On $|C, 1|_{\boldsymbol{k}}$ summability factors of infinite series

By S. M. MAZHAR in Aligarh (India)

1. Let Σa_{n} be a given infinite series with partial sums s_{n}, and let $t_{n}=t_{n}^{0}=n a_{n}$, By σ_{n}^{α} and t_{n}^{α} we denote the n-th Cesàro means of order $\alpha(\alpha>-1)$ of the sequences $\left\{s_{n}\right\}$ and $\left\{t_{n}\right\}$, respectively. The series Σa_{n} is said to be absolutely summable (C, α) with index k, or simply summable $|C, \alpha|_{k}(k \geqq 1)$, if

$$
\begin{equation*}
\sum n^{k-1}\left|\sigma_{n}^{\alpha}-\sigma_{n-1}^{\alpha}\right|^{k}<\infty \quad([1]) . \tag{1.1}
\end{equation*}
$$

Summability $|C, \alpha|_{1}$ is the same as summability $|C, \alpha|$.
Since

$$
t_{n}^{\alpha}=n\left(\sigma_{n}^{\alpha}-\sigma_{n-1}^{\alpha}\right),
$$

condition (1.1) can also be written as

$$
\begin{equation*}
\sum \frac{\left|t_{n}^{\alpha}\right|^{k}}{n}<\infty \tag{1.2}
\end{equation*}
$$

If

$$
\begin{equation*}
\sum_{1}^{n} \frac{\left|s_{v}\right|}{v}=O(\log n) \tag{1.3}
\end{equation*}
$$

as $n \rightarrow \infty$, then $\sum a_{n}$ is said to be strongly bounded by logarithmic means with index 1 , or bounded $[R, \log n, 1]$.
2. Recently Pati [2] proved the following theorem concerning summability $|C, 1|$ of a factored infinite series.

Let $\left\{\lambda_{n}\right\}$ be a convex sequence such that $\Sigma \frac{\lambda_{n}}{n}$ is convergent (then, necessarily, $\lambda_{n} \geqq 0$). If Σa_{n} is bounded $[R, \log n, 1]$, then $\Sigma a_{n} \lambda_{n}$ is summable $|C, 1|$.

The object of this note is to generalize this result by obtaining a theorem for summability $|C, 1|_{k}$.
3. In what follows we shall establish the following theorem.

Theorem. If $\left\{\lambda_{n}\right\}$ is a convex sequence such that $\Sigma \frac{\lambda_{n}}{n}<\infty$, and .

$$
\begin{equation*}
\sum_{1}^{n}\left|s_{v}\right|^{k} / v=O(\log n) \quad(k \geqq 1) \tag{3.1}
\end{equation*}
$$

then $\sum a_{n} \lambda_{n}$ is summable $|C, 1|_{k}$.

It is clear that in the special case $k=1$ our theorem includes the above theorem of Pati. For $k>1\left(\frac{1}{k}+\frac{1}{k^{\prime}}=1\right)$, we observe that

$$
\sum_{1}^{n} \frac{\left|s_{v}\right|}{v} \leqq\left(\sum_{1}^{n} \frac{\left|s_{v}\right|^{k}}{v}\right)^{1 / k}\left(\sum_{1}^{n} \frac{1}{v}\right)^{1 / k^{\prime}}=O\left\{(\log n)^{1 / k}(\log n)^{1 / k^{\prime}}\right\}=O(\log n)
$$

Thus condition (3.1) implies condition (1.3). However the results of Flett [1] show that summability $|C, 1|_{k}$ and summability $|C, 1|$ in general are independent of each other.
4. The following lemmas will be required for the proof of this theorem.

Lemma 1. [2] If $\left\{\lambda_{n}\right\}$ is a convex sequence such that $\sum \frac{\lambda_{n}}{n}<\infty$, then

$$
\Sigma \log (n+1) \Delta \lambda_{n}<\infty
$$

and

$$
m \log (m+1) \Delta \lambda_{m}=O(1)
$$

as $m \rightarrow \infty$.
Lemma 2. [2] Under the condition of Lemma 1, we have

$$
\sum_{1}^{m} n \log (n+1) \Delta^{2} \lambda_{n}=O(1), \quad \text { as } \quad m \rightarrow \infty
$$

5. Proof of the Theorem. Let T_{n} denote the n-th Cesàro mean of order 1 of the sequence $\left\{n a_{n} \lambda_{n}\right\}$. Then we have to show that

$$
\begin{equation*}
\sum_{1}^{\infty} n^{-1}\left|T_{n}\right|^{k}<\infty \tag{5,1}
\end{equation*}
$$

Now,

$$
\begin{aligned}
T_{n} & =\frac{1}{n+1} \sum_{v=1}^{n} v a_{v} \lambda_{v}=\frac{1}{n+1} \sum_{1}^{n-1} \Delta\left(v \lambda_{v}\right) s_{v}+\frac{n s_{n} \lambda_{n}}{n+1}-\frac{a_{0} \lambda_{1}}{n+1}= \\
& =\frac{1}{n+1} \sum_{v=1}^{n} \Delta\left(v \lambda_{v}\right) s_{v}-\frac{s_{n}}{n+1}\left(n \lambda_{n}-(n+1) \lambda_{n+1}\right)+\frac{n s_{n} \lambda_{n}}{n+1}-\frac{a_{0} \lambda_{1}}{n+1}= \\
& =\frac{1}{n+1} \sum_{1}^{n} \Delta\left(v \lambda_{v}\right) s_{v}+s_{n} \lambda_{n+1}-\frac{a_{0} \lambda_{1}}{n+1}=L_{1}^{(n)}+L_{2}^{(n)}+L_{3}^{(n)} .
\end{aligned}
$$

By Minkowski's inequality it is therefore sufficient to prove that

$$
\begin{equation*}
\sum \frac{\left|L_{1}^{(n)}\right|^{k}}{n}<\infty \tag{5.2}
\end{equation*}
$$

$$
\begin{equation*}
\sum \frac{\left|L_{2}^{(n)}\right|^{k}}{n}<\infty \tag{5.3}
\end{equation*}
$$

$$
\begin{equation*}
\sum \frac{\left|L_{3}^{(n)}\right|^{k}}{n}<\infty \tag{5.4}
\end{equation*}
$$

Proof of (5.2). In the sequel C_{1}, C_{2} denote positive constants. We have

$$
\begin{gathered}
\sum_{1}^{\infty} \frac{\left|L_{1}^{(n)}\right|^{k}}{n}=\sum_{1}^{\infty} \frac{1}{n(n+1)^{k}}\left|\sum_{1}^{n}\left(\Delta v \lambda_{v}\right) s_{v}\right|^{k} \leqq \sum_{1}^{\infty} \frac{1}{n^{k+1}}\left(\sum_{1}^{n}\left|\Delta v \lambda_{v}\right|\left|s_{v}\right|\right)^{k} \leqq \\
\leqq C_{1} \sum_{1}^{\infty} \frac{1}{n^{k+1}}\left(\sum_{1}^{n} v \Delta \lambda_{v}\left|s_{v}\right|\right)^{k}+C_{1} \sum_{1}^{\infty} \frac{1}{n^{k+1}}\left(\sum_{1}^{n} \lambda_{v+1}\left|s_{v}\right|\right)^{k} \leqq
\end{gathered}
$$

$$
\leqq C_{1} \sum_{1}^{\infty} \frac{1}{n^{k+1}} \sum_{1}^{n} v \Delta \lambda_{v}\left|s_{v}\right|^{k}\left(\sum_{1}^{n} v \Delta \lambda_{v}\right)^{k / k^{\prime}}+C_{1} \sum_{1}^{\infty} \frac{1}{n^{k+1}} \sum_{v=1}^{n} \lambda_{v+1}\left|s_{v}\right|^{k}\left(\sum_{v=1}^{n} \lambda_{v+1}\right)^{k / k^{\prime}}=
$$

$$
=O\left(\sum_{1}^{\infty} \frac{1}{n^{2}} \cdot \sum_{v=1}^{n} v \Delta \lambda_{v}\left|s_{v}\right|^{k}\right)+O\left(\sum_{n=1}^{\infty} \frac{1}{n^{2}} \sum_{v=1}^{n} \lambda_{v}\left|s_{v}\right|^{k}\left(\sum_{1}^{\infty} \frac{\lambda_{v}}{v}\right)^{k / k^{\prime}}\right)=
$$

$$
=O\left(\sum_{v=1}^{\infty} v \Delta \lambda_{v}\left|s_{v}\right|^{k} \sum_{n=v}^{\infty} \frac{1}{n^{2}}\right)+\dot{O}\left(\sum_{v=1}^{\infty} \lambda_{v}\left|s_{v}\right|^{k} \sum_{n=v}^{\infty} \frac{1}{n^{2}}\right)=
$$

$$
=O\left(\sum_{v=1}^{\infty} \Delta \lambda_{v}\left|s_{v}\right|^{k}\right)+O\left(\sum_{v=1}^{\infty} \frac{\lambda_{v}}{v}\left|s_{v}\right|^{k}\right)
$$

Now

$$
\begin{gathered}
\sum_{v=1}^{m} \Delta \lambda_{v}\left|s_{v}\right|^{k}=\sum_{1}^{m} v \Delta \lambda_{v} \frac{\left|s_{v}\right|^{k}}{v}= \\
=\sum_{1}^{m-1} \Delta\left(v \Delta \lambda_{v}\right) \sum_{\mu=1}^{v} \frac{\left|s_{\mu}\right|^{k}}{\mu}+m \Delta \lambda_{m} \sum_{\mu=1}^{m} \frac{\left|s_{\mu}\right|^{k}}{\mu}=
\end{gathered}
$$

$=O\left(\sum_{1}^{m-1} v \Delta^{2} \lambda_{v} \log (v+1)\right)+O\left(\sum_{i}^{m-1} \Delta \lambda_{v} \log (v+1)\right)+O\left(m \Delta \lambda_{m} \log (m+1)\right)=O(1)$,
by virtue of Lemmas 1 and 2 .
Also applying Lemma 1 we have

$$
\begin{aligned}
& \sum_{1}^{m} \frac{\lambda_{v}}{v}\left|s_{v}\right|^{k}=\sum_{1}^{m-1} \Delta \lambda_{v} \sum_{\mu=1}^{v} \frac{\left|s_{\mu}\right|^{k}}{\mu}+\lambda_{m} \sum_{\mu=1}^{m} \frac{\left|s_{\mu}\right|^{k}}{\mu}= \\
= & O\left(\sum_{1}^{m-1} \Delta \lambda_{v} \log (v+1)\right)+O\left(\lambda_{m} \log (m+1)\right)=O(1)
\end{aligned}
$$

Hence

$$
\sum_{1}^{\infty} \frac{\left|L_{1}^{(n)}\right|^{k}}{n}=O(1)
$$

Proof of (5. 3). We have by virtue of the hypothesis

$$
\begin{gathered}
\sum_{1}^{m} \frac{\left|L_{2}^{(n)}\right|^{k}}{n}=\sum_{1}^{m} \frac{1}{n}\left|s_{n} \lambda_{n+1}\right|^{k} \leqq \sum_{1}^{m} \lambda_{n}^{k} \frac{\left|s_{n}\right|^{k}}{n}=\sum_{1}^{m-1} \Delta \lambda_{n}^{k} \sum_{\mu=1}^{n} \frac{\left|s_{\mu}\right|^{k}}{\mu}+\lambda_{m}^{k} \sum_{1}^{m} \frac{\left|s_{\mu}\right|^{k}}{\mu}= \\
=\sum_{1}^{m-1} \Delta \lambda_{n}^{k} O(\log n)+O\left(\lambda_{m}^{k} \log m\right)=O\left(\sum_{1}^{m} \Delta \lambda_{n}^{k} \log n\right)+O(1)=O(1)
\end{gathered}
$$

Finally, it is clear that

$$
\sum \frac{\left|L_{3}^{(n)}\right|^{k}}{n} \leqq C_{2} \sum_{1}^{\infty} \frac{1}{n^{k+1}}<\infty
$$

This completes the proof of the theorem.
The author would like to express his warmest thanks to Professor B. N. Prasad for his kind encouragement and helpful suggestions.

References

[1] T. M. Fletr, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc., 7 (1957), 113-141.
[2] T. Pati, Absolute Cesàro summability factors of infinite series, Math. Z., 78 (1962), 293-297.
department of mathematics and statistics ALIG ARH MUSLIM UNIVERSITY
(Received May 11, 1965)

