On a process concerning inaccessible cardinals. II

By G. FODOR in Szeged

This paper is a continuation of reference I (see [1]), in which a process concerning inaccessible cardinals has been defined. In this paper we freely make use of the notations, definitions, and theorems of [1].

From now on, in the definition of the process, we start with strongly inaccessible initial numbers. This means that the values of the function $f_{\eta}\left(\alpha^{(0)}, \alpha^{(1)}, \ldots, \alpha^{(\eta)}\right)$ are strongly inaccessible numbers.

First we prove the following
Theorem 2. If $\alpha=n_{\eta, \eta}(0)$ and $\eta<\alpha$ then the set of the ordinal numbers of the form $f_{\eta}\left(\alpha^{(0)}, \alpha^{(1)}, \ldots, \alpha^{(\eta)}\right)<\alpha$ is non-stationary in α.

Proof. We may assume by Theorem 1 of [1] that $\eta \geqq \omega$. Denote by $\gamma(\beta)$ the value $f_{\eta}(0, \ldots, 0, \ldots, \beta)$. As the first step we prove the following statement.
$\left(\mathrm{j}_{1}\right)$ Suppose that $\beta \neq 0$. Then $\gamma(\beta)$ satisfies the equality

$$
\gamma(\beta)=f_{\eta}\left(0, \ldots, 0, \ldots, \gamma(\beta), \psi^{(\mu+1)}, \ldots, \psi^{(\xi)}, \ldots, \psi^{(\eta)}\right)
$$

for every $\mu<\eta$, provided that $\psi^{(\eta)}<\beta$ and $\psi^{(\xi)}<\gamma(\beta)$ for each $\xi(\mu+1 \leqq \xi<\eta)$.
To prove this statement, we write η in the form $\eta=\omega \xi+n$, where $\xi \leqq \eta$ and $0 \leqq n<\omega$.

We distinguish the cases $n=0$ and $n>0$.
Case $n=0$. We prove the following three statements, the third of which immediately implies (j_{1}):
(a) If $v<\beta$ and $\tau<\eta$ then $\gamma(\beta)$ satisfies the equality

$$
\gamma(\beta)=f_{n}\left(0, \ldots, 0, \ldots, \gamma^{(\tau)}(\beta), 0, \ldots, 0, \ldots, v\right)
$$

(b) If $v<\beta, \sigma<\xi$ and $0<m<\omega$ then $\gamma(\beta)$ satisfies the equality

$$
\gamma(\beta)=f_{\eta}\left(0, \ldots, 0, \ldots, \gamma(\beta), \psi^{(\omega \sigma+1)}, \ldots, \psi^{(\omega \sigma+l)}, \ldots, \psi^{(\omega \sigma+m)}, 0, \ldots, 0, \ldots, v\right)
$$

provided that $\psi^{(\omega \sigma+l)}<\gamma(\beta)$ for each $l(1 \leqq l \leqq m)$.
(c) If $v<\beta, 0<\sigma<\xi, x<\omega \sigma$ and $0 \leqq m<\omega$ then $\gamma(\beta)$ satisfies the equality $\gamma(\beta)=f_{\eta}\left(0, \ldots, 0, \ldots, \gamma(\beta), 0, \ldots, 0, \ldots, \psi^{(\omega \sigma)}, \ldots, \psi^{(\omega \sigma+l)}, \ldots, \psi^{(\omega \sigma+m)}, 0, \ldots, 0, \ldots, v\right)$, provided that $\psi^{(\omega \sigma+l)}<\gamma(\beta)$ for each $l(0 \leqq l \leqq m)$.
$A d$ (a): Since $\gamma(\beta)=f_{\eta}(0, \ldots, 0, \ldots, \beta)$, we have

$$
\begin{equation*}
\gamma(\beta) \in R f_{\eta}\left(\alpha^{(0)}, 0, \ldots, 0, \ldots, \beta\right) \tag{19}
\end{equation*}
$$

It follows from the definition of $f_{\eta}\left(\alpha^{(0)}, \alpha^{(1)}, \ldots, \alpha^{(\eta)}\right)$ that

$$
\begin{equation*}
R f_{\eta}\left(\alpha^{(0)}, 0, \ldots, 0, \ldots, x\right)=\bigcap_{v<x} R f_{\eta}\left(\alpha^{(0)}, 0, \ldots, 0, \ldots, v\right), \tag{20}
\end{equation*}
$$

where x is a limit number,

$$
\begin{equation*}
R f_{\eta}\left(\alpha^{(0)}, 0, \ldots, 0, \ldots, \varrho+1\right)=\bigcap_{\tau<\eta} R f_{\eta}\left(0, \ldots, 0, \ldots, \alpha^{(\tau)}, 0, \ldots, 0, \ldots, \varrho\right), \tag{21}
\end{equation*}
$$

and

$$
\text { (22) } f_{\eta}\left(\alpha^{(0)}, 0, \ldots, 0, \ldots, 0,1,0, \ldots, 0, \ldots, v\right)=\left(f_{\eta}^{(\tau+1)}\left(0, \ldots, 0, \ldots, \alpha^{(\tau)}, 0, \ldots,(6, \ldots, v)\right)^{\prime}\right.
$$

With the help of (19), (20) and (21) we obtain

$$
\begin{equation*}
\gamma(\beta) \in R f_{\eta}\left(\alpha^{(0)}, 0, \ldots, 0, v\right) \tag{23}
\end{equation*}
$$

for every $\nu \leqq \beta$; moreover, (23) and (21) imply

$$
\begin{equation*}
\gamma(\beta) \in R f_{\eta}\left(0, \ldots, 0, \ldots, \alpha^{(r)}, 0, \ldots, 0, \ldots, v\right) \tag{24}
\end{equation*}
$$

for every $\nu<\beta$ and for every $\tau<\eta$. From this we conclude that (a) is valid. For if not, then there are three ordinal numbers $v_{0}<\beta, \tau_{0}<\eta$ and $\varrho_{0}<\gamma(\beta)$ such that

$$
\gamma(\beta)=f_{n}\left(0, \ldots, 0, \ldots, \varrho_{0}^{\left(\varrho_{0}\right)}, 0, \ldots, 0, \ldots, v_{0}\right) .
$$

Hence, by (22), we have

$$
\gamma(\beta) \nsubseteq R f_{\eta}\left(\alpha^{(0)}, 0, \ldots, 0, \ldots, 0,{ }_{1}^{\left(\tau_{0}+1\right)}, 0, \ldots, 0, \ldots, v_{0}\right) .
$$

Thus, by the definition of $f_{\eta}\left(\alpha^{(0)}, \alpha^{(1)}, \ldots, \alpha^{(\eta)}\right)$, we obtain

$$
\gamma(\beta) \ddagger R f_{\eta}\left(0, \ldots, 0, \ldots, 0, \alpha^{\left(v_{0}+1\right)}, 0, \ldots, 0, \ldots, v_{0}\right),
$$

which contradicts the fact that (24) is valid for every $v<\beta$ and $\tau<\eta$.
$A d$ (b): From (a) we get

$$
\gamma(\beta)=f_{\eta}(0, \ldots, 0, \ldots, \gamma(\beta), 0, \ldots, 0, \ldots, v)
$$

for every $\nu<\beta, \sigma<\eta$ and for every $m(0<m<\omega)$. Hence

$$
\begin{equation*}
\gamma(\beta) \in R f_{\eta}\left(\alpha^{(0)}, 0, \ldots, 0, \ldots, \gamma(\beta), 0, \ldots, 0, \ldots, v\right) \tag{25}
\end{equation*}
$$

for every $\nu<\beta, \sigma<\eta$ and for every $m(0<m<\omega)$.
It follows from the definition of $f_{\eta}\left(\alpha^{(0)}, \alpha^{(1)}, \ldots, \alpha^{(\eta)}\right)$ that

$$
\begin{align*}
& R f_{\eta}\left(\alpha^{(0)}, 0, \ldots, 0, \ldots, \gamma(\beta), 0, \ldots, 0, \ldots, v\right)= \tag{2}\\
= & \bigcap_{\mu<\gamma(\beta)} R f_{\eta}\left(0, \ldots, 0, \ldots, \alpha^{(\omega \sigma+m-1)}, \mu, 0, \ldots, 0, \ldots, v\right)
\end{align*}
$$

and

$$
\begin{gather*}
f_{\eta}\left(\alpha^{(0)}, 0, \ldots, 0, \ldots, \mu+1,0, \ldots, 0, \ldots, v\right)= \\
=\left(f_{\eta}\left(0, \ldots, 0, \ldots, \alpha^{(\omega \sigma+m-1)}, \mu, 0, \ldots, 0, \ldots, v\right)\right)^{\prime} . \tag{27}
\end{gather*}
$$

By (25) and (26) we have

$$
\begin{equation*}
\gamma(\beta) \in R f_{\eta}\left(0, \ldots, 0, \ldots, \alpha^{(\omega \sigma+m-1)}, \mu, 0, \ldots, 0, \ldots, v\right) \tag{28}
\end{equation*}
$$

for every $\mu<\gamma(\beta)$ and for every fixed $\nu<\beta, \sigma<\eta$ and $m(0<m<\omega)$. First we show that $\gamma(\beta)$ satisfies the equality

$$
\begin{equation*}
\gamma(\beta)=f_{\eta}(0, \ldots, 0, \ldots, \stackrel{(\omega \sigma+m-1)}{\gamma(\beta), \quad \mu, 0, \ldots, 0, \ldots, v)} \tag{29}
\end{equation*}
$$

for every $\mu<\gamma(\beta)$ and for every fixed $v<\beta, \sigma<\eta$ and $m(0<m<\omega)$. If not, then there are two ordinal numbers $\mu_{0}<\gamma(\beta)$ and $\varrho_{0}<\gamma(\beta)$ such that

Hence, by (27)

$$
\gamma(\beta)=f_{\eta}\left(0, \ldots, 0, \ldots, \varrho_{0} \stackrel{\left(\omega, \mu_{0}+m\right)}{\mu_{0}}, 0, \ldots, 0, \ldots, v\right) .
$$

$$
\gamma(\beta) \notin R f_{\eta}\left(\alpha^{(0)}, .0, \ldots, 0, \ldots, \stackrel{(\omega \sigma+m)}{\left.\mu_{0}+1,0, \ldots, 0, \ldots, v\right) .}\right.
$$

On the other hand it follows from this and the construction of $f_{\eta}\left(\alpha^{(0)}, \alpha^{(1)}, \ldots, \alpha^{(\eta)}\right)$ that

$$
\gamma(\beta) \nsubseteq R f_{\eta}\left(0, \ldots, 0, \ldots, \alpha^{(\omega \sigma+m-1)}, \mu_{0}+1,0, \ldots, 0, \ldots, v\right),
$$

which contradicts the fact that (28) holds for every $\mu<\gamma(\beta)$ and for every fixed $v<\beta, \sigma<\eta$ and $m(0<m<\omega)$. Thus we conclude that $\gamma(\beta)$ satisfies (29) for every $v<\beta, \sigma<\eta$ and for every $m(0<m<\omega)$.

Let now l be a natural number for which $0<l<m$. Assume that whenever $v<\beta, \sigma<\eta, 0<m<\omega$ and $\psi^{(\omega \sigma+i)}<\gamma(\beta)(i=l+1, \ldots, m)$ then

$$
\gamma(\beta)=f_{\eta}\left(0, \ldots, 0, \ldots, \gamma(\beta), \psi^{(\omega \sigma+l+1)}, \ldots, \psi^{(\omega \sigma+i)}, \ldots, \psi^{(\omega \sigma+m)}, 0, \ldots, 0, \ldots, v\right)
$$

$$
(m \sigma+m-1)
$$

Since $\dot{\gamma}(\beta)=f_{\eta}(0, \ldots, 0, \ldots, \gamma(\beta), \mu, 0, \ldots, 0, \ldots, v)$ for every $v<\beta, \sigma<\eta, 0<m<\omega$ and for every $\mu<\gamma(\beta)$ it remains to prove that this assumption implies that whenever $\nu<\beta \sigma<\eta, 0<m<\omega$ and $\psi^{(\omega \sigma+i)}<\gamma(\beta)(l \leqq i \leqq m)$ then

$$
\gamma(\beta)=f_{\eta}\left(0, \ldots, 0, \ldots, \gamma(\beta), \psi^{(\omega \sigma+l)}, \ldots, \psi^{(\omega \sigma+i)}, \ldots, \psi^{(\omega \sigma+m)}, 0, \ldots, 0, \ldots, v\right)
$$

It follows from the definition of $f_{\eta}\left(\alpha^{(0)}, \alpha^{(1)}, \ldots, \alpha^{(\eta)}\right)$ that, for given σ, v, $0<m<\omega, \psi^{(\omega \sigma+1)}, \ldots, \psi^{(\omega \sigma+m)}$ the equalities

$$
R f_{\eta}\left(\alpha^{(0)}, 0, \ldots, 0, \ldots, \gamma(\beta), \psi^{(\omega \sigma+l+1)}, \ldots, \psi^{(\omega \sigma+m)}, 0, \ldots, 0, \ldots, \nu\right)=
$$

$$
\begin{equation*}
=\bigcap_{\mu<\gamma(\beta)} R f_{\eta}\left(0, \ldots, 0, \ldots, \alpha^{(\omega \sigma+l-1)}, \mu, \psi^{(\omega \sigma+l+1)}, \ldots, \psi^{(\omega \sigma+m)}, 0, \ldots, 0, \ldots, v\right) \tag{30}
\end{equation*}
$$

and

$$
\begin{align*}
& f_{\eta}\left(\alpha^{(0)}, 0, \ldots, 0, \ldots, \mu+1, \psi^{(\omega \sigma+l+1)}, \ldots, \psi^{(\omega \sigma+m)}, 0, \ldots, 0, \ldots, v\right)= \\
& =\left(f_{\eta}\left(0, \ldots, 0, \ldots, \alpha^{(\omega \sigma+l-1)}, \mu, \psi^{(\omega \sigma+l+1)}, \ldots, \psi^{(\omega \sigma+m)}, 0, \ldots, 0, \ldots, v\right)\right. \tag{31}
\end{align*}
$$

hold.
By (30) and (31) we obtain for every $\mu<\gamma(\beta)$ and for any fixed $v<\beta, \sigma<\eta$, $0<m<\omega$ and $\psi^{(\omega \sigma+i)}<\gamma(\beta)(l+1 \leqq i \leqq m)$ that
$\gamma(\beta) \in R f_{\eta}\left(0, \ldots, 0, \ldots, \alpha^{(\omega \sigma+l-1)}, \mu, \psi^{(\omega \sigma+l+1)}, \ldots, \psi^{(\omega \sigma+i)}, \ldots, \psi^{(\omega \sigma+m)}, 0, \ldots, 0, \ldots, v\right)$.
Now we show for every $\mu<\gamma(\beta)$ and for any fixed $\nu<\beta, 0<\eta, 0<m<\omega, \psi^{(\omega \sigma+i)}<$ $<\gamma(\beta)(l+1 \leqq i \leqq m)$ that the ordinal number $\gamma(\beta)$ satisfies the equality

$$
\gamma(\beta)=f_{\eta}\left(0, \ldots, 0, \ldots, \gamma(\beta), \mu, \psi^{(\omega \sigma+l+1)}, \ldots, \psi^{(\omega \sigma+i)}, \ldots, \psi^{(\omega \sigma+m)}, 0, \ldots, 0, \ldots, v\right)
$$

In the contrary case there are two ordinal numbers $\mu_{0}<\gamma(\beta)$ and $\tau_{0}<\gamma(\beta)$ such that

$$
\gamma(\beta)=f_{\eta}\left(0, \ldots, 0, \ldots, \tau_{0}, \mu_{0}, \psi^{(\omega \sigma+l+1)}, \ldots, \psi^{(\omega \sigma+m)}, 0, \ldots, 0, \ldots, v\right)
$$

Hence, by (30), we have

$$
\gamma(\beta) \nsubseteq R f_{\eta}\left(\alpha^{(0)}, 0, \ldots, 0, \ldots, \mu_{0}+1, \psi^{(\omega \sigma+l+1)}, \ldots, \psi^{(\omega \sigma+m)}, 0, \ldots, 0, \ldots, v\right)
$$

Consequently, by the definition of $f_{\eta}\left(\alpha^{(0)}, \alpha^{(1)}, \ldots, \alpha^{(\eta)}\right)$

$$
\gamma(\beta) \nsubseteq R f_{\eta}\left(0, \ldots, 0, \ldots, \alpha^{(\omega \sigma+l-1)}, \mu_{0}+1, \psi^{(\omega \sigma+l+1)}, \ldots, \psi^{(\omega \sigma+m)}, 0, \ldots, 0, \ldots, v\right)
$$

Since $\gamma(\beta)$ is a limit number, we have $\mu_{0}+1<\gamma(\beta)$, which contradicts the fact that (32) holds for every $\mu<\gamma(\beta)$ and for any fixed $v<\beta, \sigma<\eta, 0<m<\omega$ and $\psi^{(\omega \sigma+i)}<\gamma(\beta)(l+1 \leqq i \leqq m)$. Thus we may conclude that the statement (b) is true.
$A d$ (c): If $v<\beta, \sigma<\xi$ and $0<m<\omega$ then, by (b), $\gamma(\beta)$ satisfies the equality

$$
\gamma(\beta)=f_{\eta}\left(0, \ldots, 0, \ldots, \gamma(\beta), \psi^{(\omega \sigma+1)}, \ldots, \psi^{(\omega \sigma+l)}, \ldots, \psi^{(\omega \sigma+m)}, 0, \ldots, 0, \ldots, v\right)
$$

provided that $\psi^{(\omega \sigma+l)}<\gamma(\beta)$ for each $l(1 \leqq l \leqq m)$. It follows from this, under the same conditions, that

$$
\gamma(\beta) \in R f_{\eta}\left(\alpha^{(0)}, 0, \ldots, 0, \ldots, \gamma(\beta), \psi^{(\omega \sigma+1)}, \ldots, \psi^{(\omega \sigma+l)}, \ldots, \psi^{(\omega \sigma+m)}, 0, \ldots, 0, \ldots, v\right)
$$

Since, by the construction of $f_{\eta}\left(\alpha^{(0)}, \alpha^{(1)}, \ldots, \alpha^{(\eta)}\right)$

$$
\begin{gathered}
R f_{\eta}\left(\alpha^{(0)}, 0, \ldots, 0, \ldots, \gamma(\beta), \psi^{(\omega \sigma+1)}, \ldots, \psi^{(\omega \sigma+m)}, 0, \ldots, 0, \ldots, v\right)= \\
=\bigcap_{\mu<\gamma(\beta)} R f_{\eta}\left(\alpha^{(0)}, 0, \ldots, 0, \ldots, \mu, \psi^{(\omega \sigma+1)}, \ldots, \psi^{(\omega \sigma+m)}, 0, \ldots, 0, \ldots, v\right), \\
R f_{\eta}\left(\alpha^{(0)}, 0, \ldots, 0, \ldots, \mu+1, \psi^{(\omega \sigma+1)}, \ldots, \psi^{(\omega \sigma+m)}, 0, \ldots, 0, \ldots, v\right)= \\
=\bigcap_{\tau<\omega \sigma} R f_{\eta}\left(0, \ldots, 0, \ldots, \alpha^{(\tau)}, 0, \ldots, 0, \ldots, \mu, \psi^{(\omega \sigma+1)}, \ldots, \psi^{(\omega \sigma+m)}, 0, \ldots, 0, \ldots, \dot{v}\right),
\end{gathered}
$$

and

$$
f_{\eta}\left(\alpha^{(0)}, 0, \ldots, 0, \ldots, 0, \stackrel{(\tau+1)}{1}, 0, \ldots, 0, \ldots, v\right)=\left(f_{\eta}\left(0, \ldots, 0, \ldots, \alpha^{(\tau)}, 0, \ldots, 0, \ldots, v\right)\right)^{\prime}
$$

we can apply the method used in the proof of (a). Thus we obtain the proof of (c).

Case $n>0$. By the same argument as in the proof of (a) and (b) we obtain that $\gamma(\beta)$ satisfies the equality

$$
\gamma(\beta)=f_{\eta}\left(0, \ldots, 0, \ldots, \gamma(\beta), \psi^{(\omega \xi+1)}, \ldots, \psi^{(\omega \xi+l)}, \ldots, \psi^{(\omega \xi+n)}\right)
$$

for any $\psi^{(\omega \sigma+l)}<\gamma(\beta)(1 \leqq l \leqq n-1)$ and $\psi^{(\eta)}<\beta$.
Hence, by the argument used in the proof of (c), we obtain that $\gamma(\beta)$ satisfies the equality

$$
\gamma(\beta)=f_{n}\left(0, \ldots, 0, \ldots, \gamma(\beta), 0, \ldots, 0, \ldots, \psi^{(\omega \xi)}, \ldots, \psi^{(\omega \xi+l)}, \ldots, \psi^{(\omega \xi+n)}\right)
$$

for any $x<\omega \xi, \psi^{(\omega \xi+l)}<\gamma(\beta)(0 \leqq l \leqq n-1)$ and $\psi^{(\eta)}<\beta$.
From this, by the argument applied in the proof of (b), we conclude that $\gamma(\beta)$ satisfies the equality

$$
\begin{array}{r}
\gamma(\beta)=f_{\eta}\left(0, \ldots, 0, \ldots, \gamma(\beta), \psi^{(\omega \sigma+1)}, \ldots, \psi^{(\omega \sigma+k)}, \ldots, \psi^{(\omega \sigma+m)}, 0, \ldots\right. \\
\left.\ldots, 0, \ldots, \psi^{(\omega \xi)}, \ldots, \psi^{(\omega \xi+l)}, \ldots, \psi^{(\eta)}\right)
\end{array}
$$

whenever $0<m<\omega, \sigma<\xi, \psi^{(\omega \sigma+k)}<\gamma(\beta)(0<k \leqq m), \psi^{(\omega \xi+l)}<\gamma(\beta)(0 \leqq l \leqq n-1)$, and $\psi^{(\eta)}<\beta$.

Finally, by the argument of the proof of (c), we obtain that $\gamma(\beta)$ satisfies the equality

$$
\begin{array}{r}
\gamma(\beta)=f_{n}\left(0, \ldots, 0, \ldots, \gamma\left(\underset{\beta}{(\beta)}, 0, \ldots, 0, \ldots, \psi^{(\omega \sigma)}, \ldots, \psi^{(\omega \sigma+k)}, \ldots\right.\right. \\
\left.\ldots, \psi^{(\omega \sigma+m)}, 0, \ldots, 0, \ldots, \psi^{(\omega \xi)}, \ldots, \psi^{(\omega \sigma+l)}, \ldots, \psi^{(n)}\right)
\end{array}
$$

whenever $m<\omega, \chi<\omega \sigma, \psi^{(\omega \sigma+k)}<\gamma(\beta) \quad(0 \leqq k \leqq m), \psi^{(\omega \xi+l)}<\gamma(\beta)(0 \leqq l \leqq n-1)$, and $\psi^{(\eta)}<\beta$. This immediately implies the statement $\left(\mathrm{j}_{1}\right)$ in the case $n>0$ too.

The same method can be used to prove the following statement:
$\left(\mathrm{j}_{2}\right)$ Assume that $\underline{\alpha}^{(\mu)}, \ldots, \underline{\alpha}^{(\eta)}(0<\mu \leqq \eta)$ are given ordinal numbers and $\underline{\alpha}^{(\eta)} \neq 0$. Then $\gamma=\dot{f}_{\eta}\left(0, \ldots, 0, \ldots, \underline{\alpha}^{(\mu)}, \ldots, \underline{\alpha}^{(\eta)}\right)$ satisfies the equality

$$
\gamma=f_{\eta}\left(0, \ldots, 0, \ldots, \gamma, \psi^{(\tau+1)}, \ldots, \psi^{(\xi)}, \ldots, \psi^{(\mu)}, \underline{\alpha}^{(\mu+1)}, \ldots, \underline{\alpha}^{(\eta)}\right)
$$

or every $\tau(0 \leqq \tau \leqq \mu)$ provided that $\psi^{(\mu)}<\underline{\alpha}^{(\mu)}$ and $\psi^{(\xi)}<\gamma$ for each $\xi(\tau+1 \leqq \xi<\mu)$.
Now we proceed to prove the following statement:
(j_{3}) Assume that $\underline{\alpha}^{(0)}, \ldots, \underline{\alpha}^{(\mu)}, \ldots, \underline{\alpha}^{(\eta)}(0 \leqq \mu \leqq \eta)$ are given ordinal numbers, $\underline{\alpha}^{(0)} \neq 0$ and $\underline{\alpha}^{(\mu)} \neq 0$. Then $\left.\gamma=f_{\eta}^{\left(\alpha^{(0)}\right.}, 0, \ldots, 0, \ldots, \underline{\alpha}^{(\mu)}, \ldots, \underline{\alpha}^{(\eta)}\right)$ satisfies the. equality

$$
\gamma=f_{\eta}\left(0, \ldots, 0, \ldots, \gamma, \psi^{(\tau+1)}, \ldots, \psi^{(\xi)}, \ldots, \psi^{(\mu)}, \underline{\alpha}^{(\mu+1)}, \ldots, \underline{\alpha}^{(\eta)}\right)
$$

for every $\tau(0 \leqq \tau<\mu)$, provided that $\psi^{(\mu)}<\underline{\alpha}^{(\mu)}$ and $\psi^{(\xi)}<\gamma$ for each $\xi(\tau+1 \leqq \xi<\mu)$.
Let us denote λ the ordinal number $\alpha^{(\mu)}$. Consider first the case when μ is an ordinal number of the first kind. It follows from the definition of $f_{\eta}\left(\alpha^{(0)}, \alpha^{(1)}, \ldots, \alpha^{(\eta)}\right)$ that

$$
f\left(\alpha^{(0)}, 0, \ldots, 0, \ldots, \varrho+1, \underline{\alpha}^{(\mu+1)} \ldots, \underline{\alpha}^{(\eta)}\right)=\left(f_{\eta}\left(0, \ldots, 0, \ldots, \alpha^{(\mu-1)}, \varrho, \underline{\alpha}^{(\mu+1)}, \ldots, \underline{\alpha}^{(\eta)}\right)\right.
$$

for $\lambda=\varrho+1$ and
$R f_{\eta}\left(\alpha^{(0)}, 0, \ldots, 0, \ldots, \lambda, \underline{\alpha}^{(\mu+1)}, \ldots, \underline{\alpha}^{(\eta)}\right)=\bigcap_{v<\lambda} R f_{\eta}\left(0, \ldots, 0, \ldots, \alpha^{(\mu-1)}, v, \underline{\alpha}^{(\mu+1)}, \ldots, \underline{\alpha}^{(\eta)}\right)$
for a limit number λ. These imply that for every $v<\lambda$

$$
\gamma \in R f_{\eta}\left(0, \ldots, 0, \ldots, \alpha^{(\mu-1)}, v, \underline{\alpha}^{(\mu+1)}, \ldots, \underline{\alpha}^{(\eta)}\right) .
$$

Hence we easily conclude that

$$
\gamma=f_{\eta}\left(0, \ldots, 0, \ldots, \gamma, v, \underline{\alpha}^{(\mu+1)}, \ldots, \underline{\alpha}^{(\eta)}\right) .
$$

Thus, by $\left(\mathrm{j}_{2}\right)$, we get $\left(\mathrm{j}_{3}\right)$ in the case where μ in an ordinal number of the first kind.
Suppose now that μ is a limit number. Then from the definition of $f_{\eta}\left(\alpha^{(0)}, \alpha^{(1)}, \ldots, \alpha^{(\eta)}\right)$ we see that

$$
\begin{aligned}
& R f_{\eta}\left(\alpha^{(0)}, 0, \ldots, 0, \ldots, \varrho+1, \underline{\alpha}^{(\mu+1)}, \ldots, \underline{\alpha}^{(\eta)}\right)= \\
& \quad=\bigcap_{\xi<\mu} R f_{\eta}\left(0, \ldots, 0, \ldots, \alpha^{(\xi)}, 0, \ldots, 0, \ldots, \varrho, \underline{\alpha}_{\mu}^{(\mu+1)}, \ldots, \underline{\alpha}^{(\eta)}\right)
\end{aligned}
$$

for $\lambda=\varrho+1$ and

$$
\begin{aligned}
& R f_{\eta}\left(\alpha^{(0)}, 0, \ldots, 0, \ldots, \lambda, \underline{\alpha}^{(\mu+1)}, \ldots, \underline{\alpha}^{(\eta)}\right)= \\
& \quad=\bigcap_{v<\lambda} R f_{\eta}\left(\alpha^{(0)}, 0, \ldots, 0, \ldots, v, \underline{\alpha}^{(\mu+1)}, \ldots, \underline{\alpha}^{(\eta)}\right)
\end{aligned}
$$

for a limit number λ. By a proof analogous to that of (b) and (c), we obtain $\left(\mathrm{j}_{3}\right)$ in the case where μ is a limit number.

Now we can prove the following statement:
$\left(\mathrm{j}_{4}\right)$. Let $\left\{\chi_{\zeta}\right\}_{\zeta \leqq \sigma}(\sigma \leqq \eta)$ be the strictly increasing sequence of the ordinal numbers $x \leqq \eta$ for which $\alpha^{(x)} \neq 0$. Assume that $x_{0}=0$. Then $\gamma=f_{\eta}\left(\underline{\alpha}^{(0)}, \underline{\alpha}^{(1)}, \ldots, \underline{\alpha}^{(\eta)}\right)$ satisfies the equality

$$
\gamma=f_{\eta}\left(0, \ldots, 0, \ldots, \gamma, \psi^{(\tau+1)}, \ldots, \psi^{(\xi)}, \ldots, \psi^{\left(\psi_{\zeta}\right)}, 0, \ldots, 0, \ldots, \underline{\alpha}^{\left(x_{\zeta}+1\right)}, \ldots, \underline{\alpha}^{(\eta)}\right)
$$

for every $\zeta(1 \leqq \zeta \leqq \sigma)$ and for every $\tau\left(0 \leqq \tau \leqq x_{\zeta}\right)$, provided that $\psi^{\left(x_{\xi}\right)}<\underline{\alpha}^{\left(\gamma_{\xi}\right)}$ and $\psi^{(\xi)}<\dot{\gamma}$ for each $\xi\left(\tau+1 \leqq \xi<\chi_{\zeta}\right)$.

Indeed, if $\left(\mathrm{j}_{4}\right)$ is true for a fixed $\zeta(0<\zeta \leqq \sigma)$, then

$$
\gamma=f_{\eta}\left(\gamma, 0, \ldots, 0, \ldots, \underline{\alpha}^{\left(\kappa_{\xi}\right)}, 0, \ldots, 0, \ldots, \underline{\alpha}^{\left(\kappa_{\zeta}+1\right)}, \ldots, \underline{\alpha}^{(\eta)}\right)
$$

If we apply $\left(\mathrm{j}_{3}\right)$ to $\underline{\alpha}^{(0)}=\gamma$, we obtain that

$$
\gamma=f_{\eta}\left(0, \ldots, 0, \ldots, \gamma, \psi^{(\tau+1)}, \ldots, \psi^{(\xi)}, \ldots, \psi^{(\tau \xi)}, 0, \ldots, 0, \ldots, \underline{\alpha}^{\left(\gamma_{\xi}+\mathfrak{1}\right)}, \ldots, \underline{\alpha}^{(\eta)}\right)
$$

for every $\tau\left(0 \leqq \tau \leqq x_{\zeta}\right)$, provided that $\psi^{\left(\alpha_{\xi}\right)}<\underline{\alpha}^{\left(\gamma_{\tau}\right)}$ and $\psi^{(\xi)}<\gamma$ for each $\xi(\tau+1 \leqq$ $\leqq \xi<x_{\zeta}$). This proves the statement (j_{4}).

Now we proceed the proof of Theorem 2 by showing that the set

$$
\begin{equation*}
R f_{\eta}(0, \ldots, 0, \ldots, \beta) / \alpha \tag{3}
\end{equation*}
$$

is non-stationary in α. We define a function g on $M=R f_{\eta}(0, \ldots, 0, \ldots, \beta) / \alpha$ by writing

$$
g\left(f_{\eta}(0, \ldots, 0, \ldots, \beta)\right)=\beta
$$

Since $f_{\eta}(0, \ldots, 0, \ldots, \tau)$ is a strictly increasing function of the variable τ and for every $\beta<\alpha$ the inequality

$$
\beta<f_{\eta}(0, \ldots, 0, \ldots, \beta)
$$

holds, we obtain that the function g is strictly divergent and regressive on M. Therefore Theorem I (see [1]) implies that the set (33) is non-stationary in α.

Next we prove, by transfinite induction, the following statement.
(j_{5}) For every $\mu, 0<\mu \leqq \eta$ the set

$$
R f_{\eta}\left(\alpha_{\xi}^{(0)}, \alpha_{\xi}^{(1)}, \ldots, \alpha_{\psi}^{(\rho)}, \ldots, \alpha^{(\mu)}, \ldots, \underline{\alpha}^{(n)}\right) / \alpha
$$

is non-stationary in α, where $\underline{\alpha}^{(\mu)}, \ldots, \underline{\alpha}^{(\eta)}$ are given ordinal numbers $<\alpha$.
First we show that the set

$$
N=R f_{\eta}\left(\alpha_{\xi}^{(0)}, \underline{\alpha}^{(1)}, \ldots, \underline{\alpha}^{(1)}\right) / \alpha
$$

is non-stationary in α. We define a function g on N by writing

$$
g\left(f_{\eta}\left(\alpha_{\xi}^{(0)}, \underline{\alpha}^{(1)}, \ldots, \underline{\alpha}^{(\eta)}\right)\right)=\alpha_{\xi}^{(0)} .
$$

From the definition of $\alpha_{\xi}^{(0)}\left(\underline{\alpha}^{(1)}, \ldots, \underline{\alpha}^{(\eta)}\right)$ and $f_{\eta}\left(\alpha^{(0)}, \alpha^{(1)}, \ldots, \alpha^{(\eta)}\right)$, we obtain

$$
\alpha_{\xi}^{(0)}<f_{n}\left(\alpha_{\xi}^{(0)}, \underline{\alpha}^{(1)}, \ldots, \underline{\alpha}^{(n)}\right)
$$

and

$$
f_{\eta}\left(\alpha_{\xi}^{(0)}, \underline{\alpha}^{(1)}, \ldots, \underline{\alpha}^{(\eta)}\right)<f_{\eta}\left(\alpha_{\xi+1}^{(0)}, \underline{\alpha}^{(1)}, \ldots, \underline{\alpha}^{(\eta)}\right)
$$

From these we infer that the function g is strictly divergent and regressive on N and, therefore, by Theorem I ([1]), we obtain that the set N is non-stationary in α.

Let v be a given ordinal number and suppose that for every $\mu(1 \leqq \mu<v)$ the set

$$
R f_{\eta}\left(\alpha_{\xi}^{(0)}, \alpha_{\xi}^{(1)}, \ldots, \alpha_{\psi}^{(\rho)}, \ldots, \alpha^{(\mu)}, \ldots, \underline{\alpha}^{(\eta)}\right) / \alpha
$$

is non-stationary in α.
There are two cases:
a) v is an ordinal number of the first kind, i.e. $v=\tau+1$,
b) v is an ordinal number of the second kind.

Case a): We show that the set

$$
L=R f_{\eta}\left(0, \ldots, 0, \ldots, \alpha_{\varphi}^{(\tau)}, \underline{\alpha}^{(\tau+1)}, \ldots, \underline{\alpha}^{(\eta)}\right) / \alpha
$$

is non-stationary in α. We define a function g on L by writing

$$
g\left(f_{\eta}\left(0, \ldots, 0, \ldots, \alpha_{\varphi}^{(\tau)}, \underline{\alpha}^{(\tau+1)}, \ldots, \underline{\alpha}^{(\eta)}\right)\right)=\alpha_{\phi}^{(\tau)}
$$

From the definition of $\alpha^{(\tau)}\left(\alpha^{(t+1)}, \ldots, \underline{\alpha}^{(\eta)}\right)$ and $f_{\eta}\left(\alpha^{(0)}, \alpha^{(1)}, \ldots, \alpha^{(\eta)}\right)$ we obtain

$$
\alpha_{\varphi}^{(\tau)}<f_{\eta}\left(0, \ldots, 0, \ldots, \alpha_{\varphi}^{(\tau)}, \underline{\alpha}^{(\tau+1)}, \ldots, \underline{\alpha}^{(\eta)}\right)
$$

and

$$
f_{\eta}\left(0, \ldots, 0, \ldots, \alpha_{\varphi}^{(\tau)}, \underline{\alpha}^{(\tau+1)}, \ldots, \underline{\alpha}^{(\eta)}\right)<f_{n}\left(0, \ldots, 0, \ldots, \alpha_{\varphi+1}^{(\tau)}, \underline{\alpha}^{(\tau+1)}, \ldots, \underline{\alpha}^{(\eta)}\right) .
$$

From these we conclude that the function g is strictly divergent and regressive on
L, and, therefore, by Theorem I ([1]), we obtain that the set L is non-stationary in α. It follows from the construction of $f_{\eta}\left(\alpha^{(0)}, \alpha^{(1)}, \ldots, \alpha^{(\eta)}\right)$ that

$$
f_{\eta}\left(0, \ldots, 0, \ldots, \alpha_{\varphi}^{(\tau)}, \underline{\alpha}^{(\tau+1)}, \ldots, \underline{\alpha}^{(\eta)}\right) \leqq f_{\eta}\left(\alpha_{\xi}^{(0)}, \ldots, \alpha_{\psi}^{(\rho)}, \ldots, \alpha_{\varphi}^{(\tau)}, \underline{\alpha}^{(\tau+1)}, \ldots, \underline{\alpha}^{(\eta)}\right)
$$

By our assumption, for given $\underline{\alpha}_{\varphi}^{(\tau)}$ the set

$$
R f_{\eta}\left(\alpha_{\xi}^{(0)}, \alpha_{\zeta}^{(1)}, \ldots, \underline{\alpha}_{\varphi}^{(\tau)}, \underline{\alpha}^{(\tau+1)}, \ldots, \underline{\alpha}^{(\eta)}\right) / \alpha
$$

is non-stationary in α. On the other hand it is easy to verify that for any two different elements $\underline{\alpha}_{\varphi}^{(\tau)}$ and $\underline{\alpha}_{\sigma}^{(\tau)}$ the sets
and

$$
R f_{\eta}\left(\alpha_{\xi}^{(0)}, \alpha_{\xi}^{(1)}, \ldots, \alpha_{\psi}^{(\varphi)}, \ldots, \underline{\alpha}_{\varphi}^{(\tau)}, \underline{\alpha}^{(\tau+1)}, \ldots, \underline{\alpha}^{(\eta)}\right) / \alpha
$$

$$
R f_{\eta}\left(\alpha_{\xi}^{(0)}, \alpha_{\xi}^{(1)}, \ldots, \alpha_{\psi}^{(\rho)}, \ldots, \underline{\alpha}_{\sigma}^{(\tau)}, \underline{\alpha}^{(\tau+1)}, \ldots, \underline{\alpha}^{(\eta)}\right) / \alpha
$$

have no common elements. Since the set of the first elements of the sets

$$
R f_{\eta}\left(\alpha_{\xi}^{(0)}, \alpha_{\zeta}^{(1)}, \ldots, \alpha_{\psi}^{(\varphi)}, \ldots, \alpha_{\varphi}^{(\tau)}, \underline{\alpha}^{(\tau+1)}, \ldots, \underline{\alpha}^{(\eta)}\right) / \alpha
$$

with $\alpha_{\varphi}^{(\tau)} \in A_{\tau, \eta}\left(\underline{\alpha}^{(\tau+1)}, \ldots, \underline{\alpha}^{(\eta)}\right)$ is equal to L we obtain from Theorem II ([1]) that the union of these sets is non-stationary in α.

Case b): Put

$$
Q_{\mu, v, \eta}=R f_{\eta}\left(\alpha_{\xi}^{(0)}, \alpha_{\xi}^{(1)}, \ldots, \underline{\alpha}_{\alpha}^{(\mu)}, \ldots, \underline{\alpha}_{\alpha}^{(\delta)}, \ldots, \underline{\alpha}^{(v)}, \ldots, \underline{\alpha}^{(\eta)}\right) / \alpha
$$

where $\underline{\alpha}_{\alpha}^{(\delta)}$ is fixed for each $\delta(\mu \leqq \delta<v)$. It is easy to see that

$$
Q_{1, v, \eta} \subset Q_{2, v, \eta} \subset \ldots \subset Q_{\mu, v, \eta} \subset \ldots(\mu<v)
$$

By the hypothesis the set $Q_{\mu: v, \eta}(\mu<v)$ is non-stationary in α. Since $\mu<v \leqq \eta<\alpha$ by Theorem III ([1]), we obtain that the set

$$
\bigcup_{\mu<v} Q_{\mu, v, \eta}=R f_{\eta}\left(\alpha_{\xi}^{(0)}, \alpha_{\zeta}^{(1)}, \ldots, \alpha_{\varphi}^{(\mu)}, \ldots, \underline{\alpha}^{(v)}, \ldots, \underline{\alpha}^{(\eta)}\right) / \alpha
$$

is non-stationary in α. Thus the statement $\left(\mathrm{j}_{5}\right)$ is proved.
Since the set $R f_{\eta}(0, \ldots, 0, \ldots, \beta) / \alpha$ is non-stationary in α, we obtain from (j_{5}) that the set

$$
K=R f_{\eta}\left(\alpha_{\xi}^{(0)}, \alpha_{\xi}^{(1)}, \ldots, \alpha_{e}^{(\eta)}\right) / \alpha
$$

is non-stationary in α.
Consider now an arbitrary element $\gamma=f_{\eta}\left(\underline{\alpha}^{(0)}, \underline{\alpha}^{(1)}, \ldots, \underline{\alpha}^{(\eta)}\right)$ of K. Let $\left\{x_{\zeta}\right\}_{\zeta \leqq \sigma}$ ($\sigma \leqq \eta$) be the strictly increasing sequence of the ordinal numbers $x, 0 \leqq x \leqq \eta$, for which $\alpha^{(\alpha)} \neq 0$. Let us denote by ζ_{0} the smallest ordinal number $\zeta \leqq \sigma$ for which $x_{6} \geqq 2$. Then the statements $\left(\mathrm{j}_{1}\right)-\left(\mathrm{j}_{5}\right)$ imply that

$$
\begin{equation*}
\gamma=f_{\eta}\left(0, \ldots, 0, \ldots, \gamma, \psi^{(\tau+1)}, \ldots, \psi^{(\xi)}, \ldots, \psi^{\left(\tau_{\varepsilon}\right)}, \underline{\alpha}^{\left(\alpha_{\zeta}+1\right)}, \ldots, \underline{\alpha}^{(\eta)}\right) \tag{34}
\end{equation*}
$$

for every $\zeta\left(\zeta_{0} \leqq \zeta \leqq \sigma\right)$ and $\tau\left(0 \leqq \tau \leqq x_{\xi}\right)$, provided that $\psi^{\left(\left(\tau 匕 \sigma_{G}\right)\right.}<\underline{\alpha}^{\left(\alpha_{\xi}\right)}$ and $\psi^{(\xi)}<\gamma$ for each $\xi\left(\tau+1 \leqq \xi<x_{\xi}\right)$.

Let us denote by $S_{\zeta, \tau}$, where $\zeta_{0} \leqq \zeta \leqq \sigma$ and $0 \leqq \tau \leqq x_{\zeta}$, the set of the sequences

$$
\left(\psi^{(\mathfrak{\tau}+1)}, \ldots, \psi^{(\xi)}, \ldots, \psi^{\left(\chi_{\zeta}\right)}\right)
$$

such that $\psi^{\left(x_{\xi}\right)}<\alpha^{\left(x_{\xi}\right)}$ and $\psi^{(\xi)}<\gamma$ for ẹach $\xi\left(\tau+1 \leqq \xi<x_{\xi}\right)$. Since $\eta<\alpha$ and α is a strongly inaccessible initial number, the power of the set $S_{\zeta, \tau}$ is smaller than α.

It follows from the statement $\left(\mathrm{j}_{5}\right)$ that for any element $\left(\psi^{(\tau+1)}, \ldots, \psi^{(5)}, \ldots, \psi^{\left(\kappa_{5}\right)}\right)$. of $S_{5, \tau}$ the set

$$
\begin{gathered}
C\left(\psi^{(\tau+1)}, \ldots, \psi^{\left(x_{\zeta}\right)}\right)= \\
=R f_{\eta}\left(\alpha_{\xi}^{(0)}, \alpha_{\zeta}^{(1)}, \ldots, \alpha_{e}^{(\delta)}, \ldots, \gamma, \psi^{(\tau+1)}, \ldots, \psi^{\left(\alpha_{\xi}\right)}, \underline{\alpha}^{\left(\alpha_{\zeta}+1\right)}, \ldots, \underline{\alpha}^{(\eta)}\right) / \alpha
\end{gathered}
$$

is non-stationary in $\dot{\alpha}$.
Since $\zeta \leqq \sigma \leqq \eta<\alpha$ and α is a strongly inaccessible initial number and hence the power of $S_{\zeta, \tau}$ is smaller than α, Theorem III ([1]) implies that the set

$$
B(\gamma)=\bigcup_{\xi \leqq \sigma} \bigcup_{\tau<x_{\zeta}} \bigcup_{\psi^{(\tau+1)<\gamma}} \ldots \bigcup_{\psi^{(\xi)<\gamma}} \ldots \bigcup_{\psi^{\left(x_{5}\right)<\underline{\alpha}\left(x_{5}\right)}} C\left(\psi^{(\tau+1)}, \ldots, \psi^{(\xi)}, \ldots, \psi^{\left(x_{5}\right)}\right)
$$

is non-stationary in α. On the other hand, by (34), the smallest element of the set $B(\gamma)$ is γ.

In this manner, with every element $\gamma=f_{\eta}\left(\alpha_{\xi}^{(0)}, \alpha_{\xi}^{(1)}, \ldots, \alpha_{\delta}^{(\eta)}\right)$ of K we have associated a non-stationary set $B\left(\alpha_{\xi}^{(0)}, \alpha_{\xi}^{(1)}, \ldots, \alpha_{\delta}^{(\eta)}\right)$ the smallest element of which is γ.

It only remains to prove that

$$
\bigcup_{\gamma \in M} B(\gamma)
$$

is non-stationary in α. Since K is non-stationary in α, the sets

$$
\begin{aligned}
B_{0} & =R f_{\eta}\left(\alpha_{\xi}^{(0)}, \underline{\alpha}_{\zeta}^{(1)}, \ldots, \underline{\alpha}_{\delta}^{(\eta)}\right) / \alpha \\
B_{1} & =R f_{\eta}\left(0, \alpha_{\zeta}^{(1)}, \underline{\alpha}_{\psi}^{(2)}, \ldots, \underline{\alpha}_{\delta}^{(\eta)}\right) / \alpha, \\
& \vdots \\
B_{\mu} & =R f_{\eta}\left(0, \ldots, 0, \ldots, \alpha_{Q}^{(\mu)}, \underline{\alpha}_{\varphi}^{(\mu+1)}, \ldots, \underline{\alpha}_{\delta}^{(\eta)}\right) / \alpha,
\end{aligned}
$$

are non-stationary in α, where $\underline{\alpha}_{\zeta}^{(1)}, \ldots, \underline{\alpha}_{Q}^{(\mu)}, \ldots, \underline{\alpha}_{\delta}^{(\eta)}$ are fixed ordinal numbers $<\alpha$.
Let $v>1$ be a given ordinal number, and suppose that for every $\mu(1 \leqq \mu<v)$ the set

$$
\begin{equation*}
D\left(\underline{\alpha}_{\rho}^{(\mu)}, \underline{\alpha}_{\varphi}^{(\mu+1)}, \ldots, \underline{\alpha}_{\delta}^{(\eta)}\right)= \tag{35}
\end{equation*}
$$

is non-stationary in α. We must prove that the set

$$
\begin{align*}
& D\left(\underline{\alpha}_{\varphi}^{(\nu)}, \ldots, \underline{\alpha}_{d}^{(\eta)}\right)= \\
& =\bigcup_{\substack{\alpha_{\xi}^{(0)} \in A_{0}, n \\
\alpha_{\xi}^{(0)}<\alpha}} \ldots \bigcup_{\substack{\alpha_{\psi}^{(\psi)} \in A_{s}, n \\
\alpha_{\psi}^{(s)}<\alpha}} \quad \therefore B\left(\alpha_{\xi}^{(0)}, \alpha_{\xi}^{(1)}, \ldots, \alpha_{\psi}^{(9)}, \ldots, \underline{\alpha}_{\varphi}^{(v)}, \ldots, \underline{\alpha}_{\delta}^{(\eta)}\right) . \tag{36}
\end{align*}
$$

is non-stationary in α. It is easy to verify that the smallest element of (35) is. $f_{\eta}\left(0, \ldots, 0, \ldots, \underline{\alpha}_{\rho}^{(\mu)}, \ldots, \underline{\alpha}_{\delta}^{(\eta)}\right)$. Thus the set of the first elements of the sets.
$D\left(\alpha_{Q}^{(\mu)}, \underline{\alpha}_{\varphi}^{(\mu+1)}, \ldots, \underline{\alpha}_{\delta}^{(\eta)}\right)$ with $\alpha_{\rho}^{(\mu)} \in A_{\mu, \eta}\left(\underline{\alpha}_{\varphi}^{(\mu+1)}, \ldots, \underline{\alpha}_{\delta}^{(\eta)}\right)$ is equal to B_{μ}. Suppose now that v is a number of the first kind, i.e. $v=\vartheta+1$. In this case Theorem IV ([1]) implies that the set

$$
\bigcup_{\alpha_{\sigma}^{(9)} \in A_{\vartheta, \eta}, \alpha_{\sigma}^{(9)<\alpha}} D\left(\alpha_{\sigma}^{(\theta)}, \underline{\alpha}_{\varphi}^{(9+1)}, \ldots, \underline{\alpha}_{\delta}^{(\eta)}\right)
$$

is non-stationary in α. Suppose now that v is a limit number. For the proof of our statement it is sufficient to show that the set

$$
\bigcup_{\mu<v} D\left(\underline{\alpha}_{l}^{(\mu)}, \ldots, \underline{\alpha}_{\delta}^{(\eta)}\right) \quad(v \leqq \eta<\alpha)
$$

is non-stationary in α. But this follows from the hypothesis and from Theorem IV. Thus the proof of Theorem 2 is complete.

In an entirely analogous way it may be proved the following
Theorem 3. If $\eta<\alpha, \mu<\eta$ and $\alpha=n_{\mu, \eta}\left(\underline{\alpha}^{(\mu)}, \ldots, \underline{\alpha}^{(\eta)}\right)$ then the set of the ordinal numbers of the form $f_{\eta}\left(\alpha^{(0)}, \alpha^{(1)}, \ldots, \underline{\alpha}^{(\mu)}, \ldots \underline{\alpha}^{(\bar{\eta})}\right)<\alpha$ is non-stationary in α.

We prove now the following
Theorem 4. If $\alpha=f_{\eta}\left(\underline{\alpha}^{(0)}, \ldots, \underline{\alpha}^{(\xi)} \ldots, \underline{\alpha}^{(\eta)}\right), \eta<\alpha$, and $\underline{\alpha}^{(\xi)}<\alpha$ for each $\xi \leqq \eta$ then the set of the ordinal numbers of the form $f\left(\alpha^{(0)} \alpha^{(1)}, \ldots, \alpha^{(\eta)}\right)<\alpha$ is non-stationary in α.

Proof. Let $\left\{\xi_{\zeta}\right\}_{\zeta \leqq \sigma}(\sigma \leqq \eta)$ be the strictly increasing sequence of the ordinal numbers $\xi \leqq \eta$ for which $\underline{\alpha}^{(\xi)} \neq 0$.

Put

$$
\gamma\left(\nu^{\left(\xi_{\mu}\right)}\right)=f_{\eta}\left(0, \ldots, 0, \ldots, v^{\left(\xi_{\mu}\right)}, \underline{\alpha}^{\left(\xi_{\mu}+1\right)}, \ldots, \underline{\alpha}^{(\eta)}\right)
$$

where $\nu^{\left(\xi_{\mu}\right)}<\underline{\alpha}^{\left(\xi_{\mu}\right)}$ if $\mu=0$ and $\nu^{\left(\xi_{\mu}\right)} \leqq \underline{\alpha}^{\left(\xi_{\mu}\right)}$ if $0<\mu \leqq \sigma$.
First we show that the set

$$
\begin{equation*}
\left\{f_{\eta}\left(0, \ldots, 0, \ldots, v^{\left(\xi_{0}\right)}, \ldots, \underline{\alpha}^{\left(5_{0}+1\right)}, \ldots, \underline{\alpha}^{(\eta)}\right\}_{v\left(\xi_{0}\right)<\alpha\left(\xi_{0}\right)}\right. \tag{37}
\end{equation*}
$$

is non-stationary in α. Indeed, if $\underline{\alpha}^{\left(\xi_{0}\right)}=\underline{v}^{\left(\xi_{0}\right)}+1$ then

$$
f_{\eta}\left(0, \ldots, 0, \ldots, \underline{\nu}^{\left(\xi_{0}\right)}, \underline{\alpha}^{\left(\xi_{0}+1\right)}, \ldots, \underline{\alpha}^{(\eta)}\right)<f_{\eta}\left(0, \ldots, 0, \ldots, \underline{\alpha}^{\left(\xi_{0}\right)}, \ldots, \underline{\alpha}^{(\eta)}\right) ;
$$

moreover, if $\underline{\alpha}^{\left(\xi_{0}\right)}$ is a limit number, then

$$
\lim _{v^{\left(\xi_{0}\right)}<\underline{\alpha}^{\left(\xi_{0}\right)}} f_{\eta}\left(0, \ldots, 0, \ldots, v^{\left(\xi_{0}\right)}, \underline{\alpha}^{\left(\xi_{0}+1\right)}, \ldots, \underline{\alpha}^{(\eta)}\right)<\alpha
$$

because $\underline{\alpha}^{(50)}<\alpha$ and α are regular. This implies that the set (37) is non-stationary in α.
Now we show that for every $\mu(0<\mu \leqq \sigma)$ the set

$$
\begin{equation*}
\left\{f_{\eta}\left(0, \ldots, 0, \ldots, v^{\left(\xi_{\mu}\right)}, \underline{\alpha}^{\left(\xi_{\mu}+1\right)}, \ldots, \underline{\alpha}^{(\eta)}\right)\right\} v\left(\xi_{\mu}\right) \leqq \underline{\alpha}_{\underline{\alpha}\left(\xi_{\mu}\right)} \tag{38}
\end{equation*}
$$

is non-stationary in α. Indeed, if $\mu>0$ then

$$
f_{\eta}\left(0, \ldots, 0, \ldots, \underline{\alpha}^{\left(\xi_{\mu}\right)}, \ldots \underline{\alpha}^{(\eta)}\right)<f_{\eta}\left(0, \ldots, 0, \ldots, \underline{\alpha}^{\left(5_{0}\right)}, \ldots, \underline{\alpha}^{\left(\xi_{\mu}\right)}, \ldots, \underline{\alpha}^{(\eta)}\right)
$$

on the other hand

$$
f_{\eta}\left(0, \ldots, 0, \ldots, \underline{\alpha}^{\left(\xi_{0}\right)}, 0, \ldots, 0, \ldots, \underline{\alpha}^{\left(\xi_{\mu}\right)}, \ldots, \underline{\alpha}^{(\eta)}\right) \leqq f_{\eta}\left(\underline{\alpha}^{(0)}, \underline{\alpha}^{(1)}, \ldots, \underline{\alpha}^{(\eta)}\right)=\alpha .
$$

Hence, for $\mu>0$,

$$
f_{\eta}\left(0, \ldots, 0, \ldots, \underline{\alpha}^{\left(\xi_{\mu}\right)}, \ldots, \underline{\alpha}^{(\eta)}\right)<\alpha .
$$

Consequently, the set (38), where $0<\mu \leqq \sigma$ is non-stationary in α.
We may suppose without loss of generality that $\xi_{0}=0$. In virtue of (j_{5}) and the non-stationarity of the sets (38) with $0<\mu \equiv \sigma$, the set

$$
\begin{equation*}
\bigcup_{0<\mu \leqq \sigma} \bigcup_{\nu\left(\xi_{\mu}\right) \leq \underline{\alpha}\left(\xi_{\mu}\right)} R f_{\eta}\left(\alpha_{\xi}^{(0)}, \ldots, \alpha_{\varphi}^{(\delta)}, \ldots, \underline{\alpha}^{\left(\xi_{\mu}+1\right)}, \ldots, \underline{\alpha}^{(\eta)}\right) / \alpha \tag{39}
\end{equation*}
$$

is non-stationary in α. Applying to the set (39) the argument used for the set $R f_{\eta}\left(\alpha_{\xi}^{(0)}, \alpha_{\xi}^{(1)}, \ldots, \alpha_{e}^{(\eta)}\right) / \alpha$ after the proof of $\left(\mathrm{j}_{5}\right)$ in the proof of Theorem 2, we obtain Theorem 4.

Remark. If in the definition of the process we start with weakly inaccessible initial numbers then we can only prove Theorems 2 (see [1]), 3, and 4 for $\eta<\omega$.

We prove now the following
Theorem 5. If α is the smallest ordinal number of η for which $\eta=f_{\eta}(0, \ldots, 0, \ldots, 1)$ then the set of the ordinal numbers of the form $f_{\tau}\left(\alpha^{(0)}, \alpha^{(1)}, \ldots, \alpha^{(\tau)}\right)$, where $\tau<\eta$, is non-stationary in α.

Proof. First we show that the set $N=\left\{f_{e}(0, \ldots, 0, \ldots, 1)\right\}_{\varrho<\alpha}$ is non-stationary in α.

Since α is the smallest ordinal number of η for which $\eta=f_{\eta}(0, \ldots, 0, \ldots, 1)$, the relation

$$
\begin{equation*}
\varrho<f_{\varrho}(0, \ldots, 0, \ldots, 1) \tag{40}
\end{equation*}
$$

holds for each $\varrho<\alpha$. By the definition of $f_{\eta}\left(\alpha^{(0)}, \alpha^{(1)}, \ldots, \alpha^{(\eta)}\right)$ we have

$$
\begin{equation*}
f_{e}(0, \ldots, 0, \ldots, 1)<f_{e+1}(0, \ldots, 0, \ldots, 1) \tag{41}
\end{equation*}
$$

Let us define the function g on the set N by writing

$$
g\left(f_{\varrho}(0, \ldots, 0, \ldots, 1)\right)=\varrho .
$$

It follows from (40) and (41) that the function g is strictly divergent and regressive on the set N. Therefore, by Theorem I ([1]), the set N is non-stationary in α.

Consider the set *

$$
\begin{equation*}
R f_{\varrho}\left(\alpha_{\xi}^{(0)}, \alpha_{\zeta}^{(1)}, \ldots, \alpha_{\delta}^{(\rho)}\right) / \alpha \quad(\varrho<\alpha) \tag{42}
\end{equation*}
$$

Since, as by the definition of $f_{\eta}\left(\alpha^{(0)}, \alpha^{(1)}, \ldots, \alpha^{(\eta)}\right)$ the equalities

$$
\begin{aligned}
f_{\alpha}\left(\alpha^{(0)}, 0, \ldots, 0, \ldots, 0\right) & =f_{0}\left(\alpha^{(0)}\right), \\
f_{\alpha}\left(\alpha^{(0)}, \alpha^{(1)}, 0, \ldots, 0, \ldots, 0\right) & =f_{1}\left(\alpha^{(0)}, \alpha^{(1)}\right), \\
& \vdots \\
f_{\alpha}\left(\alpha^{(0)}, \alpha^{(1)}, \ldots, \alpha^{(0)}, 0, \ldots, 0, \ldots, 0\right) & =f_{e}\left(\alpha^{(0)}, \alpha^{(1)}, \ldots, \alpha^{(0)}\right),
\end{aligned}
$$

hold, we may assume $\alpha_{\delta}^{(g)} \geqq 1$ in (42).

With the help of $\left(\mathrm{j}_{5}\right)$ we get for given ϱ that the set

$$
M_{\varrho}=R f_{\varrho}\left(\alpha_{\xi}^{(0)}, \alpha_{\xi}^{(1)}, \therefore, \alpha_{\delta}^{(g)}\right) / \alpha \quad\left(\varrho<\alpha, \quad \alpha_{\delta}^{(\varrho)} \geqq 1\right)
$$

is non-stationary in α. But the set $\left\{f_{\rho}(0, \ldots, 0, \ldots, 1)\right\}_{\rho<\alpha}$ of the first elements of the sets M_{ϱ} with $\varrho<\alpha$ is non-stationary in α. Therefore, making use of $\left(\mathrm{j}_{5}\right)$, the set

$$
\begin{equation*}
\bigcup_{\varrho<\alpha} R f_{e}\left(\alpha_{\xi}^{(0)}, \alpha_{\zeta}^{(1)}, \ldots, \alpha_{\delta}^{(\rho)}\right) / \alpha \quad, \quad\left(\alpha_{\delta}^{(\rho)} \geqq 1\right) \tag{43}
\end{equation*}
$$

is non-stationary in α. Applying the same argument to the set (43) as in the proof of Theorem 2, after the proof of $\left(\mathrm{j}_{5}\right)$ for the set $R f_{\eta}\left(\alpha_{\xi}^{(0)}, \alpha_{\zeta}^{(1)}, \ldots, \alpha_{\varrho}^{(\eta)}\right) / \alpha$, Theorem 5 will be proved.

Reference

[1] G. Fodor, On a process concerning inaccessible cardinals. I, Acta Sci. Math., 27 (1966), 111124.

