On a process concerning inaccessible cardinals. II

By G. FODOR in Szeged

This paper is a continuation of reference I (see [1]), in which a process concerning inaccessible cardinals has been defined. In this paper we freely make use of the notations, definitions, and theorems of [1].

From now on, in the definition of the process, we start with strongly inaccessible initial numbers. This means that the values of the function $f_{\eta}(\alpha^{(0)}, \alpha^{(1)}, ..., \alpha^{(\eta)})$ are strongly inaccessible numbers.

First we prove the following

Theorem 2. If $\alpha = n_{\eta,\eta}(0)$ and $\eta < \alpha$ then the set of the ordinal numbers of the form $f_n(\alpha^{(0)}, \alpha^{(1)}, ..., \alpha^{(\eta)}) < \alpha$ is non-stationary in α .

Proof. We may assume by Theorem 1 of [1] that $\eta \ge \omega$. Denote by $\gamma(\beta)$ the value $f_{\eta}(0, ..., 0, ..., \beta)$. As the first step we prove the following statement.

 (j_1) Suppose that $\beta \neq 0$. Then $\gamma(\beta)$ satisfies the equality

$$\psi(\beta) = f_n(0, ..., 0, ..., \psi(\beta), \psi^{(\mu+1)}, ..., \psi^{(\xi)}, ..., \psi^{(\eta)})$$

for every $\mu < \eta$, provided that $\psi^{(\eta)} < \beta$ and $\psi^{(\xi)} < \gamma(\beta)$ for each $\xi (\mu + 1 \le \xi < \eta)$. To prove this statement, we write η in the form $\eta = \omega \xi + n$, where $\xi \le \eta$ and $0 \le n < \omega$.

We distinguish the cases n=0 and n>0.

Case n=0. We prove the following three statements, the third of which immediately implies (j_1) :

(a) If $v < \beta$ and $\tau < \eta$ then $\gamma(\beta)$ satisfies the equality

$$\gamma(\beta) = f_{\eta}(0, ..., 0, ..., \gamma^{(\tau)}_{(\beta)}, 0, ..., 0, ..., \nu).$$

(b) If $v < \beta$, $\sigma < \xi$ and $0 < m < \omega$ then $\gamma(\beta)$ satisfies the equality

$$\gamma(\beta) = f_{\mu}(0, ..., 0, ..., \gamma(\beta), \psi^{(\omega\sigma+1)}, ..., \psi^{(\omega\sigma+1)}, ..., \psi^{(\omega\sigma+m)}, 0, ..., 0, ..., \gamma),$$

provided that $\psi^{(\omega\sigma+l)} < \gamma(\beta)$ for each $l \ (1 \le l \le m)$. (c) If $v < \beta, 0 < \sigma < \xi, \varkappa < \omega\sigma$ and $0 \le m < \omega$ then $\gamma(\beta)$ satisfies the equality

$$\begin{split} \gamma(\beta) &= f_{\eta}(0, ..., 0, ..., \gamma(\beta), 0, ..., 0, ..., \psi^{(\omega\sigma)}, ..., \psi^{(\omega\sigma+l)}, ..., \psi^{(\omega\sigma+m)}, 0, ..., 0, ..., v), \\ provided that \ \psi^{(\omega\sigma+l)} &< \gamma(\beta) \ for \ each \ l \ (0 \leq l \leq m). \end{split}$$

1 A

(19)
$$\gamma(\beta) \in Rf_{\eta}(\alpha^{(0)}, 0, ..., \beta), \text{ we have}$$

 $\gamma(\beta) \in Rf_{\eta}(\alpha^{(0)}, 0, ..., 0, ..., \beta).$

It follows from the definition of $f_{\eta}(\alpha^{(0)}, \alpha^{(1)}, ..., \alpha^{(\eta)})$ that

(20)
$$Rf_{\eta}(\alpha^{(0)}, 0, ..., 0, ..., \varkappa) = \bigcap_{\substack{\nu < \varkappa}} Rf_{\eta}(\alpha^{(0)}, 0, ..., 0, ..., \nu),$$

where \varkappa is a limit number,

(21)
$$Rf_{\eta}(\alpha^{(0)}, 0, ..., 0, ..., \varrho+1) = \bigcap_{\tau < \eta} Rf_{\eta}(0, ..., 0, ..., \alpha^{(\tau)}, 0, ..., 0, ..., \varrho),$$

(22)
$$f_{\eta}(\alpha^{(0)}, 0, ..., 0, ..., 0, \overset{(\tau+1)}{1}, 0, ..., 0, ..., \nu) = (f_{\eta}(0, ..., 0, ..., \alpha^{(\tau)}, 0, ..., 0, ..., \nu))'.$$

With the help of (19), (20) and (21) we obtain

(23)
$$\gamma(\beta) \in Rf_{\eta}(\alpha^{(0)}, 0, ..., 0, \nu)$$

for every $v \leq \beta$; moreover, (23) and (21) imply

(24)
$$\gamma(\beta) \in Rf_{\eta}(0, ..., 0, ..., \alpha^{(\tau)}, 0, ..., 0, ..., \nu)$$

for every $v < \beta$ and for every $\tau < \eta$. From this we conclude that (a) is valid. For if not, then there are three ordinal numbers $v_0 < \beta$, $\tau_0 < \eta$ and $\rho_0 < \gamma(\beta)$ such that

$$\gamma(\beta) = f_{\eta}(0, ..., 0, ..., \varrho_{0}^{(r_{0})}, 0, ..., 0, ..., v_{0}).$$

Hence, by (22), we have

$$\gamma(\beta) \notin Rf_{\eta}(\alpha^{(0)}, 0, ..., 0, ..., 0, \frac{(0+1)}{1}, 0, ..., 0, ..., v_0).$$

6-- 1 1)

Thus, by the definition of $f_n(\alpha^{(0)}, \alpha^{(1)}, ..., \alpha^{(\eta)})$, we obtain

$$\gamma(\beta) \notin Rf_{\eta}(0, ..., 0, ..., 0, \alpha^{(\tau_0+1)}, 0, ..., 0, ..., v_0),$$

which contradicts the fact that (24) is valid for every $v < \beta$ and $\tau < \eta$.

Ad (b): From (a) we get

$$\gamma(\beta) = f_{\eta}(0, ..., 0, ..., \gamma(\beta), 0, ..., 0, ..., \nu)$$

for every $v < \beta$, $\sigma < \eta$ and for every $m (0 < m < \omega)$. Hence

(25)
$$\gamma(\beta) \in Rf_{\eta}(\alpha^{(0)}, 0, ..., 0, ..., \gamma^{(\omega\sigma+m)}, 0, ..., \nu)$$

for every $v < \beta$, $\sigma < \eta$ and for every m ($0 < m < \omega$).

It follows from the definition of $f_n(\alpha^{(0)}, \alpha^{(1)}, ..., \alpha^{(n)})$ that

(26)
$$Rf_{\eta}(\alpha^{(0)}, 0, ..., 0, ..., \gamma(\beta), 0, ..., 0, ..., \nu) = = \bigcap_{\mu < \gamma(\beta)} Rf_{\eta}(0, ..., 0, ..., \alpha^{(\omega\sigma+m-1)}, \mu, 0, ..., 0, ..., \nu)$$

and

(27)

$$f_{\eta}(\alpha^{(0)}, 0, ..., 0, ..., \mu + 1, 0, ..., 0, ..., \nu) =$$

= $(f_{\eta}(0, ..., 0, ..., \alpha^{(\omega\sigma + m - 1)}, \mu, 0, ..., 0, ..., \nu))'.$

By (25) and (26) we have

(28)
$$\gamma(\beta) \in Rf_n(0, ..., 0, ..., \alpha^{(\omega\sigma+m-1)}, \mu, 0, ..., 0, ..., \nu)$$

for every $\mu < \gamma(\beta)$ and for every fixed $\nu < \beta$, $\sigma < \eta$ and $m \ (0 < m < \omega)$. First we show that $\gamma(\beta)$ satisfies the equality

(29)
$$\gamma(\beta) = f_{\eta}(0, ..., 0, ..., \overset{(\omega\sigma+m-1)}{\gamma(\beta)}\mu, 0, ..., 0, ..., \nu)$$

for every $\mu < \gamma(\beta)$ and for every fixed $\nu < \beta$, $\sigma < \eta$ and m ($0 < m < \omega$). If not, then there are two ordinal numbers $\mu_0 < \gamma(\beta)$ and $\varrho_0 < \gamma(\beta)$ such that

$$\gamma(\beta) = f_{\eta}(0, ..., 0, ..., \varrho_0, \mu_0, 0, ..., 0, ..., v).$$

Hence, by (27)

$$\gamma(\beta) \notin Rf_{\eta}(\alpha^{(0)}, 0, ..., 0, ..., \mu_0^{(\omega\sigma+m)} + 1, 0, ..., 0, ..., \nu).$$

On the other hand it follows from this and the construction of $f_n(\alpha^{(0)}, \alpha^{(1)}, ..., \alpha^{(\eta)})$

that $\gamma(\beta) \notin Rf_{\eta}(0, ..., 0, ..., \alpha^{(\omega\sigma+m-1)}, \mu_0+1, 0, ..., 0, ..., \nu),$

which contradicts the fact that (28) holds for every $\mu < \gamma(\beta)$ and for every fixed $v < \beta$, $\sigma < \eta$ and m ($0 < m < \omega$). Thus we conclude that $\gamma(\beta)$ satisfies (29) for every $v < \beta$, $\sigma < \eta$ and for every m ($0 < m < \omega$).

Let now *l* be a natural number for which 0 < l < m. Assume that whenever $v < \beta$, $\sigma < \eta$, $0 < m < \omega$ and $\psi^{(\omega\sigma+i)} < \gamma(\beta)$ (i = l+1, ..., m) then

$$\gamma(\beta) = f_{\eta}(0, ..., 0, ..., \gamma(\beta), \psi^{(\omega\sigma+l+1)}, ..., \psi^{(\omega\sigma+i)}, ..., \psi^{(\omega\sigma+m)}, 0, ..., 0, ..., \nu).$$

Since $\gamma(\beta) = f_{\eta}(0, ..., 0, ..., \gamma(\beta), \mu, 0, ..., v)$ for every $v < \beta, \sigma < \eta, 0 < m < \omega$ and for every $\mu < \gamma(\beta)$ it remains to prove that this assumption implies that whenever $v < \beta \sigma < \eta, 0 < m < \omega$ and $\psi^{(\omega\sigma+i)} < \gamma(\beta)$ $(l \le i \le m)$ then

$$\gamma(\beta) = f_n(0, ..., 0, ..., \gamma(\beta), \psi^{(\omega\sigma+1)}, ..., \psi^{(\omega\sigma+1)}, ..., \psi^{(\omega\sigma+m)}, 0, ..., 0, ..., \nu).$$

It follows from the definition of $f_{\eta}(\alpha^{(0)}, \alpha^{(1)}, ..., \alpha^{(\eta)})$ that, for given σ, ν , $0 < m < \omega, \psi^{(\omega\sigma+1)}, ..., \psi^{(\omega\sigma+m)}$ the equalities

$$Rf_{\sigma}(\alpha^{(0)}, 0, ..., 0, ..., \gamma(\beta), \psi^{(\omega\sigma+l+1)}, ..., \psi^{(\omega\sigma+m)}, 0, ..., 0, ..., \nu) =$$

(30)

$$= \bigcap_{\mu < \gamma(\beta)} Rf_{\eta}(0, ..., 0, ..., \alpha^{(\omega\sigma+l-1)}, \mu, \psi^{(\omega\sigma+l+1)}, ..., \psi^{(\omega\sigma+m)}, 0, ..., 0, ..., \nu)$$

and

$$f_{\eta}(\alpha^{(0)}, 0, ..., 0, ..., \mu + 1, \psi^{(\omega\sigma + l + 1)}, ..., \psi^{(\omega\sigma + m)}, 0, ..., 0, ..., v) =$$

(31)

$$= (f_{\eta}(0, ..., 0, ..., \alpha^{(\omega\sigma+l-1)}, \mu, \psi^{(\omega\sigma+l+1)}, ..., \psi^{(\omega\sigma+m)}, 0, ..., 0, ..., \nu)$$

hold.

By (30) and (31) we obtain for every $\mu < \gamma(\beta)$ and for any fixed $\nu < \beta$, $\sigma < \eta$, $0 < m < \omega$ and $\psi^{(\omega\sigma+i)} < \gamma(\beta)$ $(l+1 \le i \le m)$ that

(32)

 $\gamma(\beta) \in Rf_{\eta}(0, ..., 0, ..., \alpha^{(\omega\sigma+l-1)}, \mu, \psi^{(\omega\sigma+l+1)}, ..., \psi^{(\omega\sigma+i)}, ..., \psi^{(\omega\sigma+m)}, 0, ..., 0, ..., \nu).$ Now we show for every $\mu < \gamma(\beta)$ and for any fixed $\nu < \beta, 0 < \eta, 0 < m < \omega, \psi^{(\omega\sigma+i)} < \langle \gamma(\beta) \rangle$ ($l+1 \le i \le m$) that the ordinal number $\gamma(\beta)$ satisfies the equality

$$\gamma(\beta) = f_{\eta}(0, ..., 0, ..., \gamma(\beta), \mu, \psi^{(\omega\sigma+l+1)}, ..., \psi^{(\omega\sigma+i)}, ..., \psi^{(\omega\sigma+m)}, 0, ..., 0, ..., \nu).$$

In the contrary case there are two ordinal numbers $\mu_0 < \gamma(\beta)$ and $\tau_0 < \gamma(\beta)$ such that

 $\gamma(\beta) = f_{\eta}(0, ..., 0, ..., \tau_0, \mu_0, \psi^{(\omega\sigma+l+1)}, ..., \psi^{(\omega\sigma+m)}, 0, ..., 0, ..., \nu).$

Hence, by (30), we have

$$\gamma(\beta) \notin Rf_n(\alpha^{(0)}, 0, ..., 0, ..., \mu_0 + 1, \psi^{(\omega\sigma+1+1)}, ..., \psi^{(\omega\sigma+m)}, 0, ..., 0, ..., \nu).$$

Consequently, by the definition of $f_{\mu}(\alpha^{(0)}, \alpha^{(1)}, ..., \alpha^{(\eta)})$

 $\gamma(\beta) \notin Rf_{\eta}(0, ..., 0, ..., \alpha^{(\omega \sigma + l - 1)}, \mu_0 + 1, \psi^{(\omega \sigma + l + 1)}, ..., \psi^{(\omega \sigma + m)}, 0, ..., 0, ..., \nu).$

Since $\gamma(\beta)$ is a limit number, we have $\mu_0 + 1 < \gamma(\beta)$, which contradicts the fact that (32) holds for every $\mu < \gamma(\beta)$ and for any fixed $\nu < \beta$, $\sigma < \eta$, $0 < m < \omega$ and $\psi^{(\omega\sigma+i)} < \gamma(\beta)$ $(l+1 \le i \le m)$. Thus we may conclude that the statement (b) is true. Ad (c): If $\nu < \beta$, $\sigma < \xi$ and $0 < m < \omega$ then, by (b), $\gamma(\beta)$ satisfies the equality

$$\gamma(\beta) = f_n(0, ..., 0, ..., \gamma(\beta), \psi^{(\omega\sigma+1)}, ..., \psi^{(\omega\sigma+1)}, ..., \psi^{(\omega\sigma+m)}, 0, ..., 0, ..., \nu),$$

provided that $\psi^{(\omega\sigma+l)} < \gamma(\beta)$ for each $l \ (1 \le l \le m)$. It follows from this, under the same conditions, that

 $\gamma(\beta) \in Rf_{\eta}(\alpha^{(0)}, 0, ..., 0, ..., \gamma(\beta), \psi^{(\omega\sigma+1)}, ..., \psi^{(\omega\sigma+1)}, ..., \psi^{(\omega\sigma+m)}, 0, ..., 0, ..., \nu).$ Since, by the construction of $f_n(\alpha^{(0)}, \alpha^{(1)}, ..., \alpha^{(\eta)})$

$$\begin{aligned} Rf_{\eta}(\alpha^{(0)}, 0, ..., 0, ..., \gamma(\beta), \psi^{(\omega\sigma+1)}, ..., \psi^{(\omega\sigma+m)}, 0, ..., 0, ..., \nu) &= \\ &= \bigcap_{\mu < \gamma(\beta)} Rf_{\eta}(\alpha^{(0)}, 0, ..., 0, ..., \mu, \psi^{(\omega\sigma+1)}, ..., \psi^{(\omega\sigma+m)}, 0, ..., 0, ..., \nu), \\ &Rf_{\eta}(\alpha^{(0)}, 0, ..., 0, ..., \mu+1, \psi^{(\omega\sigma+1)}, ..., \psi^{(\omega\sigma+m)}, 0, ..., 0, ..., \nu) = \\ &\bigcap_{\tau < \omega\sigma} Rf_{\eta}(0, ..., 0, ..., \alpha^{(\tau)}, 0, ..., 0, ..., \mu, \psi^{(\omega\sigma+1)}, ..., \psi^{(\omega\sigma+m)}, 0, ..., 0, ..., \nu) \end{aligned}$$

and

_

 $f_{\eta}(\alpha^{(0)}, 0, ..., 0, ..., 0, \overset{(\tau+1)}{1}, 0, ..., 0, ..., \nu) = (f_{\eta}(0, ..., 0, ..., \alpha^{(\tau)}, 0, ..., 0, ..., \nu))',$ we can apply the method used in the proof of (a). Thus we obtain the proof of (c). Case n>0. By the same argument as in the proof of (a) and (b) we obtain that $\gamma(\beta)$ satisfies the equality

$$\gamma(\beta) = f_{\eta}(0, ..., 0, ..., \gamma(\beta), \psi^{(\omega\xi+1)}, ..., \psi^{(\omega\xi+1)}, ..., \psi^{(\omega\xi+n)})$$

for any $\psi^{(\omega\sigma+l)} < \gamma(\beta)$ $(1 \le l \le n-1)$ and $\psi^{(\eta)} < \beta$.

Hence, by the argument used in the proof of (c), we obtain that $\gamma(\beta)$ satisfies the equality

$$\gamma(\beta) = f_{\eta}(0, ..., 0, ..., \gamma(\beta), 0, ..., 0, ..., \psi^{(\omega\xi)}, ..., \psi^{(\omega\xi+1)}, ..., \psi^{(\omega\xi+n)})$$

for any $\varkappa < \omega \xi$, $\psi^{(\omega\xi+l)} < \gamma(\beta)$ $(0 \le l \le n-1)$ and $\psi^{(\eta)} < \beta$.

From this, by the argument applied in the proof of (b), we conclude that $\gamma(\beta)$ satisfies the equality

$$\gamma(\beta) = f_{\eta}(0, ..., 0, ..., \gamma(\beta), \psi^{(\omega\sigma+1)}, ..., \psi^{(\omega\sigma+k)}, ..., \psi^{(\omega\sigma+m)}, 0, ...$$
$$..., 0, ..., \psi^{(\omega\xi)}, ..., \psi^{(\omega\xi+l)}, ..., \psi^{(\eta)}$$

whenever $0 < m < \omega$, $\sigma < \xi$, $\psi^{(\omega\sigma+k)} < \gamma(\beta)$ $(0 < k \le m)$, $\psi^{(\omega\xi+1)} < \gamma(\beta)$ $(0 \le l \le n-1)$, and $\psi^{(\eta)} < \beta$.

Finally, by the argument of the proof of (c), we obtain that $\gamma(\beta)$ satisfies the equality

$$\gamma(\beta) = f_{\eta}(0, ..., 0, ..., \gamma(\beta), 0, ..., 0, ..., \psi^{(\omega\sigma)}, ..., \psi^{(\omega\sigma+k)}, ..., \psi^{(\omega\sigma+m)}, 0, ..., 0, ..., \psi^{(\omega\xi)}, ..., \psi^{(\omega\sigma+1)}, ..., \psi^{(\eta)})$$

whenever $m < \omega, \varkappa < \omega\sigma, \psi^{(\omega\sigma+k)} < \gamma(\beta)$ $(0 \le k \le m), \psi^{(\omega\xi+l)} < \gamma(\beta)$ $(0 \le l \le n-1),$ and $\psi^{(\eta)} < \beta$. This immediately implies the statement (j_1) in the case n > 0 too.

The same method can be used to prove the following statement:

(j₂) Assume that $\underline{\alpha}^{(\mu)}, ..., \underline{\alpha}^{(\eta)}$ ($0 < \mu \le \eta$) are given ordinal numbers and $\underline{\alpha}^{(\eta)} \ne 0$. Then $\gamma = f_n$ (0, ..., 0, ..., $\underline{\alpha}^{(\mu)}, ..., \underline{\alpha}^{(\eta)}$) satisfies the equality

$$\gamma = f_{\eta}(0, ..., 0, ..., \gamma, \psi^{(\tau+1)}, ..., \psi^{(\xi)}, ..., \psi^{(\mu)}, \underline{\alpha}^{(\mu+1)}, ..., \underline{\alpha}^{(\eta)})$$

or every τ ($0 \le \tau \le \mu$) provided that $\psi^{(\mu)} < \underline{\alpha}^{(\mu)}$ and $\psi^{(\xi)} < \gamma$ for each ξ ($\tau + 1 \le \xi < \mu$). Now we proceed to prove the following statement:

(j₃) Assume that $\underline{\alpha}^{(0)}, ..., \underline{\alpha}^{(\mu)}, ..., \underline{\alpha}^{(\eta)}$ $(0 \le \mu \le \eta)$ are given ordinal numbers, $\underline{\alpha}^{(0)} \ne 0$ and $\underline{\alpha}^{(\mu)} \ne 0$. Then $\gamma = f_{\eta}(\underline{\alpha}^{(0)}, 0, ..., 0, ..., \underline{\alpha}^{(\mu)}, ..., \underline{\alpha}^{(\eta)})$ satisfies the equality

$$\gamma = f_n(0, ..., 0, ..., \gamma, \psi^{(\tau+1)}, ..., \psi^{(\zeta)}, ..., \psi^{(\mu)}, \alpha^{(\mu+1)}, ..., \alpha^{(\eta)})$$

for every τ ($0 \le \tau < \mu$), provided that $\psi^{(\mu)} < \underline{\alpha}^{(\mu)}$ and $\psi^{(\xi)} < \gamma$ for each ξ ($\tau + 1 \le \xi < \mu$).

Let us denote λ the ordinal number $\underline{\alpha}^{(\mu)}$. Consider first the case when μ is an ordinal number of the first kind. It follows from the definition of $f_{\eta}(\alpha^{(0)}, \alpha^{(1)}, ..., \alpha^{(\eta)})$ that

$$f(\alpha^{(0)}, 0, ..., 0, ..., \varrho + 1, \underline{\alpha}^{(\mu+1)} ..., \underline{\alpha}^{(\eta)}) = (f_{\eta}(0, ..., 0, ..., \alpha^{(\mu-1)}, \varrho, \underline{\alpha}^{(\mu+1)}, ..., \underline{\alpha}^{(\eta)})$$

for $\lambda = \varrho + 1$ and

$$Rf_{\eta}(\alpha^{(0)}, 0, \dots, 0, \dots, \lambda, \underline{\alpha}^{(\mu+1)}, \dots, \underline{\alpha}^{(\eta)}) = \bigcap_{\nu < \lambda} Rf_{\eta}(0, \dots, 0, \dots, \alpha^{(\mu-1)}, \nu, \underline{\alpha}^{(\mu+1)}, \dots, \underline{\alpha}^{(\eta)})$$

G. Fodor

for a limit number λ . These imply that for every $v < \lambda$

$$\gamma \in Rf_{\eta}(0, \ldots, 0, \ldots, \alpha^{(\mu-1)}, \nu, \underline{\alpha}^{(\mu+1)}, \ldots, \underline{\alpha}^{(\eta)}).$$

Hence we easily conclude that

$$\gamma = f_n(0, ..., 0, ..., \gamma, \nu, \alpha^{(\mu+1)}, ..., \alpha^{(\eta)}).$$

Thus, by (j_2) , we get (j_3) in the case where μ in an ordinal number of the first kind. Suppose now that μ is a limit number. Then from the definition of $f_n(\alpha^{(0)}, \alpha^{(1)}, ..., \alpha^{(n)})$ we see that

$$Rf_{\eta}(\alpha^{(0)}, 0, ..., 0, ..., \varrho + 1, \underline{\alpha}^{(\mu+1)}, ..., \underline{\alpha}^{(\eta)}) = = \bigcap_{\xi < \mu} Rf_{\eta}(0, ..., 0, ..., \alpha^{(\xi)}, 0, ..., 0, ..., \varrho, \underline{\alpha}^{(\mu+1)}, ..., \underline{\alpha}^{(\eta)})$$

for $\lambda \doteq \varrho + 1$ and

$$Rf_{\eta}(\alpha^{(0)}, 0, ..., 0, ..., \lambda, \underline{\alpha}^{(\mu+1)}, ..., \underline{\alpha}^{(\eta)}) =$$

= $\bigcap_{\nu < \lambda} Rf_{\eta}(\alpha^{(0)}, 0, ..., 0, ..., \nu, \underline{\alpha}^{(\mu+1)}, ..., \underline{\alpha}^{(\eta)})$

for a limit number λ . By a proof analogous to that of (b) and (c), we obtain (j_3) in the case where μ is a limit number.

Now we can prove the following statement:

(j₄) Let $\{\varkappa_{\zeta}\}_{\zeta \leq \sigma}$ ($\sigma \leq \eta$) be the strictly increasing sequence of the ordinal numbers $\varkappa \leq \eta$ for which $\alpha^{(\varkappa)} \neq 0$. Assume that $\varkappa_0 = 0$. Then $\gamma = f_{\eta}(\underline{\alpha}^{(0)}, \underline{\alpha}^{(1)}, ..., \underline{\alpha}^{(\eta)})$ satisfies the equality

$$\gamma = f_{\eta}(0, ..., 0, ..., \gamma, \psi^{(\tau+1)}, ..., \psi^{(\xi)}, ..., \psi^{(\kappa_{\zeta})}, 0, ..., 0, ..., \underline{\alpha}^{(\kappa_{\zeta+1})}, ..., \underline{\alpha}^{(\eta)})$$

for every ζ $(1 \leq \zeta \leq \sigma)$ and for every τ $(0 \leq \tau \leq \varkappa_{\zeta})$, provided that $\psi^{(\varkappa_{\zeta})} < \alpha^{(\varkappa_{\zeta})}$ and $\psi^{(\zeta)} < \gamma$ for each ζ $(\tau + 1 \leq \zeta < \varkappa_{\zeta})$.

Indeed, if (j_4) is true for a fixed ζ ($0 < \zeta \leq \sigma$), then

$$\gamma = f_{\eta}(\gamma, 0, ..., 0, ..., \underline{\alpha}^{(\kappa_{\zeta})}, 0, ..., 0, ..., \underline{\alpha}^{(\kappa_{\zeta+1})}, ..., \underline{\alpha}^{(\eta)}).$$

If we apply (j_3) to $\alpha^{(0)} = \gamma$, we obtain that

$$\gamma = f_{\eta}(0, ..., 0, ..., \gamma, \psi^{(\tau+1)}, ..., \psi^{(\xi)}, ..., \psi^{(\kappa_{\xi})}, 0, ..., 0, ..., \underline{\alpha}^{(\kappa_{\xi+1})}, ..., \underline{\alpha}^{(\eta)})$$

for every τ ($0 \le \tau \le \varkappa_{\zeta}$), provided that $\psi^{(\varkappa_{\zeta})} < \underline{\alpha}^{(\varkappa_{\zeta})}$ and $\psi^{(\zeta)} < \gamma$ for each ξ ($\tau + l \le \le \zeta < \varkappa_{\zeta}$). This proves the statement (j_4).

Now we proceed the proof of Theorem 2 by showing that the set

(3) $Rf_n(0, ..., 0, ..., \beta)/\alpha$

is non-stationary in α . We define a function g on $M = Rf_{\eta}(0, ..., 0, ..., \beta)/\alpha$ by writing

$$g(f_{\eta}(0, ..., 0, ..., \beta)) = \beta.$$

134

Since $f_{\eta}(0, ..., 0, ..., \tau)$ is a strictly increasing function of the variable τ and for every $\beta < \alpha$ the inequality

$$\beta < f_{\eta}(0, ..., 0, ..., \beta)$$

holds, we obtain that the function g is strictly divergent and regressive on M. Therefore Theorem I (see [1]) implies that the set (33) is non-stationary in α .

Next we prove, by transfinite induction, the following statement.

(j₅) For every μ , $0 < \mu \leq \eta$ the set

$$Rf_{\eta}(\alpha_{\xi}^{(0)}, \alpha_{\xi}^{(1)}, \ldots, \alpha_{\psi}^{(\varrho)}, \ldots, \underline{\alpha}^{(\mu)}, \ldots, \underline{\alpha}^{(\eta)})/\alpha$$

is non-stationary in α , where $\underline{\alpha}^{(\mu)}, \ldots, \underline{\alpha}^{(\eta)}$ are given ordinal numbers $< \alpha$.

First we show that the set

$$N = Rf_n(\alpha_{\varepsilon}^{(0)}, \underline{\alpha}^{(1)}, \dots, \underline{\alpha}^{(\eta)})/\alpha$$

is non-stationary in α . We define a function g on N by writing

$$g(f_n(\alpha_{\xi}^{(0)}, \underline{\alpha}^{(1)}, \dots, \underline{\alpha}^{(\eta)})) = \alpha_{\xi}^{(0)}.$$

From the definition of $\alpha_{\xi}^{(0)}(\underline{\alpha}^{(1)},...,\underline{\alpha}^{(\eta)})$ and $f_n(\alpha^{(0)},\alpha^{(1)},...,\alpha^{(\eta)})$, we obtain

$$\alpha_{\xi}^{(0)} < f_{\eta}(\alpha_{\xi}^{(0)}, \underline{\alpha}^{(1)}, \ldots, \underline{\alpha}^{(\eta)})$$

and

$$f_{\eta}(\alpha_{\xi}^{(0)}, \underline{\alpha}^{(1)}, \ldots, \underline{\alpha}^{(\eta)}) < f_{\eta}(\alpha_{\xi+1}^{(0)}, \underline{\alpha}^{(1)}, \ldots, \underline{\alpha}^{(\eta)}).$$

From these we infer that the function g is strictly divergent and regressive on N and, therefore, by Theorem I ([1]), we obtain that the set N is non-stationary in α .

Let v be a given ordinal number and suppose that for every μ $(1 \le \mu < v)$ the set

 $Rf_{\eta}(\alpha_{\xi}^{(0)}, \alpha_{\zeta}^{(1)}, \ldots, \alpha_{\psi}^{(\varrho)}, \ldots, \underline{\alpha}^{(\mu)}, \ldots, \underline{\alpha}^{(\eta)})/\alpha$

is non-stationary in α .

There are two cases:

a) v is an ordinal number of the first kind, i.e. $v = \tau + 1$,

b) v is an ordinal number of the second kind.

Case a): We show that the set

$$L = Rf_n(0, \ldots, 0, \ldots, \alpha_{\omega}^{(\tau)}, \underline{\alpha}^{(\tau+1)}, \ldots, \underline{\alpha}^{(\eta)})/\alpha$$

is non-stationary in α . We define a function g on L by writing

$$g(f_n(0,\ldots,0,\ldots,\alpha_{\omega}^{(\tau)},\underline{\alpha}^{(\tau+1)},\ldots,\underline{\alpha}^{(\eta)})) = \alpha_{\omega}^{(\tau)}.$$

From the definition of $\alpha^{(r)}(\underline{\alpha}^{(r+1)}, ..., \underline{\alpha}^{(\eta)})$ and $f_{\eta}(\alpha^{(0)}, \alpha^{(1)}, ..., \alpha^{(\eta)})$ we obtain

$$\alpha_{\varphi}^{(\tau)} < f_{\eta}(0, ..., 0, ..., \alpha_{\varphi}^{(\tau)}, \underline{\alpha}^{(\tau+1)}, ..., \underline{\alpha}^{(\eta)})$$

and

$$f_{\eta}(0, \ldots, 0, \ldots, \alpha_{\varphi}^{(\tau)}, \underline{\alpha}^{(\tau+1)}, \ldots, \underline{\alpha}^{(\eta)}) < f_{\eta}(0, \ldots, 0, \ldots, \alpha_{\varphi+1}^{(\tau)}, \underline{\alpha}^{(\tau+1)}, \ldots, \underline{\alpha}^{(\eta)}).$$

From these we conclude that the function g is strictly divergent and regressive on

G. Fodor

L, and, therefore, by Theorem I ([1]), we obtain that the set L is non-stationary in α . It follows from the construction of $f_n(\alpha^{(0)}, \alpha^{(1)}, ..., \alpha^{(\eta)})$ that

 $f_{\eta}(0, \ldots, 0, \ldots, \alpha_{\varphi}^{(\tau)}, \underline{\alpha}^{(\tau+1)}, \ldots, \underline{\alpha}^{(\eta)}) \leq f_{\eta}(\alpha_{\xi}^{(0)}, \ldots, \alpha_{\psi}^{(q)}, \ldots, \alpha_{\varphi}^{(\tau)}, \underline{\alpha}^{(\tau+1)}, \ldots, \underline{\alpha}^{(\eta)}).$

By our assumption, for given $\alpha_{\varphi}^{(\tau)}$ the set

 $Rf_{\eta}(\alpha_{\xi}^{(0)}, \alpha_{\zeta}^{(1)}, \ldots, \underline{\alpha}_{\varphi}^{(\tau)}, \underline{\alpha}^{(\tau+1)}, \ldots, \underline{\alpha}^{(\eta)})/\alpha$

is non-stationary in α . On the other hand it is easy to verify that for any two different elements $\underline{\alpha}_{\sigma}^{(\tau)}$ and $\underline{\alpha}_{\sigma}^{(\tau)}$ the sets

$$Rf_{\eta}(\alpha_{\xi}^{(0)}, \alpha_{\zeta}^{(1)}, \dots, \alpha_{\psi}^{(\varrho)}, \dots, \underline{\alpha}_{\varphi}^{(\tau)}, \underline{\alpha}^{(\tau+1)}, \dots, \underline{\alpha}^{(\eta)})/\alpha$$

and

 $Rf_{\eta}(\alpha_{\zeta}^{(0)}, \alpha_{\zeta}^{(1)}, \ldots, \alpha_{\psi}^{(\varrho)}, \ldots, \underline{\alpha}_{\sigma}^{(\tau)}, \underline{\alpha}^{(\tau+1)}, \ldots, \underline{\alpha}^{(\eta)})/\alpha$

have no common elements. Since the set of the first elements of the sets

$$Rf_{\eta}(\alpha_{\zeta}^{(0)}, \alpha_{\zeta}^{(1)}, \ldots, \alpha_{\psi}^{(\varrho)}, \ldots, \alpha_{\varphi}^{(\tau)}, \underline{\alpha}^{(\tau+1)}, \ldots, \underline{\alpha}^{(\eta)})/\alpha$$

with $\alpha_{\varphi}^{(\tau)} \in A_{\tau,\eta}(\underline{\alpha}^{(\tau+1)}, ..., \underline{\alpha}^{(\eta)})$ is equal to L we obtain from Theorem II ([1]) that the union of these sets is non-stationary in α .

Case b): Put

$$Q_{\mu,\nu,\eta} = Rf_{\eta}(\alpha_{\xi}^{(0)}, \alpha_{\zeta}^{(1)}, \ldots, \underline{\alpha}_{\varkappa}^{(\mu)}, \ldots, \underline{\alpha}_{\varrho}^{(\delta)}, \ldots, \underline{\alpha}^{(\nu)}, \ldots, \underline{\alpha}^{(\eta)})/\alpha,$$

where $\underline{\alpha}_{\rho}^{(\delta)}$ is fixed for each δ ($\mu \leq \delta < \nu$). It is easy to see that

$$Q_{1,\nu,\eta} \subset Q_{2,\nu,\eta} \subset \ldots \subset Q_{\mu,\nu,\eta} \subset \ldots (\mu < \nu).$$

By the hypothesis the set $Q_{\mu,\nu,\eta}$ ($\mu < \nu$) is non-stationary in α . Since $\mu < \nu \le \eta < \alpha$ by Theorem III ([1]), we obtain that the set

$$\bigcup_{\mu < \nu} Q_{\mu, \nu, \eta} = Rf_{\eta}(\alpha_{\xi}^{(0)}, \alpha_{\zeta}^{(1)}, \dots, \alpha_{\varphi}^{(\mu)}, \dots, \underline{\alpha}^{(\nu)}, \dots, \underline{\alpha}^{(\eta)})/\alpha$$

is non-stationary in α . Thus the statement (j₅) is proved.

Since the set Rf_{η} $(0, ..., 0, ..., \beta)/\alpha$ is non-stationary in α , we obtain from (j_5) that the set

$$K = Rf_{\eta}(\alpha_{\xi}^{(0)}, \alpha_{\zeta}^{(1)}, \ldots, \alpha_{\varrho}^{(\eta)})/\alpha$$

is non-stationary in α .

Consider now an arbitrary element $\gamma = f_{\eta}(\underline{\alpha}^{(0)}, \underline{\alpha}^{(1)}, ..., \underline{\alpha}^{(\eta)})$ of K. Let $\{\varkappa_{\zeta}\}_{\zeta \leq \sigma}$ $(\sigma \leq \eta)$ be the strictly increasing sequence of the ordinal numbers \varkappa , $0 \leq \varkappa \leq \eta$, for which $\alpha^{(\varkappa)} \neq 0$. Let us denote by ζ_0 the smallest ordinal number $\zeta \leq \sigma$ for which $\varkappa_{\zeta} \geq 2$. Then the statements (j_1) — (j_5) imply that

(34)
$$\gamma = f_{\eta}(0, ..., 0, ..., \gamma, \psi^{(\tau+1)}, ..., \psi^{(\xi)}, ..., \psi^{(\kappa_{\xi})}, \underline{\alpha}^{(\kappa_{\xi+1})}, ..., \underline{\alpha}^{(\eta)})$$

for every ζ ($\zeta_0 \leq \zeta \leq \sigma$) and τ ($0 \leq \tau \leq \varkappa_{\zeta}$), provided that $\psi^{(\varkappa_{\zeta})} < \underline{\alpha}^{(\varkappa_{\zeta})}$ and $\psi^{(\zeta)} < \gamma$ for each ζ ($\tau + 1 \leq \zeta < \varkappa_{\zeta}$).

Let us denote by $S_{\zeta,\tau}$, where $\zeta_0 \leq \zeta \leq \sigma$ and $0 \leq \tau \leq \kappa_r$, the set of the sequences

$$(\psi^{(\tau+1)}, \ldots, \psi^{(\xi)}, \ldots, \psi^{(x_{\xi})})$$

such that $\psi^{(\varkappa_{\zeta})} < \alpha^{(\varkappa_{\zeta})}$ and $\psi^{(\zeta)} < \gamma$ for each ζ $(\tau + 1 \le \zeta < \varkappa_{\zeta})$. Since $\eta < \alpha$ and α is a strongly inaccessible initial number, the power of the set $S_{\zeta,\tau}$ is smaller than α .

136

Inaccessible cardinals. II

It follows from the statement (j_5) that for any element $(\psi^{(t+1)}, ..., \psi^{(\xi)}, ..., \psi^{(x_{\xi})})$ of $S_{t,\tau}$ the set $C(\psi^{(\tau+1)},\ldots,\psi^{(\kappa_{\xi})}) =$

$$= Rf_{\eta}(\alpha_{\xi}^{(0)}, \alpha_{\xi}^{(1)}, \ldots, \alpha_{\varrho}^{(\delta)}, \ldots, \gamma, \psi^{(\tau+1)}, \ldots, \psi^{(\times_{\varepsilon})}, \underline{\alpha}^{(\times_{\varepsilon}+1)}, \ldots, \underline{\alpha}^{(\eta)})/\alpha$$

is non-stationary in $\dot{\alpha}$.

Since $\zeta \leq \sigma \leq \eta < \alpha$ and α is a strongly inaccessible initial number and hence the power of $S_{r,\tau}$ is smaller than α , Theorem III ([1]) implies that the set

$$B(\gamma) = \bigcup_{\zeta \leq \sigma} \bigcup_{\tau < x_{\zeta}} \bigcup_{\psi^{(\tau+1)} < \gamma} \dots \bigcup_{\psi^{(\zeta)} < \gamma} \dots \bigcup_{\psi^{(\chi\zeta)} < \alpha \in X_{\zeta}} C(\psi^{(\tau+1)}, \dots, \psi^{(\zeta)}, \dots, \psi^{(x_{\zeta})})$$

is non-stationary in α . On the other hand, by (34), the smallest element of the set $B(\gamma)$ is γ .

In this manner, with every element $\gamma = f_{\eta}(\alpha_{\xi}^{(0)}, \alpha_{\zeta}^{(1)}, ..., \alpha_{\delta}^{(\eta)})$ of K we have associated a non-stationary set $B(\alpha_{\xi}^{(0)}, \alpha_{\zeta}^{(1)}, ..., \alpha_{\delta}^{(\eta)})$ the smallest element of which is γ . It only remains to prove that

$$\bigcup_{\gamma \in M} B(\gamma)$$

is non-stationary in α . Since K is non-stationary in α , the sets

$$B_{0} = Rf_{\eta}(\alpha_{\xi}^{(0)}, \underline{\alpha}_{\xi}^{(1)}, \dots, \underline{\alpha}_{\delta}^{(\eta)})/\alpha,$$

$$B_{1} = Rf_{\eta}(0, \alpha_{\xi}^{(1)}, \underline{\alpha}_{\psi}^{(2)}, \dots, \underline{\alpha}_{\delta}^{(\eta)})/\alpha,$$

$$\vdots$$

$$B_{\mu} = Rf_{\eta}(0, \dots, 0, \dots, \alpha_{\varrho}^{(\mu)}, \underline{\alpha}_{\varphi}^{(\mu+1)}, \dots, \underline{\alpha}_{\delta}^{(\eta)})/\alpha,$$

are non-stationary in α , where $\underline{\alpha}_{\zeta}^{(1)}, \ldots, \underline{\alpha}_{\varrho}^{(\mu)}, \ldots, \underline{\alpha}_{\delta}^{(\eta)}$ are fixed ordinal numbers $<\alpha$. Let v > 1 be a given ordinal number, and suppose that for every μ ($1 \le \mu < v$) the cot

(35)

$$D(\underline{\alpha}_{\varrho}^{(\mu)}, \underline{\alpha}_{\varphi}^{(\mu+1)}, \dots, \underline{\alpha}_{\delta}^{(\eta)}) = (1)$$

$$= \bigcup_{(\alpha_{\xi}) \in \mathcal{I}} \dots B(\alpha_{\xi}^{(0)}, \alpha_{\xi}^{(1)}, \dots, \alpha_{\psi}^{(9)}, \dots, \underline{\alpha}_{\delta}^{(\mu)}, \dots, \underline{\alpha}_{\delta}^{(\eta)})$$

$$= \bigcup_{\substack{\alpha_{\xi}^{(0)} \in \mathcal{A}_{0}, \eta \\ \alpha_{\xi}^{(0)} < \alpha}} \dots \bigcup_{\substack{\alpha_{\psi}^{(9)} \in \mathcal{A}_{9}, \eta \\ \alpha_{\psi}^{(9)} < \alpha}} \dots B(\alpha_{\xi}^{(0)}, \alpha_{\xi}^{(1)}, \dots, \alpha_{\psi}^{(9)}, \dots, \underline{\alpha}_{\varrho}^{(\mu)}, \dots, \underline{\alpha}_{\theta}^{(\eta)}).$$

is non-stationary in α . We must prove that the set

(36)
$$D(\underline{\alpha}_{\varphi}^{(\nu)}, ..., \underline{\alpha}_{\delta}^{(\eta)}) = = \bigcup_{\substack{\alpha_{\xi}^{(0)} \in \mathcal{A}_{0, \eta} \\ \alpha_{\xi}^{(0)} = \alpha}} ... \bigcup_{\substack{\alpha_{\psi}^{(3)} \in \mathcal{A}_{9, \eta} \\ \alpha_{\xi}^{(0)} = \alpha}} ... B(\alpha_{\xi}^{(0)}, \alpha_{\zeta}^{(1)}, ..., \alpha_{\psi}^{(3)}, ..., \underline{\alpha}_{\varphi}^{(\nu)}, ..., \underline{\alpha}_{\delta}^{(\eta)})$$

is non-stationary in α . It is easy to verify that the smallest element of (35) is $f_{\eta}(0, ..., 0, ..., \underline{\alpha}_{\varrho}^{(\mu)}, ..., \underline{\alpha}_{\delta}^{(\eta)})$. Thus the set of the first elements of the sets.

G. Fodor

 $D(\alpha_{\varrho}^{(\mu)}, \underline{\alpha}_{\varphi}^{(\mu+1)}, ..., \underline{\alpha}_{\delta}^{(\eta)})$ with $\alpha_{\varrho}^{(\mu)} \in A_{\mu,\eta}(\underline{\alpha}_{\varphi}^{(\mu+1)}, ..., \underline{\alpha}_{\delta}^{(\eta)})$ is equal to B_{μ} . Suppose now that ν is a number of the first kind, i.e. $\nu = 9 + 1$. In this case Theorem IV ([1]) implies that the set

 $\bigcup_{\alpha_{\sigma}^{(\vartheta)} \in A_{\vartheta}, \eta, \alpha_{\sigma}^{(\vartheta)} < \alpha} D(\alpha_{\sigma}^{(\vartheta)}, \underline{\alpha}_{\varphi}^{(\vartheta+1)}, \dots, \underline{\alpha}_{\delta}^{(\eta)})$

is non-stationary in α . Suppose now that v is a limit number. For the proof of our statement it is sufficient to show that the set

 $\bigcup_{\mu < \nu} D(\underline{\alpha}_{\varrho}^{(\mu)}, \ldots, \underline{\alpha}_{\delta}^{(\eta)}) \qquad (\nu \leq \eta < \alpha)$

is non-stationary in α . But this follows from the hypothesis and from Theorem IV. Thus the proof of Theorem 2 is complete.

In an entirely analogous way it may be proved the following

Theorem 3. If $\eta < \alpha$, $\mu < \eta$ and $\alpha = n_{\mu,\eta}(\underline{\alpha}^{(\mu)}, ..., \underline{\alpha}^{(\eta)})$ then the set of the ordinal numbers of the form $f_{\eta}(\alpha^{(0)}, \alpha^{(1)}, ..., \underline{\alpha}^{(\mu)}, ..., \underline{\alpha}^{(\eta)}) < \alpha$ is non-stationary in α .

We prove now the following

Theorem 4. If $\alpha = f_{\eta}(\underline{\alpha}^{(0)}, ..., \underline{\alpha}^{(\xi)}, ..., \underline{\alpha}^{(\eta)}), \eta < \alpha, and \underline{\alpha}^{(\xi)} < \alpha$ for each $\xi \leq \eta$ then the set of the ordinal numbers of the form $f_{\eta}(\alpha^{(0)} \alpha^{(1)}, ..., \alpha^{(\eta)}) < \alpha$ is non-stationary in α .

Proof. Let $\{\xi_{\zeta}\}_{\zeta \leq \sigma}$ $(\sigma \leq \eta)$ be the strictly increasing sequence of the ordinal numbers $\zeta \leq \eta$ for which $\underline{\alpha}^{(\zeta)} \neq 0$.

Put

$$\gamma(\nu^{(\xi_{\mu})}) = f_{\eta}(0, ..., 0, ..., \nu^{(\xi_{\mu})}, \alpha^{(\xi_{\mu}+1)}, ..., \alpha^{(\eta)}),$$

where $v^{(\xi_{\mu})} < \underline{\alpha}^{(\xi_{\mu})}$ if $\mu = 0$ and $v^{(\xi_{\mu})} \leq \underline{\alpha}^{(\xi_{\mu})}$ if $0 < \mu \leq \sigma$.

First we show that the set

(37)
$$\{f_{\eta}(0, ..., 0, ..., \nu^{(\xi_0)}, ..., \underline{\alpha}^{(\xi_0+1)}, ..., \underline{\alpha}^{(\eta)}\}_{\nu(\xi_0) < \alpha(\xi_0)}$$

is non-stationary in α . Indeed, if $\alpha^{(\xi_0)} = \nu^{(\xi_0)} + 1$ then

$$f_{\eta}(0, \ldots, 0, \ldots, \underline{\nu}^{(\xi_0)}, \underline{\alpha}^{(\xi_0+1)}, \ldots, \underline{\alpha}^{(\eta)}) < f_{\eta}(0, \ldots, 0, \ldots, \underline{\alpha}^{(\xi_0)}, \ldots, \underline{\alpha}^{(\eta)});$$

moreover, if $\alpha^{(\xi_0)}$ is a limit number, then

$$\lim_{\nu^{(\xi_0)} < \underline{\alpha}^{(\xi_0)}} f_{\eta}(0, \ldots, 0, \ldots, \nu^{(\xi_0)}, \underline{\alpha}^{(\xi_0+1)}, \ldots, \underline{\alpha}^{(\eta)}) < \alpha,$$

because $\underline{\alpha}^{(\xi_0)} < \alpha$ and α are regular. This implies that the set (37) is non-stationary in α . Now we show that for every μ ($0 < \mu \leq \sigma$) the set

(38)
$$\{f_{\eta}(0, ..., 0, ..., \nu^{(\xi_{\mu})}, \underline{\alpha}^{(\xi_{\mu}+1)}, ..., \underline{\alpha}^{(\eta)})\} \nu^{(\xi_{\mu})} \leq \underline{\alpha}^{(\xi_{\mu})}$$

is non-stationary in α . Indeed, if $\mu > 0$ then

 $f_{\eta}(0, \ldots, 0, \ldots, \underline{\alpha}^{(\xi_{\mu})}, \ldots, \underline{\alpha}^{(\eta)}) < f_{\eta}(0, \ldots, 0, \ldots, \underline{\alpha}^{(\xi_{0})}, \ldots, \underline{\alpha}^{(\xi_{\mu})}, \ldots, \underline{\alpha}^{(\eta)}),$

on the other hand

 $f_{\eta}(0, \ldots, 0, \ldots, \underline{\alpha}^{(\xi_0)}, 0, \ldots, 0, \ldots, \underline{\alpha}^{(\xi_{\mu})}, \ldots, \underline{\alpha}^{(\eta)}) \leq f_{\eta}(\underline{\alpha}^{(0)}, \underline{\alpha}^{(1)}, \ldots, \underline{\alpha}^{(\eta)}) = \alpha.$

Inaccessible cardinals. II

Hence, for $\mu > 0$,

$$f_n(0, ..., 0, ..., \alpha^{(\xi_{\mu})}, ..., \alpha^{(\eta)}) < \alpha.$$

Consequently, the set (38), where $0 < \mu \leq \sigma$ is non-stationary in α .

We may suppose without loss of generality that $\xi_0 = 0$. [In virtue of (j_5) and the non-stationarity of the sets (38) with $0 < \mu \leq \sigma$, the set

(39)
$$\bigcup_{0 < \mu \leq \sigma} \bigcup_{\gamma(\xi_{\mu}) \leq \underline{\alpha}(\xi_{\mu})} Rf_{\eta}(\alpha_{\xi}^{(0)}, ..., \alpha_{\varphi}^{(\delta)}, ..., \underline{\alpha}^{(\xi_{\mu}+1)}, ..., \underline{\alpha}^{(\eta)})/\alpha$$

is non-stationary in α . Applying to the set (39) the argument used for the set $Rf_{\eta}(\alpha_{\xi}^{(0)}, \alpha_{\xi}^{(1)}, ..., \alpha_{\ell}^{(\eta)})/\alpha$ after the proof of (j_5) in the proof of Theorem 2, we obtain Theorem 4.

Remark. If in the definition of the process we start with weakly inaccessible initial numbers then we can only prove Theorems 2 (see [1]), 3, and 4 for $\eta < \omega$. We prove now the following

Theorem 5. If α is the smallest ordinal number of η for which $\eta = f_{\eta}(0,...,0,...,1)$ then the set of the ordinal numbers of the form $f_{\tau}(\alpha^{(0)}, \alpha^{(1)}, ..., \alpha^{(\tau)})$, where $\tau < \eta$, is non-stationary in α .

Proof. First we show that the set $N = \{f_{\varrho}(0, ..., 0, ..., 1)\}_{\varrho < \alpha}$ is non-stationary in α .

Since α is the smallest ordinal number of η for which $\eta = f_{\eta}(0, ..., 0, ..., 1)$, the relation

(40) $\varrho < f_{\varrho}(0, ..., 0, ..., 1)$

holds for each $\rho < \alpha$. By the definition of $f_n(\alpha^{(0)}, \alpha^{(1)}, ..., \alpha^{(n)})$ we have

(41)
$$f_o(0, ..., 0, ..., 1) < f_{o+1}(0, ..., 0, ..., 1).$$

Let us define the function g on the set N by writing

 $g(f_{\rho}(0, ..., 0, ..., 1)) = \rho$.

It follows from (40) and (41) that the function g is strictly divergent and regressive on the set N. Therefore, by Theorem I ([1]), the set N is non-stationary in α .

Consider the set *

(42)
$$Rf_{\varrho}(\alpha_{\xi}^{(0)}, \alpha_{\zeta}^{(1)}, \ldots, \alpha_{\delta}^{(\varrho)})/\alpha \qquad (\varrho < \alpha).$$

Since, as by the definition of $f_n(\alpha^{(0)}, \alpha^{(1)}, ..., \alpha^{(n)})$ the equalities

$$f_{\alpha}(\alpha^{(0)}, 0, ..., 0, ..., 0) = f_{0}(\alpha^{(0)}),$$

$$f_{\alpha}(\alpha^{(0)}, \alpha^{(1)}, 0, ..., 0, ..., 0) = f_{1}(\alpha^{(0)}, \alpha^{(1)}),$$

$$\vdots$$

$$f_{\alpha}(\alpha^{(0)}, \alpha^{(1)}, ..., \alpha^{(o)}, 0, ..., 0, ..., 0) = f_{\varrho}(\alpha^{(0)}, \alpha^{(1)}, ..., \alpha^{(o)}),$$

hold, we may assume $\alpha_{\delta}^{(\varrho)} \ge 1$ in (42).

G. Fodor: Inaccessible cardinals. II

With the help of (j_5) we get for given ρ that the set

$$M_{\varrho} = Rf_{\varrho}(\alpha_{\xi}^{(0)}, \alpha_{\zeta}^{(1)}, \dots, \alpha_{\delta}^{(\varrho)})/\alpha \qquad (\varrho < \alpha, \quad \alpha_{\delta}^{(\varrho)} \ge 1)$$

is non-stationary in α . But the set $\{f_{\varrho}(0, ..., 0, ..., 1)\}_{\varrho < \alpha}$ of the first elements of the sets M_{ϱ} with $\varrho < \alpha$ is non-stationary in α . Therefore, making use of (j_5) , the set

(43)
$$\bigcup_{\varrho < \alpha} Rf_{\varrho}(\alpha_{\xi}^{(0)}, \alpha_{\xi}^{(1)}, \dots, \alpha_{\delta}^{(\varrho)})/\alpha \qquad (\alpha_{\delta}^{(\varrho)} \ge 1)$$

is non-stationary in α . Applying the same argument to the set (43) as in the proof of Theorem 2, after the proof of (j_5) for the set $Rf_{\eta}(\alpha_{\xi}^{(0)}, \alpha_{\zeta}^{(1)}, ..., \alpha_{\varrho}^{(\eta)})/\alpha$, Theorem 5 will be proved.

Reference

[1] G. FODOR, On a process concerning inaccessible cardinals. I, Acta Sci. Math., 27 (1966), 111-124.

(Received February 1, 1965)