
On a process concerning inaccessible cardinals. II 
By G. FODOR in Szeged 

This paper is a continuation of reference I (see [1]), in which a process concerning 
inaccessible cardinals has been defined. In this paper we freely make use of the 
notations, definitions, and theorems of [1]. 

From now on, in the definition of the process, we start with strongly inaccessible 
initial numbers. This means that the values of the function / ,(a ( 0 ) , a ( l ) , ..., a(,i)) are 
strongly inaccessible numbers. 

First we prove the following 

T h e o r e m 2. If a =«,,^(0) and >;<a then the set of the ordinal numbers of 
the form /„(a(0), a(1), ..., au,)) < a is non-stationary in a. 

P r o o f . We may assume by Theorem 1 of [1] that tj feet). Denote by y(/?) the 
value/,(0, ..., 0, ..., /3). As the first step we prove the following statement, 

(j,) Suppose that /î ^0. Then y (/?) satisfies the equality ' 

y ( P ) = A ( 0 , . . . , o , . . . , y ( / ? ) , 
for every fi<r], provided that ip(n) </? and \jj{i) (/?) for each + l ^£<77). 

To prove this statement, we write rf in the form t] = œ^ + n, where and 

We distinguish the cases n = 0 and « > 0 . 

Case n = 0. We prove the following three statements, the third of which imme-
diately implies (h): 

(a) If v < [i and r < / j then y ( f t ) satisfies the equality 

j(P) = / „ (0 , 0, ..., y (fi), 0, ..., 0, ..., v). 

(b) If v -~ fl, <x < £ and 0 < m < a> then y (/?) satisfies the equality 

y ( P ) = / , ( 0 , - . . ,0, ...,y(fi), 0, . . . ,0 , ...,v), 

provided that \j/Uoa+i> < y(/?)/or eoc/î / (I ^l^m). 
(c) If v < f t 0 <<?•<£, x<(oo ant/ 0 5 m < f f l //îew y ( f t ) satisfies the equality 

M 
y03)=/„(O, . . . ,0 , ..., v(/5), 0, ..., 0, . . . , ^«"+0 , . . . , ^«»+») , 0, . . . ,0, ...,v), 

provided that i//(<UCT + 0 < y(/?) /or each I (0^1 ^m). 
1 A 
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Ad (a): Since y()»)=/,(0, ..., 0, ..., £), we have 

(19) . H / O ^ ( « ( 0 ) , o , . . . , o , . . . , / ? ) . 

It follows from the definition of /„(a ( 0 ) , a (1 ), ..., a(">) that 

(20) */„(a (0), o , . . . , o, . . . ,* ) = n Rf,MQ), 0, ..., 0, ..., v), 
v<y. 

where % is a limit number, 

(21) */,(«№), 0, ..., 0, . . . , e + l ) = n # , ( 0 , - , 0 , . . . , a « 0, - . , 0 , . . . , e ) , 
t<'/ 

and 
(t+i) 

(22) /,(a№),0, 0, ..., 0, 1,0, . . . ,0 , ..., v) = (/„(0, ..., 0 , . . . , a« ,0 , ..., (i, ..., v))'. 

With the help of (19), (20) and (21) we obtain 

(23) y(P)eRfM°\ 0, ,..,0,v) 

for every vS/?; moreover, (23) and (21) imply 
( 2 4 ) Y ( P ) i W 0 , . . . , 0 , . . . , « « , 0 , . . . , 0 , . . . , v ) 

for every v < /5 and for every t < r\. From this we conclude that (a) is valid. For if 
not, then there are three ordinal numbers v0 T0 < ri and q0 < y (/0 such that 

( t o ) 

l ( P ) = / , ( 0 , . . . ,0 , . . . , Q o , 0 , . . . ,0 , . . . ,v0). 

Hence, by (22), we have 
( r o + l ) 

y ( j 8 ) i J ? / , ( a » > , 0 , . . . , 0 , . . . , 0 , 1 , 0 , . . . , 0 , . . . , v 0 ) . 

Thus, by the definition of / , ( a ( 0 ) , a ( l ) , ..., a(,))), we obtain 

y(i?)ii?/„(0, ..., 0, . . . , 0 , a ^ + D , 0 , . . . ,0 , v0), 
which contradicts the fact that (24) is valid for every v</? and t o / . 

Ad (b): From (a) we get 

yW) = / , ( 0 , . . . , 0 , . . . / r i f o , . . . , 0 , . . . ,v) 

for every v</?, a a n d for every m (0<m<co) . Hence 

( 2 5 ) . 7 ( j S ) € i ? / , ( a W , 0 , 0 , . J 7 ( / S 0 , • . . . , 0 , . . . , v ) 

for every v</?, c a n d f j r every w (0<w<co) . 

It follows from the definition, of /„(a (0 ) , a (1 ), ..., a(")) that 

R f n № \ 0, ..., 0, . . .TvS) l 0, . v , 0, ..., v) — 
(26) . 

= fl */„(0, . . . ,0 , . . . ,0 , . . . ,v) 
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and 
(eotr + tri) 

/„(a<°>,0, ..., 0, ...,n+ 1,0, . . . ,0 , . . . ,v) = 
(27) 

= (/ ,(0, . . . ,0 , ...,<*<"+«-»,n,0, . . . ,0 , ...,v))\ 

By (25) and (26) we have 
(28) y(j3)ei?/„(0, ..., 0, ..., «(«"+»-«, ft, 0, ..., 0, ..., v) 

for every /¿<y(/?) and for every fixed v</}, and m (0 < m < co). First we show 
that y(fl) satisfies the equality 

(toa + m— 1) 

(29) y ( p ) = f t l ( 0 , . . . , 0 , . . . , y ( p ) , n , 0 , . . . , 0 , . . . , v ) 

for every / i<y(j3) and for every fixed v«=/?, e r o ; and m (0-<m<co). If not, then 
there are two ordinal numbers /i0 < y (/0 and Q 0 <y(P) such that 

(0>ff+ m) 

V08> = / , ( 0 , . . . ,0 , 0, . . . , 0 , ..., v). 
Hence, by (27) 

(coa + m) 

# f i ! / , ( « ( 0 V 0, ..., 0, ..., Mo + 1 , 0, ..., 0, ..., V). 

On the other hand it follows from this and the construction of fn{ct.°\ a (1), ..., ainy) 

that y ( M * / „ ( 0 , - , 0 , ...,«(«»+— D,/i0 + 1,0, . . . ,0 , . . . ,v), 
which contradicts the fact that (28) holds for every y(J?) and for every fixed 
v </?, e r o j and m (0•<=m<a>). Thus we conclude that y(/j) satisfies (29) for every 
v < ¡5, er < rj and for every /n (0 < m < co). 

Let now I be a natural number for which 0 Assume that whenever 
v<j8, (T<*/, 0 < w < c o and ^( t0 ,7+i><y(j8) (/ = / + 1 , ..., m) then 

V(0) = / , ( 0 , - . , 0 , . . . , ^ « ' + 0 , 0, . . . ,0 , . . . ,v). 
(m<r + m— 1) 

Since y(fi)=fn(0, ..., 0, ..,, y(/§), fi, 0, 0, ..., v) for every v</?, <t<//, 0 < / w < ® 
and for every fi y(/2) it remains to prove that this assumption implies that whenever 
v-=j8 <r<}7, 0 < m < f t ) and <y(/J) ( / s / ^ m ) then 

y(0)=/„(Q, . . . , 0 , ..., y(jS), (̂<"«+0, ...,^(«.»+0, ...,(/,(»*+»•>, 0, . . . ,0, ..., v). 

It follows from the definition of /^(a(0), a (1), ..., a'"') that, for given tr, v, 
0 < w < i o , ..., the equalities 

7?/,(aW 0, ..., 0, ..., y(jS), . . . , 0 , ..., 0, ..., v) = 

(30) 
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and 
/ „ ( a < 0 > , 0 , . . . ,0 , . . . , / £ • + 1 ) , 0, . . . ,0 , . . . , v ) = 

( 3 1 ) 

= (/,(0, . . . ,0 , n, o, ..., 0, ..., v) 
hold. 

By (30) and (31) we obtain for every /< < y (ft) and for any fixed v < (i, o< t \ , 
0 < m < o > and ( / - M s i s m ) that 

(32) 
y ( P ) £ R f n ( 0 , . . . , a ^ + ' - D , n , , / , ( « " + ' + 0 . . . , ^ + m ) , 0 , . . . , 0 , . . . , v ) . 

Now we show for every ¡x<y((i) and for any fixed v < 0<i) , 0 < c o , i < 
< y ( / 0 (/+ 1 =i = m) that the ordinal number y(/?) satisfies the equality 

7 ( | S ) = / , ( 0 , . . . , 0 , ...,y(P), n, ^ < « » + ' + 0 . . . , ^ + 0 , . . . , , / , ( - + > » ) , o , . . . , 0 , . . . , v ) . 

In the contrary case there are two ordinal numbers < Y (/?) and T0 < Y(/3) such that 

y('0) = / , ( 0 , . . . ,0 , ..., t 0 , ,>(«»+'+0, 0, . . . ,0 , ..., v). 

Hence, by (30), we have 

ï № P / , ( « l o ) , o , . . . , o, ...,/<o + i,</'(û"7+,+1), —, o , . . . , » ) . 

Consequently, by the definition of/„(a (0), a (1 ) , ..., a(,|>) 

. . . , 0 , . . . , a ( ® " + ! - 1 ) , / / 0 + 1, ^ ( o w r + i + i ^ o , . . . , 0 , . . . , v ) . 

Since y ( f i ) is a limit number, we have //0 + 1 < y (ft), which contradicts the fact 
that (32) holds for every /x<y(jS) and for any fixed v</?, <j<»], 0 < m - = œ and 
ij/(o"'+i) <y(P) ( / + 1 S / ' ^ m ) . Thus we may conclude that the statement (b) is true. 

Ad (c): If v<P,a<£ and 0 < m < o > then, by (b), y(/?) satisfies the equality 

y ( P ) = / , ( 0 , . . . , 0 , . . . j t f ) , . . . , ^ « » + 0 , . . . , ^ ( « - + » > , 0 , . . . , 0 , . . . , v ) , 

provided that i^(a"T+,) <y(|5) for each / (1 s / S ( n ) . It follows from this, under the 
same conditions, that 

y(P)£KfM0 )>°> ->°> - > y ( P ) , <A(ra<T+1), - , № a , a + i \ ..., tA('u<T+m), 0, . . . ,0 , .. . ,v). 

Since, by the construction of /„ (a ' 0 *,«" ' , . . . ,a ( , , )) 

. . . ,0 , ..., ^ + o, o, ..., v) = 

= n * / , ( a ( 0 ) , 0 , . . . , 0 , o , . . . , 0 , . . . , » ) , 

Rfv(ot°\0, . . . ,0 , + 1 , iA(ra<r+1), ..., iA(ra"+m>, 0, . . . ,0 , ..., v) = 

= f | -R/,(0> - . 0 , . . . , a w , 0 , . . . ,0 , ..., 0, . . . ,0 , ..., v), 
r<tO(T 

and 

/,(<*№), 0, ..., 0, ..., 0,^1,^0, ..., 0, ..., v) = (/,(0, ..., 0, ..., a« , 0, ..., 0, ..., v))', 

we can apply the method used in the proof of (a). Thus we obtain the proof of (c). 
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Case By the same argument as in the proof of (a) and (b) we obtain 
that y(/i) satisfies the equality 

y(fi) = / , ( 0 , . . . , 0, . . . , y(P), ^ (« i + 0, ,/,№>) 

for any [¡j(u">+l><y(P) ( 1 ^ / ^ n - l ) and i / ^ c / ? . 
Hence, by the argument used in the proof of (c), we obtain that y(fi) satisfies 

the equality 

y(P) =/,(0, .... 0, ..., y(l), 0, ..., 0, ..., ..., 
for any < y(/J) ( 0 ^ / S h - 1 ) and 

From this, by the argument applied in the proof of (b), we conclude that y(fi) 
satisfies the equality 

y ( P ) = M - . v ( 0 ) , 0, ... 

whenever 0 < m < c o , <r<£, < y(ji) (0<k^m), i^Ca>i+!) <y(jS) ( 0 ^ / ^ n - l ) , 
and 

Finally, by the argument of the proof of (c), we obtain that y(fi) satisfies the 
equality 

7(0) - / , ( 0 , - , 0 , . . . , y t f ) ,0 , . . . ,0 , ...,Woa+k\ ... 
..., i/A<B<I+m>, 0, ..., 0, ..., ..., Ij/(o>"+l\ ..., \j/W) 

whenever m < ® , ¡hkcoo-, i/A<0<T+''><y(/}) (O^k^m), ^<<B«+'> < y ( £ ) ( 0 ^ / ^ n - l ) , 
and i < f t . This immediately implies the statement (j ,) in the case n >-0 too. 

The same method can be used to prove the following statement: 
(j2) Assume that ..., a(, |) (0 < ^ 3= jj) are gwen ordinal numbers and ^0. 

Then y=fn (0, ..., 0, ..., ..., a(n)) satisfies the equality 

y = / , (0 , . . . ,0, ..:, y, ..., ...,a<*>) 

or every % ( O S I S / I ) provided that I / / ' 1 ' < A ( , I ) and <Y for each C (T + 1 S < / ¿ ) . 

Now we proceed to prove the following statement: 
(j3) Assume that a<0), ..., ..., ( 0 ^ / / ? S a r e gv'ue« ordinal numbers, 

a ( 0 ) and ^ 0. Then y= / , ( a ( 0 ) , 0, . . . ,0, . .„a '" ' , ...,a (" )) satisfies the• equality 

y = /„ (0 , ..., 0, . . . ,y , . .„ iAWaC+D, . . . , « « ) 

/ o r eoery t ( 0 S t < / j ) , provided that tl/<M> and if/1^ < y for each (t + 1 S <!; < /¿). 
Let us denote A the ordinal number a''1'. Consider first the case when ju is an 

ordinal number of the first kind. It follows from the definition of fn(a(0), a (1 ) , ..., a w ) 
that 

/ («W,0 , ..., 0, ...,«<") = ( / , (0, ..., 0, ...,a<«-i>, . . . , « « ) 

for A = 1 and 
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for a limit number X. These imply that for every v<A 

• y£Bfn(0, . . . , 0 , . . . v . a O . + D , 

Hence we easily conclude that 

y = f , ( 0 , . . . , 0 , . . . , y , v , . . . , « ( " > ) . 

Thus, by (j2), we get (j3) in the case where /1 in an ordinal number of the first kind. 
Suppose now that n is a limit number. Then from the definition of 

/„(a<0), cc(1>, ..., a<">) we see that 

i?/„(a<°>, 0, ..., 0, ..., 1 ,0^+« ..., «№) = 

= ( W „ ( 0 , - , 0 , . . . , a«) ,0 , ..., 0, ...,{>, ...,a<">) 

for 1 = q + 1 and 

.. . 0, ..., 0, ..., A, «("+!), ..., aM) = 

= PI * / „ ( « ( 0 ) , 0 , . . . , 0 , . . . , v , a < f ' + ' \ . . . , a t " ) 
v < A 

for a limit number A. By a proof analogous to that of (b) and (c), we obtain (j3) 
in the case where /< is a limit number. 

Now we can prove the following statement: 

(j4) Let {y.r}rS„ (cr^fj) be the strictly increasing sequence of the ordinal numbers 
for which <y.(x) ¿¿Q. Assume that x0 = 0. Then y =fn(x<0\ a ( r> , ..., satisfies 

the equality 

y = / „ ( 0 , ..., 0, ..., 0, . . . , « « ) 

for every C (1 5 C = a) and for every provided that i/>(*?) < and < y 
/o r eac/z £ (t + 1 ^ £, < ?<:c). 

Indeed, if (j4) is true for a fixed £ ( 0 < £ = 0), then 

y = / „ ( y , 0 , . . . , 0 , . . . , a < ^ , 0 , . . . , 0 , . . . , « < " > ) . 

If we apply (j3) to a ( 0 ) = y, we obtain that 

y = / „ ( 0 , . . . , 0 , . . . , y , . . . , 0 , . . . , 0 , . . . , a < " i " > , . . . , a W ) 

f o r every r provided that < a n d for each £ (r + 1 S 
This proves the statement (j4). 

Now we proceed the proof of Theorem 2 by showing that the set 

(3) i? /„(0, . . . ,0 , ...,/?)/« 

is non-stationary in a. We define a function g on M = Rfn(0, ..., 0, ..., /?)/a by 
writing 
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Since /^(0,..., 0, ..., t) is a strictly increasing function of the variable x and for 
every /?< a the inequality 

j?</„(0 , . . . ,0 , ...,/?) 

holds, we obtain that the function g is strictly divergent and regressive on M. There-
fore Theorem I (see [1]) implies that the set (33) is non-stationary in a. 

Next we prove, by transfinite induction, the following statement. 

(j5) For every ¡i, the set 

is non-stationary in a, where a'"', ...,'txM are given ordinal numbers <a. 

First we show that the set 

is non-stationary in a. We define a function g on N by writing 

g(fM0)>«w> -,<**)) = 40)-

From the definition of <40)(a(1>, ..., a « ) and /„(a ( 0 ) , a(1>, ..., a(">), we obtain 

and / „ ( 4 0 J , « ( , ) ) < / „ ( 4 % > «(1)> • • • -3®)-
From these we infer that the function g is strictly divergent and regressive on N 
and, therefore, by Theorem I ([1]), we obtain that the set N is non-stationary in a. 

Let v be a given ordinal number and suppose that for every n (1 v) the set 

is non-stationary in a. 
There are two cases: 
a) v is an ordinal number of the first kind, i.e. V = T + 1, 
b) v is an ordinal number of the second kind. 

Case a): We show that the set 

L = Rf„(0, ..., 0, ..., a(r+1>, .... «<*>)/« 

is non-stationary in a. We define a function g on L by writing 

g(/„(0„. . . , 0, ..., aC<+i); aC»>)) = a « . 

From the definition of a w ( a ( r + 1 ) , ..., a w ) and /,(a(0>, a (1 ) , ..., a ^ ) we obtain 

«!;» < / , (0 , .. . . 0, ..., a " a ( t + D, ..., «<">) 

and 

/„(0, ..., 0, ..., ..., «(">) < / , ( 0 , ..., 0, ..., a < x ( t + 1 ) , ..., a«>). 

From, these , we conclude that the function g is strictly divergent and regressive on 
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L, and, therefore, by Theorem L ([1]), we obtain that the set L is non-stationary in a-. 
It follows from the construction o f / , ( a ( 0 ) , a (1 ) , ..., a ( , )) that 

/„(0, ..., 0, .'.., <*«, a(t'+ ...,«<">) 4<\ aW, «('+•>, «(,)). 

By our assumption, for given a ^ the set 

Rf„{zf\ «(T+1)> ->«(,,))/« 

is non-stationary in a. On the other hand it is easy to verify that for any two different 
elements a ^ and the sets 

i?/„(4°>, ««>,'...,<$>, ..., a « «cr+o «№)/a 
and 

*/,(a<°>, «<»,.••, <#>, ..., a « , 1>, ..., a«>)/a 

have no common elements. Since the set of the first elements of the sets 

RfM0}, — 4e)> •••> «£'» <*(T+ •••» a(,,))/a 
with a£ )£/4 t ) I I(a ( t + 1 ) , is equal to L we obtain from Theorem II ([1]) that 
the union of these sets is non-stationary in a. 

Case b): Put 

R f № ) > * < P > - ' « ( v ) ' - > « ( " ) ) / « , ' 

where is fixed for each <5 (¡i S <5 < v). It is easy to see that 

8 i , M c 8 2 , » , , ( = . . . c 0 ( l i t , , c . . . O i < v ) . 

By the hypothesis the set is non-stationary in a. Since / i < v S ( | < a 
by Theorem III ([1]), we obtain that the set 

U Q,, v , „ = R f M i \ < l ) > • • • > • • • > « ( v ) > - , « i , r t ) / « 
FI<V 

is non-stationary in a. Thus the statement (j5) is proved. 
Since the set Rfn (0, ..., 0, ..., P)/a is non-stationary in a, we obtain from (j5) 

that the set 
K = Rfn{«<">, «p', ..., r4">)/a 

is non-stationary in a. 
Consider now an arbitrary element y= / , ( a ( 0 ) , a(1>, . . . ,a ( , , )) of AT. Let 

(cr^ri) be the .strictly increasing sequence of the ordinal numbers ye, O ^ x ^ r j , for 
which aSx) ¿¿Q. Let us denote by £0 the smallest ordinal number £ = <r for which 

Then the statements (j,)—(j5) imply that 
(34) y = / , ( 0, ..., 0, . . . ,y , ...,«<">) 

for every ( (£0 ^ £ = and r provided that < «<*?) and t//(?) < y 
for each £ (x + 1 S £ < 

Let us denote by t , where C0 = C = ^ and 0 ^ x ^ , the set of the sequences 

such that i¡/("d < a ^ and < y for each £ (t + 1 ^ £ < Since t] < a and a is 
a strongly inaccessible initial number, the power of the set r is smaller than a. 
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It follows from the statement (j5) that for any element ..., ..., ф(*г)> 
of SCz the set 

С(ф(-г+ ..., i/A*«') = 

= Rf„(a.f\«£'>, ..., .... у, Ф(*+1\ --, «w)/oc 

is non-stationary in a. 
Since ( S < r S i | < a and a is a strongly inaccessible initial number and hence 

the power of Si<z is smaller than a, Theorem III ([1]) implies that the set 
* ( y ) = U U U - U - U ...,фК>) /ft«+D<y ф<а<у у/Ьд^иХщ) 

is non-stationary in a. On the other hand, by (34), the smallest element of the set 
B(y) is y. 

In this manner, with every element y=fn(a.f\ ct\l),..., a ^ ) of К we have asso-
ciated a non-stationary set B(a.f \ а^1', the smallest element of which is y. 

It only remains to prove that 

U*(V) уем 

is non-stationary in a. Since К is non-stationary in a, the sets 

В, = Rf„(0, ..:, 0, ...,aW + ..., а<*>)/а, 

are non-stationary in a, where ..., a1^' are fixed ordinal numbers < a . 
Let v > l be a given ordinal number, and suppose that for every p (1 v) 

the set 

(35) 
= u - U ...Biaf\a['\ ...,«<*>> 

Ut0) ( Ao ,„ octf'iA¡>,„ 

is non-stationary in a. We must prove that the set 

(36) 
= U ... U . . . 5 (4° ) , «<•>, . . . , « » ) , . . . , < ) , ...,<#>> 

o40,€/lo,„ a'/ ' 6 /4a, i, 

is non-stationary in a. It is easy to verify that the smallest element of (35) is-
/ , (0, ..., 0, ..., a<">, ..., Thus the set of the first elements of the sets-
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D(<#>, ..., a ^ ) with .... ai<>) is equal to B, . Suppose now 
that v is a number of the first kind, i.e. v = 5 + l . In this case Theorem IV ([1]) 

.implies that the set 
u D(«w«{f+1>> ...,«<">) 

.is non-stationary in a. Suppose now that v is a limit number. For the proof of our 
-statement it is sufficient to show that the set 

FL<V 

i s non-stationary in a. But this follows from the hypothesis and from Theorem IV. 
Thus the proof of Theorem 2 is complete. 

In an entirely analogous way it may be proved the following 

T h e o r e m 3. If a, n<r\ and a = «(lrl(a(/,), oc.(n)) then the set of the ordinal 
.numbers of the form fn{ a (0 ) , a (1 ) , ..., a w , ... a(,I)) < a is non-stationary in a. 

We prove now the following 

T h e o r e m 4. If a = / , ( a ( 0 ) , ..., a ( i ) ...,a ( , , )), >7<a, and a.^ for each 
.then the set of the ordinal numbers of theform/„(a(0) a (1 ) , ..., a f , )) -==a is non-stationary 
.in a. 

P r o o f . Let (uSf / ) be the strictly increasing sequence of the ordinal 
numbers for which a ( i ) ^ 0. 

Put 
V ( v « , ) ) = / „ ( 0 , . . . , 0 , . . . , v « , ) , a « , + . . . , «(">), 

where v ^ < if n = 0 and v ^ ^ a ^ if 0 < ^ <r. 
First we show that the set 

•(37) {/„(0> • ••50, ..., v(io), ..., a ( i o + 1 ) , a(,,)}v(?o)<a(io) 

is non-stationary in a. Indeed, if «&>)=: + 1 then 

/„(0, . . . ,0, ..., vCW^io + D, . . . ,«("))</„(0, ..., 0, . . „ a " ' ) ; 

moreover, if a ^ is a limit number, then 

lim /„(0, ..., 0, ..., v«o>, a««+1 J, ..., a « ) < a, 
v'̂ o'-ca'̂ o' 

because a ( ? o ) <a and a are regular. This implies that the set (37) is non-stationary in a. 
Now we show that for every ¡i (0 < ¡i ̂  a) the set 

(38) . {/,(0, ..., 0, ..., v«-\ «№)} 

is non-stationary in a. Indeed, if /¿=»0 then 

/ , ( 0 , . . . , 0 , . . . , a < H . . . 0 , . . . , « < " > ) , 

•on the other hand 

/„(0, ..., 0, ..., a«°>, 0, ..., 0, ..., a«W, ..., «W) ^ / , ( « » 1 , ...,«<">) = a. 
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Hence, for ju=-0, 
/ , ( 0 , . . . , 0 , . . . , « ( " > ) < a . 

Consequently, the set (38), where 0< / iS<r is non-stationary in a. 
We may suppose without loss of generality that — 0. [In virtue of (j5) and 

the non-stationarity of the sets (38) with 0 < pt 3= er, the set 

<39) U U Rfn(40)> -,«00)/« 

is non-stationary in a. Applying to the set (39) the argument used for the set 
Rfn(<40), ..., a ^ / a after the proof of f j 5) in the proof of Theorem 2, we obtain 
Theorem 4. 

R e m a r k . If .in the definition of the process we start with weakly inaccessible 
initial numbers then we can only prove Theorems 2 (see [1]), 3, and 4 for / j<a) . 

We prove now the following 

T h e o r e m 5. If a is the smallest ordinal number of rj for which t]—fn(0,..., 0, . . . , 1) 
then the set of the ordinal numbers of the form /T(a (0 ) , a (1 ) , . . . ,a ( r )), where T <//, 
is non-stationary in a. 

P r o o f . First we show that the set N={fc(0, ..., 0, ..., l)}„<a is non-stationary 
i n a . 

Since a is the smallest ordinal number of t] for which r\ =/ ,(0, ..., 0, ..., 1), 
the relation 

(40) <?</,(0, . . . ,0 , . . . ,1) 

holds for each g < a . By the definition of/;,(a<0), a ( 1 ) , ..., a.M) we have 

(41) / e(0, . . . ,0, ..., l ) < / 8 + 1 ( 0 , . . . ,0, ..., 1). 

Let us define the function g on the set N by writing 

g(fe(0,...,0,...,l)) = e . 

It follows from (40) and (41) that the function g is strictly divergent and regressive 
on the set N. Therefore, by Theorem I ([1]), the set N is non-stationary in a. 

Consider the set * 
(42) Rf0(a{°>,all\ ...,a^>)la a). 

Since, as by the definition of /„(a ( 0 ) , a (1), ..., a(r,)) the equalities 

f M ° \ 0 , . . . ,0 , . . . ,0)=/O(«co)), 

f № ° \ «(1), 0, ..:, 0, ..., 0 ) = f l («<°>, «(')), 

/ > « » , «(1)> «<'-'>, 0, ..., 0, ..., 0) = f M ° \ «»>, ..., a«>), 

hold, we may assume s 1 in (42). 
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With the help of (j5) we get for given Q that the set 

Mg = RfM°\ 4l)> •• •> (Q < a, 4?) s 1) 

is non-stationary in a. But the set {/e(0, . . . ,0, ..., l)}e<tI of the first elements of 
the sets Mg with g< a is non-stationary in a. Therefore, making use of (j5), the set 

(43) \ J R f c ( ^ \ a l l \ . . . M e ) ) / o c , (<#>s l ) 
n<a 

is non-stationary in a. Applying the same argument to the set (43) as in the proof 
of Theorem 2, after the proof of (j5) for the set Rf„( af\x\u, ..., a ^ / a , Theorem 5 
will be proved. 
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