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1. Let Zan be a given infinite series with partial sums sn, and let tn = t® = nan. 
By <fn and t* we denote the n-th Cesàro means of order a (a = — 1) of the sequences 
{s„} and {i„}, respectively. The series Ia n is said to be absolutely summable (C, a) 
with index k, or simply summable \C,a\k (& £ 1), if 

( i - i ) ' Z ^ - ' K - C i f « » ( [ ! ] ) • 

Summability |C, a], is the same as summability |C, a|. 
Since 

condition (1. 1) can also be written as 

(1.2) 

n 
If 

0 - 3 ) 2 ^ = 0 ( \ 0 G R I ) , 
1 v 

as then Ian is said to be strongly bounded by logarithmic means with index 1, 
or bounded [.Rj log«, 1]. 

2 . Recently PATI [ 2 ] proved the following theorem concerning summability 
|C, 1| of a "factored infinite series. 

A Let {A„} be a convex sequence such that I — is convergent (then, necessarily, 
n 

)-n s 0). If Ian is bounded [7?, log n, 1], then ZanA„ is summable ]C, 1|. 

The object of this note is to generalize this result by obtaining a theorem for 
summability |C, 1 

3. In what follows we shall establish the following theorem. 
A 

T h e o r e m . If {An} is a convex sequence such that I — -< and 
n 

( 3 . 1 ) 2 W V v = 0 ( l o g " ) ( f c ë l ) , 
1 

then IanA„ is summable |C,l|k. 
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It is clear that in the special case k = 1 our theorem includes the above theorem 

of PATI. For 1 + w e ° B S E R V E that 

i - ^ T = - 0 ( O o g » ) l l k ( l o g = O (logn). 

Thus condition ( 3 . 1 ) implies condition ( 1 . 3 ) . However the results of FLETT [1] show 
that summability | C, l | t and summability | C, 1| in general are independent of each 
other. 

4. The following lemmas will be required for the proof of this theorem. 
A ' 

L e m m a 1. [2] If {X„} is a convex sequence such that 

I log (n -f l)AÂn < » 

and m log (m + \)Alm = 0(1), 
as m-+ 

L e m m a 2. [2] Under the condition of Lemma 1, we have 
m 

2nlog(n + l)A2À„ = 0 (1 ) , as m — 
i 

5. P r o o f of t he T h e o r e m . Let T„ denote the «-th Cesàro mean of order 
1 of the sequence {na„X„}. Then we have to show that 

( 5 . , I ) 2 » - M R / « » . 
i 

Now, 

^ l - A - ¿ J ? -

= = L'r'+Lf+L'f. 
n+I! n+1 

By MINKOWSKI'S inequality it is therefore sufficient to prove that 

(5 . 2) 2 , < 

(5- 3 ) 2 

( 5 . 4 ) 2 

n 

l 4 n ) l * 
n 

I L<«>|< 
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P r o o f of (5. 2). In the sequel C j , C2 denote positive constants. We have 
00 ir(n)|t ~ 1 I 1 * ~ i ( n \k 

« c , J ( J | s , | j " i - l ' , li.lj a 
00 i n In \klk' » , n ( n \k]k' 

1 " l VI J 1 " . v = 1 Vv = l / 

N o w £ AAv\sv\
k = Z vAl 

V=1 1 
W l/c 

m— I v t Ik m \ \k 

1 H=1 ft /1=1 f1 

= log (v + l ) j + O [z AAV log (V + l ) j + 0(mAXnl log (m + 1)) = 0 ( 1 ) , ; 

by virtue of Lemmas 1 and 2. 
Also applying Lemma 1 we have 

1 m— 1 v . .t m i . if 
2 ^ M k = 2 AX. 2 ^ 1 V 1 fJ= 1 H H=l 

= 0^2 AK log (v + 1)J + 0(Xm log (m + 1)) = O(l). 

'fi _ 

Hence ¿ ^ = 0(1). 
i n 

P r o o f of (5. 3). We have by virtue of the hypothesis 

2 ^ = 2 i S ¿*J6E - 2 2 — = 
1 n i f 1 n I /1 x f i 

m-1 / m \ 
= 2 AX k

nO(\ogn) + 0(A k
mlogm) = 0\2 AX k

nlogn\ + 0 ( 1 ) = O ( l ) . 
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Finally, it is clear that 

This completes the proof of the theorem. 
The author would like to express his warmest thanks to Professor B. N. PRASAD 

for his kind encouragement and helpful suggestions. 
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