On $|C, 1|_k$ summability factors of infinite series

By S. M. MAZHAR in Aligarh (India)

1. Let Σa_n be a given infinite series with partial sums s_n , and let $t_n = t_n^0 = na_n$. By σ_n^{α} and t_n^{α} we denote the *n*-th Cesàro means of order α ($\alpha > -1$) of the sequences $\{s_n\}$ and $\{t_n\}$, respectively. The series Σa_n is said to be absolutely summable (C, α) with index k, or simply summable $|C, \alpha|_k$ ($k \ge 1$), if

(1.1)
$$\sum n^{k-1} |\sigma_n^{\alpha} - \sigma_{n-1}^{\alpha}|^k < \infty \quad ([1]).$$

Summability $|C, \alpha|_1$ is the same as summability $|C, \alpha|$. Since

$$t_n^{\alpha}=n(\sigma_n^{\alpha}-\sigma_{n-1}^{\alpha}),$$

 $\sum \frac{|t_n^{\alpha}|^k}{n} < \infty.$

condition (1.1) can also be written as

(1.2)

If

Here at

(1.3)
$$\sum_{1}^{n} \frac{|s_{v}|}{v} = O(\log n),$$

as $n \to \infty$, then Σa_n is said to be strongly bounded by logarithmic means with index 1, or bounded [R, log n, 1].

2. Recently PATI [2] proved the following theorem concerning summability |C, 1| of a factored infinite series.

Let $\{\lambda_n\}$ be a convex sequence such that $\sum \frac{\lambda_n}{n}$ is convergent (then, necessarily, $\lambda_n \ge 0$). If $\sum a_n$ is bounded [R, log n, 1], then $\sum a_n \lambda_n$ is summable |C, 1|.

The object of this note is to generalize this result by obtaining a theorem for summability $|C, 1|_k$.

3. In what follows we shall establish the following theorem.

Theorem. If $\{\lambda_n\}$ is a convex sequence such that $\sum \frac{\lambda_n}{n} < \infty$, and

(3.1)
$$\sum_{1}^{n} |s_{\nu}|^{k} / \nu = O(\log n) \qquad (k \ge 1).$$

then $\sum a_n \lambda_n$ is summable $|C,1|_k$.

S. M. Mazhar

It is clear that in the special case k = 1 our theorem includes the above theorem of PATI. For k > 1 $\left(\frac{1}{k} + \frac{1}{k'} = 1\right)$, we observe that

$$\sum_{1}^{n} \frac{|s_{\nu}|}{\nu} \leq \left(\sum_{1}^{n} \frac{|s_{\nu}|^{k}}{\nu}\right)^{1/k} \left(\sum_{1}^{n} \frac{1}{\nu}\right)^{1/k'} = O\left\{(\log n)^{1/k} (\log n)^{1/k'}\right\} = O\left(\log n\right).$$

Thus condition (3. 1) implies condition (1. 3). However the results of FLETT [1] show that summability $|C, 1|_k$ and summability |C, 1| in general are independent of each other.

4. The following lemmas will be required for the proof of this theorem.

Lemma 1. [2] If $\{\lambda_n\}$ is a convex sequence such that $\sum \frac{\lambda_n}{n} < \infty$, then

 $\Sigma \log (n+1) \Delta \lambda_n < \infty$ $m \log (m+1) \Delta \lambda_m = O(1),$

and

as $m \to \infty$.

Lemma 2. [2] Under the condition of Lemma 1, we have

$$\sum_{1}^{m} n \log (n+1) \Delta^2 \lambda_n = O(1), \quad as \quad m \to \infty.$$

5. Proof of the Theorem. Let T_n denote the *n*-th Cesàro mean of order 1 of the sequence $\{na_n\lambda_n\}$. Then we have to show that

(5.,1)
$$\sum_{1}^{\infty} n^{-1} |T_n|^k < \infty.$$

Now,

$$T_{n} = \frac{1}{n+1} \sum_{\nu=1}^{n} \nu a_{\nu} \lambda_{\nu} = \frac{1}{n+1} \sum_{i=1}^{n-1} \Delta(\nu \lambda_{\nu}) s_{\nu} + \frac{n s_{n} \lambda_{n}}{n+1} - \frac{a_{0} \lambda_{1}}{n+1} =$$

$$= \frac{1}{n+1} \sum_{\nu=1}^{n} \Delta(\nu \lambda_{\nu}) s_{\nu} - \frac{s_{n}}{n+1} (n \lambda_{n} - (n+1) \lambda_{n+1}) + \frac{n s_{n} \lambda_{n}}{n+1} - \frac{a_{0} \lambda_{1}}{n+1} =$$

$$= \frac{1}{n+1} \sum_{i=1}^{n} \Delta(\nu \lambda_{\nu}) s_{\nu} + s_{n} \lambda_{n+1} - \frac{a_{0} \lambda_{1}}{n+1} = L_{1}^{(n)} + L_{2}^{(n)} + L_{3}^{(n)}.$$

By MINKOWSKI's inequality it is therefore sufficient to prove that

(5.2) $\sum \frac{|L_1^{(n)}|^k}{n} < \infty,$ (5.3) $\sum \frac{|L_2^{(n)}|^k}{n} < \infty,$

$$(5.4) \qquad \qquad \sum \frac{|L_3^{(n)}|^k}{n} < \infty$$

68

Summability factors

Proof of (5.2). In the sequel C_1 , C_2 denote positive constants. We have

$$\begin{split} \sum_{1}^{\infty} \frac{|L_{1}^{(n)}|^{k}}{n} &= \sum_{1}^{\infty} \frac{1}{n(n+1)^{k}} \left| \sum_{1}^{n} (\Delta v \lambda_{v}) s_{v} \right|^{k} \leq \sum_{1}^{\infty} \frac{1}{n^{k+1}} \left(\sum_{1}^{n} |\Delta v \lambda_{v}| |s_{v}| \right)^{k} \leq \\ &\leq C_{1} \sum_{1}^{\infty} \frac{1}{n^{k+1}} \left(\sum_{1}^{n} v \Delta \lambda_{v} |s_{v}| \right)^{k} + C_{1} \sum_{1}^{\infty} \frac{1}{n^{k+1}} \left(\sum_{1}^{n} \lambda_{v+1} |s_{v}| \right)^{k} \leq \\ &\leq C_{1} \sum_{1}^{\infty} \frac{1}{n^{k+1}} \sum_{1}^{n} v \Delta \lambda_{v} |s_{v}|^{k} \left(\sum_{1}^{n} v \Delta \lambda_{v} \right)^{k/k'} + C_{1} \sum_{1}^{\infty} \frac{1}{n^{k+1}} \sum_{\nu=1}^{n} \lambda_{\nu+1} |s_{v}|^{k} \left(\sum_{\nu=1}^{n} \lambda_{\nu+1} \right)^{k/k'} = \\ &= O\left(\sum_{1}^{\infty} \frac{1}{n^{2}} \sum_{\nu=1}^{n} v \Delta \lambda_{v} |s_{\nu}|^{k}\right) + O\left(\sum_{n=1}^{\infty} \frac{1}{n^{2}} \sum_{\nu=1}^{n} \lambda_{\nu} |s_{\nu}|^{k} \left(\sum_{\nu=1}^{n} \frac{\lambda_{\nu}}{\nu} \right)^{k/k'} \right) = \\ &= O\left(\sum_{\nu=1}^{\infty} v \Delta \lambda_{\nu} |s_{\nu}|^{k} \sum_{n=\nu}^{\infty} \frac{1}{n^{2}}\right) + O\left(\sum_{\nu=1}^{\infty} \lambda_{\nu} |s_{\nu}|^{k} \sum_{n=\nu}^{n} \frac{1}{n^{2}}\right) = \\ &= O\left(\sum_{\nu=1}^{\infty} v \Delta \lambda_{\nu} |s_{\nu}|^{k} \sum_{n=\nu}^{\infty} \frac{1}{n^{2}}\right) + O\left(\sum_{\nu=1}^{\infty} \frac{\lambda_{\nu}}{\nu} |s_{\nu}|^{k}\right). \end{split}$$
Now
$$\sum_{\nu=1}^{m} \Delta \lambda_{\nu} |s_{\nu}|^{k} = \sum_{1}^{m} v \Delta \lambda_{m} \sum_{\nu=1}^{m} \frac{|s_{\mu}|^{k}}{\mu} = \\ &= \sum_{1}^{m-1} \Delta (v \Delta \lambda_{\nu}) \sum_{\mu=1}^{\nu} \frac{|s_{\mu}|^{k}}{\mu} + m \Delta \lambda_{m} \sum_{\mu=1}^{m} \frac{|s_{\mu}|^{k}}{\mu} = \\ &= O\left(\sum_{1}^{m-1} v \Delta^{2} \lambda_{\nu} \log(\nu + 1)\right) + O\left(\sum_{1}^{m-1} \Delta \lambda_{\nu} \log(\nu + 1)\right) + O(m \Delta \lambda_{m} \log(m + 1)) = O(1), \end{split}$$

by virtue of Lemmas 1 and 2. Also applying Lemma 1 we have

$$\sum_{1}^{m} \frac{\lambda_{\nu}}{\nu} |s_{\nu}|^{k} = \sum_{1}^{m-1} \Delta \lambda_{\nu} \sum_{\mu=1}^{\nu} \frac{|s_{\mu}|^{k}}{\mu} + \lambda_{m} \sum_{\mu=1}^{m} \frac{|s_{\mu}|^{k}}{\mu} =$$
$$= O\left(\sum_{1}^{m-1} \Delta \lambda_{\nu} \log (\nu + 1)\right) + O\left(\lambda_{m} \log (m + 1)\right) = O(1).$$
$$\sum_{1}^{\infty} \frac{|L_{1}^{(n)}|^{k}}{n} = O(1).$$

Hence

Ν

Proof of (5. 3). We have by virtue of the hypothesis

$$\sum_{1}^{m} \frac{|L_{2}^{(n)}|^{k}}{n} = \sum_{1}^{m} \frac{1}{n} |s_{n}\lambda_{n+1}|^{k} \leq \sum_{1}^{m} \lambda_{n}^{k} \frac{|s_{n}|^{k}}{n} = \sum_{1}^{m-1} \Delta \lambda_{n}^{k} \sum_{\mu=1}^{n} \frac{|s_{\mu}|^{k}}{\mu} + \lambda_{m}^{k} \sum_{1}^{m} \frac{|s_{\mu}|^{k}}{\mu} =$$
$$= \sum_{1}^{m-1} \Delta \lambda_{n}^{k} O(\log n) + O(\lambda_{m}^{k} \log m) = O\left(\sum_{1}^{m} \Delta \lambda_{n}^{k} \log n\right) + O(1) = O(1).$$

S. M. Mazhar: Summability factors

Finally, it is clear that

$$\sum \frac{|L_3^{(n)}|^k}{n} \leq C_2 \sum_{1}^{\infty} \frac{1}{n^{k+1}} < \infty.$$

This completes the proof of the theorem.

The author would like to express his warmest thanks to Professor B. N. PRASAD for his kind encouragement and helpful suggestions.

References

 T. M. FLETT, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc., 7 (1957), 113-141.
 T. PATI, Absolute Cesàro summability factors of infinite series, Math. Z., 78 (1962), 293-297.

DEPARTMENT OF MATHEMATICS AND STATISTICS ALIGARH MUSLIM UNIVERSITY

11

(Received May 11, 1965)