Homomorphisms of certain commutative lattice ordered semigroups

By P. J. McCARTHY in Lawrence (Kansas, U. S. A.)*

Let S be a semigroup. It is well-known that a homomorphic image of S is, to within isomorphism, of the form S/θ where θ is a congruence on S. In this note we shall show that if S is a commutative lattice ordered semigroup [2, Chapter XII], with certain additional properties, then only congruences of a certain type are required to describe all of the homomorphic images of S. Then we shall point out a particularly interesting example of a class of semigroups which have all of these properties. In this note, when we refer to a homomorphism from one partially ordered semigroup into another we shall always mean one that preserves ordering.

First, assume that S is a commutative partially ordered semigroup, so that there is a partial ordering on S with the property that if a, b, $c \in S$ and if $a \leq b$ then $ac \leq bc$. Also assume that S has an identity e such that $a \leq e$ for all $a \in S$.

Let *M* be a subsemigroup of *S*. For each $a \in S$ we set $a' = \{x \in S | mx \leq a \text{ for some } m \in M\}$. Since $m \leq e$ for all $m \in M$ we have $ma \leq a$ and so $a \in a'$ for all $a \in S$. We define a relation θ on *S* by $a \equiv b(\theta)$ if and only if a' = b'. This is an equivalence relation on *S* and we easily verify the following facts:

- (1) if $a \in b'$ then $a' \subseteq b'$,
- (2) if $a \equiv b(\theta)$ then $ac \equiv bc(\theta)$ for all $c \in S$,
- (3) if $a \le c \le b$ and $a = b(\theta)$ then $a = c(\theta)$.

Thus, θ is a congruence on S and we can consider the semigroup S/θ . We denote the equivalence class of $a \in S$ with respect to θ by $\theta(a)$, and we also denote the natural homomorphism from S onto S/θ by θ .

From now on we shall assume that S is a lattice with respect to its partial ordering and that $a(b \lor c) = ab \lor ac$ for all $a, b, c \in S$.

(4) if $a \equiv b(\theta)$ we have $a \lor c \equiv b \lor c(\theta)$ and $a \land c \equiv b \land c(\theta)$ for all $c \in S$. For, since $a \in b'$ there is an $m \in M$ such that $ma \leq b$. Then $m(a \lor c) = ma \lor mc \leq \leq b \lor c$ and $m(a \land c) \leq ma \land mc \leq b \land c$. Hence $a \lor c \in (b \lor c)'$ and $a \land c \in (b \land c)'$, and so $(a \lor c)' \subseteq (b \lor c)'$ and $(a \land c)' \subseteq (b \land c)'$. By symmetry, $(b \lor c)' \subseteq (a \lor c)'$ and $(b \land c)' \subseteq (a \land c)'$.

*) Supported in part by NSF GP-1738.

P. J. McCarthy

We can therefore define operations \vee and \wedge on S/θ by $\theta(a) \vee \theta(b) = \theta(a \vee b)$ and $\theta(a) \wedge \theta(b) = \theta(a \wedge b)$, and with respect to these operations, S/θ is a lattice ordered semigroup. It is quite trivial that the properties required of the operations \vee and \wedge hold. It remains to verify that the ordering induced on S/θ by the lattice structure is compatible with the multiplication on S/θ . We have $\theta(a) \leq \theta(b)$ if and only if $\theta(b) = \theta(a) \vee \theta(b) = \theta(a \vee b)$, and so if $\theta(a) \leq \theta(b)$ we have for all $\theta(c) \in S/\theta$, $\theta(bc) =$ $= \theta(b)\theta(c) = \theta(a \vee b)\theta(c) = \theta((a \vee b)c) = \theta(ac \vee bc)$. Hence $\theta(a)\theta(c) \leq \theta(b)\theta(c)$. Note that $\theta(e)$ is the identity of S/θ and that $\theta(a) \leq \theta(e)$ for all $\theta(a) \in S/\theta$.

Now consider a homomorphism h from S onto a partially ordered semigroup T. If we set $M = \{m \in S | h(m) = h(e)\}$ then M is a subsemigroup of S. Let θ be the congruence on S associated with M in the manner we have described. If $a \in S$ we set $f\theta(a) = h(a)$. If we show that f is a well-defined mapping from S/θ into T, then it is clear that f is a homomorphism from S/θ onto T such that $f\theta = h$. Suppose that $\theta(a) = \theta(b)$, i.e., $a \equiv b(\theta)$. Then there are elements $m, n \in M$ such that $ma \leq b$ and $nb \leq a$. Hence $nma \leq nb \leq a$ and so $h(a) = h(mna) \leq h(nb) = h(b) \leq h(a)$. Thus h(a) = h(b) and we conclude that f is well-defined.

We seek conditions under which f will be an isomorphism. A suitable condition, for our purposes, is that both S and T be residuated [2, p. 189] and that h preserve residuals. For, suppose that this is the case, and that h(a) = h(b). Then h(e)h(b) = h(a)and so $h(e) \le h(a):h(b)$. Hence h(e) = h(a):h(b) = h(a:b), which means that $a:b \in M$. Since $(a:b)b \le a$ we have $b' \le a'$. Similarly $a' \le b'$ and therefore $a \equiv b(\theta)$ and $\theta(a) = = \theta(b)$. We can summarize all of this as the

Theorem. Let S be a commutative residuated lattice ordered semigroup with an identity e such that $a \leq e$ for all $a \in S$. Let T be a residuated partially ordered semigroup and suppose there is a homomorphism h from Sonto T which preserves residuals. Then there is a subsemigroup M of S such that if θ is the congruence on S determined as above by M, then there is an isomorphism f from $S|\theta$ onto T such that $f\theta = h$.

Remark 1. If S and T are as in the statement of the theorem, then T becomes a lattice ordered semigroup when we define meet and join on T by $h(a) \wedge h(b) =$ $= h(a \wedge b)$ and $h(a) \vee h(b) = h(a \vee b)$.

Remark 2. Let S be as in the statement of the theorem, let M be a subsemigroup of S, and let θ be the congruence on S determined by M. Then the semigroup S/θ is residuated and the homomorphism θ preserves residuals. To show this we shall verify that $\theta(a:b)$ is the residual of $\theta(a)$ by $\theta(b)$. We have $\theta(a:b)\theta(b) = \theta((a:b)b) \le \theta(a)$. Furthermore, suppose that $\theta(c)\theta(b) \le \theta(a)$. Then $\theta(cb) \le \theta(a)$ and so $\theta(cb) =$ $= \theta(a) \land \theta(cb) = \theta(a \land cb)$. Thus, for some $m \in M$, $mcb \le a \land cb \le a$. Hence $mc \le a:b$ and so $\theta(mc) \le \theta(a:b)$. Since $\theta(m) = \theta(e)$, as is easily seen, $\theta(mc) = \theta(m)\theta(c) = \theta(c)$. Hence $\theta(c) \le \theta(a:b)$. Therefore, $\theta(a:b)$ is the required residual [2, p. 189]. More generally, these conditions are satisfied by the residuated multiplicative lattices, which have been studied by WARD and DILWORTH (see [1] and the references at the end of that paper).

Let L be a residuated multiplicative lattice: then L is a commutative residuated lattice ordered semigroup with an identity I such that $A \leq I$ for all $A \in L$. The formation of the multiplicative lattice L/θ , where θ is determined as above by a subsemigroup (i.e., multiplicatively closed set) of L, is an abstract construction of the

Homomorphisms of lattice ordered semigroups

lattice of ideals of a ring of quotients of a commutative ring with identity. A special case of this construction was discussed by DILWORTH [1, pp. 489-491]. Let L be a Noether lattice and let $D \in L$. If M is the set of all $A \in L$ such that D is not greater than or equal to any of the primes associated with a normal decomposition of A, then M is a subsemigroup of L, and if θ is the congruence on L determined as above by M, then L/θ is precisely the congruence lattice L_D of Dilworth. In particularl if D is a prime P of L then $A \in M$ if and only if $A \leq P$, for if $A \leq P$ then some minima, prime associated with a normal decomposition of P.

References

R. P. DILWORTH, Abstract commutative ideal theory, *Pacific J. Math.*, 12 (1962), 481–498.
L. FUCHS, *Partially Ordered Algebraic Systems* (Reading, Mass., 1963).

(Received April 15, 1965)