Homomorphisms of certain commutative lattice ordered semigroups

By P. J. McCARTHY in Lawrence (Kansas, U.S. A.)*

Let S be a semigroup. It is well-known that a homomorphic image of S is,. to within isomorphism, of the form S / θ where θ is a congruence on S. In this notewe shall show that if S is a commutative lattice ordered semigroup [2, Chapter XII]. with certain additional properties, then only congruences of a certain type arerequired to describe all of the homomorphic images of S. Then we shall point out a particularly interesting example of a class of semigroups which have all of theseproperties. In this note, when we refer to a homomorphism from one partially ordered semigroup into another we shall always mean one that preserves ordering.

First, assume that S is a commutative partially ordered semigroup, so that there is a partial ordering on S with the property that if $a, b, c \in S$ and if $a \leqq b$ then. $a c \leqq b c$. Also assume that S has an identity e such that $a \leqq e$ for all $a \in S$.

Let M be a subsemigroup of S. For each $a \in S$ we set $a^{\prime}=\{x \in S \mid m x \leqq a$ for some $m \in M\}$. Since $m \leqq e$ for all $m \in M$ we have $m a \leqq a$ and so $a \in a^{\prime}$ for all $a \in S$. We define a relation θ on S by $a \equiv b(\theta)$ if and only if $a^{\prime}=b^{\prime}$. This is an equivalencerelation on S and we easily verify the following facts:
(3): if $a \leqq c \leqq b$ and $a \equiv b(\theta)$ then $a \equiv c(\theta)$.

Thus, θ is a congruence on S and we can consider the semigroup S / θ. We denotethe equivalence class of $a \in S$ with respect to θ by $\theta(a)$, and we also denote the natural homomorphism from S onto S / θ by θ.

From now on we shall assume that S is a lattice with respect to its partial ordering and that $a(b \vee c)=a b \vee a c$ for all $a, b, c \in S$.
(4) if $a \equiv b(\theta)$ we have $a \vee c \equiv b \vee c(\theta)$, and $a \wedge c \equiv b \wedge c(\theta)$ for all $c \in S$.

For, since $a \in b^{\prime}$ there is an $m \in M$ such that $m a \leqq b$. Then $m(a \vee c)^{\prime}=m a \vee m c \leqq$ $\leqq b \vee c$ and $m(a \wedge c) \leqq m a \wedge m c \leqq b \wedge c$. Hence $a \vee c \in(b \vee c)^{\prime}$ and $a \wedge c \in(b \wedge c)^{\prime}$, and so $(a \vee c)^{\prime} \subseteq(b \vee c)^{\prime}$ and $(a \wedge c)^{\prime} \subseteq(b \wedge c)^{\prime}$. By symmetry, $(b \vee c)^{\prime} \subseteq(a \vee c)^{\prime}$ and $(b \wedge c)^{\prime} \subseteq(a \wedge c)^{\prime}$.

[^0]We can therefore define operations \vee and \wedge on S / θ by $\theta(\mathrm{a}) \vee \theta(\mathrm{b})=\theta(\mathrm{a} \vee \mathrm{b})$ and $\theta(a) \wedge \theta(b)=\theta(a \wedge b)$, and with respect to these operations, S / θ is a lattice ordered semigroup. It is quite trivial that the properties required of the operations \vee and \wedge hold. It remains to verify that the ordering induced on S / θ by the lattice structure is compatible with the multiplication on S / θ. We have $\theta(a) \leqq \theta(b)$ if and only if $\theta(b)=\theta(a) \vee \theta(b)=\theta(a \vee b)$, and so if $\theta(a) \leqq \theta(b)$ we have for all $\theta(c) \in S / \theta, \theta(b c)=$ $=\theta(b) \theta(c)=\theta(a \vee b) \theta(c)=\theta((a \vee b) c)=\theta(a c \vee b c)$. Hence $\theta(a) \theta(c) \leqq \theta(b) \theta(c)$. Note that $\theta(e)$ is the identity of S / θ and that $\theta(a) \leqq \theta(e)$ for all $\theta(a) \in S / \theta$.

Now consider a homomorphism h from S onto a partially ordered semigroup T. If we set $M=\{m \in S \mid h(m)=h(e)\}$ then M is a subsemigroup of S. Let θ be the congruence on S associated with M in the manner we have described. If $a \in S$ we set $f \theta(a)=h(a)$. If we show that f is a well-defined mapping from S / θ into T, then it is clear that f is a homomorphism from S / θ onto T such that $f \theta=h$. Suppose that $\theta(a)=\theta(b)$, i.e., $a \equiv b(\theta)$. Then there are elements $m, n \in M$ such that $m a \leqq b$ and $n b \leqq a$. Hence $n m a \leqq n b \leqq a$ and so $h(a)=h(m n a) \leqq h(n b)=h(b) \leqq h(a)$. Thus $h(a)=h(b)$ and we conclude that f is well-defined.

We seek conditions under which f will be an isomorphism. A suitable condition, for our purposes, is that both S and T be residuated [2, p. 189] and that h preserve residuals. For, suppose that this is the case, and that $h(a)=h(b)$. Then $h(e) h(b)=h(a)$ and so $h(e) \leqq h(a): h(b)$. Hence $h(e)=h(a): h(b)=h(a: b)$, which means that $a: b \in M$. Since $(a: b) b \leqq a$ we have $b^{\prime} \cong a^{\prime}$. Similarly $a^{\prime} \subseteq b^{\prime}$ and therefore $a \equiv b(\theta)$ and $\theta(a)=$ $=\theta(b)$. We can summarize all of this as the

Theorem. Let S be a commutative residuated lattice ordered semigroup with an identity e such that $a \leqq e$ for all $a \in S$. Let T be a residuated partially ordered semigroup and suppose there is a homomorphism h from Sonto T which preserves residuals. Then there is a subsemigroup M of S such that if θ is the congruence on S determined as above by M, then there is an isomorphism from S / θ onto T such that $f \theta=h$.

Remark 1. If S and T are as in the statement of the theorem, then T becomes a lattice ordered semigroup when we define meet and join on T by $h(a) \wedge h(b)=$ $=h(a \wedge b)$ and $h(a) \vee h(b)=h(a \vee b)$:

Remark 2. Let S be as in the statement of the theorem, let M be a subsemigroup of S, and let θ be the congruence on S determined by M. Then the semigroup S / θ is residuated and the homomorphism θ preserves residuals. To show this we shall verify that $\theta(a: b)$ is the residual of $\theta(a)$ by $\theta(b)$. We have $\theta(a: b) \theta(b)=\theta((a: b) b) \leqq \theta(a)$. Furthermore, suppose that $\theta(c) \theta(b) \leqq \theta(a)$. Then $\theta(c b) \leqq \theta(a)$ and so $\theta(c b)=$ $=\theta(a) \wedge \theta(c b)=\theta(a \wedge c b)$. Thus, for some $m \in M, m c b \leqq a \wedge c b \leqq a$. Hence $m c \leqq a: b$ and so $\theta(m c) \leqq \theta(a: b)$. Since $\theta(m)=\theta(e)$, as is easily seen, $\theta(m c)=\theta(m) \theta(c)=\theta(c)$. Hence $\theta(c) \leqq \theta(a: b)$. Therefore, $\theta(a: b)$ is the required residual [2, p. 189]. More generally, these conditions are satisfied by the residuated multiplicative lattices, which have been studied by Ward and Dilworth (see [1] and the references at the end of that paper).

Let L be a residuated multiplicative lattice: then L is a commutative residuated lattice ordered semigroup with an identity I such that $A \leqq I$ for all $A \in L$. The formation of the multiplicative lattice L / θ, where θ is determined as above by a sub:semigroup (i.e., multiplicatively closed set) of L, is an abstract construction of the
lattice of ideals of a ring of quotients of a commutative ring with identity. A special case of this construction was discussed by Dilworth [1, pp. 489-491]. Let L be a Noether lattice and let $D \in L$. If M is the set of all $A \in L$ such that D is not greater than or equal to any of the primes associated with a normal decomposition of A, then M is a subsemigroup of L, and if θ is the congruence on L determined abse by M, then L / θ is precisely the congruence lattice L_{D} of Dilworth. In particularl if D is a prime P of L then $A \in M$ if and only if $A ⿻ P$, for if $A \leqq P$ then some minima, prime associated with a normal decomposition of A must be less than or equal to P.

References

[1] R. P. Dilworth, Abstract commutative ideal theory, Pacific J. Math., 12 (1962), 481-498.
[2] L. Fuchs, Partially Ordered Algebraic Systems (Reading, Mass., 1963).
(Received April 15, 1965)

[^0]: *) Supported in part by NSF GP-1738.

