then we have |(ul—T)h|| =

= QI”I Al for |u]=r,, in particular

] 1
ler,d =T)l = "0 Tl = — 1Al (il = 1, h€)
. : ¢
If 1 <|u|<r, and e=p/[u|, we obtain hence

IuT = T = er, T~ T)hl = e, — ] = [ﬁ—(ro— lul)] I,

i.e. .
L M =D)h =(ul=DlAl for l<p<r,.
This implies (111,).
Suppose, conversely, that (III;) holds. Then we have in particular

1
=.rer9_l—g—1 for |{] ——g.

_ 141 -1
a3) -1 =m“ [—z_r]

Since, by (1I), (I— zT)“ is ‘a holomorphic function of z for |z[<1 we conclude
from (13) by the maximum principle that

1
-z~ = Q—‘l for |zl = r_'
Thus, if ]/1]>r(,, we have .
-1
-l —T)~ 1 = “(1~—T]
ie. (I). This ﬁmshes the proof.

3. Let || T|| = 1. Then for every complex u we have |}y1 T|| =p|+IT| = ul+1;
thus in virtue of Remark 2 we have

(14) : ' . %,c%, for 1=p<2.

=9—1,

Let now T€%,, with 0 < g, <<, and let g, be such that g, =g, <2g,. Since
T¢¥,,, there exists a unitary operator}U in some Hilbert space R 2$ such that

(15) , Th=g,-prUn (n—l 2,...).

Since U€¥, and 1=g,/0, <2, we have UE%QZ,(,,, by (14). Thus there exists a
unitary operator ¥ in a Hilbert space 2% such that

s - U =2ppy 0 n=1,2,..).

. » €1

Comparing (15) with (15")  we obtain T"=g, pr V" (n=1,2,...,), ie. T€%,,.
From this remark it follows readily the following

Proposition 1. The classes €,(0<g <) form a non-decreasmg scale, i.e.

) Go Gy if O<gy<ps<oo.
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In order to complete this result let us consider a simple example. Let T, (s>0)

0 s) . Obviously,

be the operator in complex Euclidean 2-space with the matrix (0 0

\Tl=s, T?=0, and
g 1
WI-T)"' = ﬁ;(ul+Ts)-

Hence the spectrum of T, consists of the single point 0, thus condition (II) is ful-
filled. Moreover, we have

Il —T)-1] = JAES =(+S T = T

|uf? Tel) el =1 7 (=1
if 1<|u|l= ﬁ Thus, if s=1, condition (III}) also is fulfilled, with ¢ =5+ 1. Thus
T,c%,,, if s=1,

but, since || T3] =s, T does not belong to any of the classes €, with g <s.
This shows that the increasing scale of the classes %, does not attain a maximum
(indeed, %, is properly contained in €, if 1 =0<go —1).

Now, let 0 <s<1. Then, putting Q=m,' we have
. ’ —Q
KT = i +s = T2 for 58 = <=,

i.e. (Ip) is verified. Hence T,€%,. Since s= , this result also can be expressed

_9

2—9

in the form

: T . E%Q_ if 0<g<l.
e

But || ]| =s again implies that T_, does not belong to any of the classes € with
2—¢
, 4
[ <2_ 0’
This shows that none of the classes %, is void and, moreover, that the scale

of the classes %, does not attain a minimum (indeed, €, properly contains %, if

QI
)
¢ o+l
Thus noéze of the classes %,(¢ =0) is void, and the scale of the classes €, neither
attains a minimum nor a maximum. '

4. There exist power-bouded operators which do not belong to any of the classes
%,. More precisely, we shall give an example of an operator T such that |T"[| =2 for .
every integer n, and which is not.contained in any of the classes %,(0 =0).
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Consider, to this effect, the space L2(—1, 1), and the operators ¥ and 4 defined
in this space by
(VHx) = f(=x) and (4f)(x) = a(x)f(x),

‘where a(x) =242 if —1<x<0, and =212 if O0<x<l.
Set T=AVA!, ie
an | AN = ol S,

T for n odd,

I for n'even. Let us show that | 7| =2.

Since V2 =1, we have T*=1,ie. T"= {
Indeed, we have

+1

Mﬂﬁ=./
. 1

a(x)

2 .
= ; 2 2
2= dx = 4| f]|*> for every f€L?,

f(=x)

bec sA a(x) 2 if —l<x=<0,
ecause a-x) |12 if O0=x=<l,

and 1TF12=41f1% if f(x)=0 for —1=<x<0.

We assert that 7 belongs to none of the classes €,.

Since || T|| =2, the values ¢g<2 are a priori 1mposs1ble We shall show, using
the condition (III "), that the values ¢ =2 also are impossible.

To this end, observe first that, since T2 =1, we have

: .
—7T)-1 =
(18) (W=T)"" = pEEl.
N functi 4 0for —1<x=<0
Choose the function fy(x) = lfor O<x<I . Then
I+ T)fol? = /lufo(x)w— (() fo (=) dX~
Iul2 4= (|l + )/l
whence . © e+ T =(u? + 42
and by (18), Il -T)- 1| = (l#|2+4)”2-

lu
Now, if u is real, u=>1, we have
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for p sufficiently close to 1, namely for 1 <u<1.5, and this shows that conditiom -

" (IT1,) is not satisfied for any ¢=2.
5. Denote by A the class of the functions

u(z) = Sa,,z" with S’ la,] < eo.
From (1) it follows for every T€¥%, and uc A4:

(19) u(T) =pr[o-u(U) +(1 - 0)- u(O)g].

This relation implies, by virtue of the spectral theory for unitary operators, the
followmg

Proposmon 2. For T¢¥4, and uEA we have

200 - | - u(@)) = max |, (2)]

and

1)) [|H|"§n1 Reu,(2)]15 = Re‘u(T) = [Irrllg Re u,(z)] I.g,.
where

uz)=0-u(z)+(1—0)- u(0).

Obviously, (20) and (21) géneralize, for the classes %’, the inequalities of
VON NEUMANN and. HEINZ, respectnvely, on COntI‘aCthHS .i.e. for the class %,.
Cf. [4], p. 431.

It is clear that if ¢ =1, (20) implies | T = 1: one has only to set u(z) =z. In the
case ¢ # 1, (20) does not seem to imply that T¢%,. But (21) does: in fact we shall
prove the following

Proposition 3. Suppose T is a power-bounded operator which satzsﬁes Q1)
Jor every function u€ A. Then T€%,.

Proof. Since T is power-bounded, its spectrum is contained in the unit disc,
i.e. T satisfies (IT). Moreover, power-boundedness assures that u(T) =apl+a, T+ -
.- +a,T"+ .- converges in norm. Concerning (I,) it suffices to verify (5), or, equi-
valently, (8). To this effect, choose

w@=uG=1-2+2 e 2peeag e E s,
Then ' .llQ(Z) =1420z420222+ - = }igi,

hence Re u,(z) =0 for |zj=1. Thus, by @1,
O =Reu(T) = (1 —2] ]5+ (1 CT)‘

and this result coincides with (8).
Finally, we make the following
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Proposition 4. Let u(z)EA with |u(z)|<1 for |z|=1, ‘and u(©)=0. Then
T€%, zmpltes u(T€s,.

Proof. Since u,(z)={u(z)]" also belongs to A for every-n=1,2, ..., and since:
u,(0)= 0 we have for T¢%, by (19): :
22) - u(@)'=u(T)=pr ¢-u,(U)=g¢-pr u(U)"

Now, since |u(z)| =1 for |z| =1, u(U) is a contraction. Thus there exists a unitary’
operator V' such that u(U)"=pr V" (n=0,1, ...). Comparing this with (22) we:
conclude that : :

u(TY'=g-pr V" (n=1,2,..),
Le. u(T)e%,.
For ¢=2, Proposition 4 reduces to a result obtained by. STAMPFLI cf [2]..

References

" [1] B. Sz.-NaGy, Sur les contractions de I'espace de Hilbert, Acta Sci. Marh., 15 (1953), 87—92..

[2] P. R. HaLMos, Positive definite sequences and the miracle of w. (A talk before the functional
analysis seminar at the University of Michigan, 8. July 1965), 17 pages. (Mimeg-
graphed)

[3]1 B. Sz.-NaGyY, Positiv-definite, durch Operatoren erzeugte Funktionen, Wzssenschaftltche Zeit-
schnft der Techn. Univ. Dresden (to appear).

[4] F. Riesz et B. Sz.-NAGy, Legons d’ana[yse foncuonnelle, 4. éd. (Pans~Budapest 1965)..

( Received Nouember 1, 1965)



