Characterization of some classes of measures

By R. R. GOLDBERG and A. B. SIMON in Evanston (Illinois, U. S. A.)¹)

I. Introduction

Let M(G) be the set of (bounded regular Borel) measures μ on a locally compact abelian group G. The following theorem is a well-known characterization of those measures which are absolutely continuous (with respect to the Haar measure of G), given in terms of the translates μ_x (where $\mu_x(E) = \mu(E-x)$).

Theorem A. Let $\mu \in M(G)$. Then μ is absolutely continuous if and only if $\|\mu_x - \mu\| \to 0$ as $x \to 0$.

For a proof see ([5], p. 230). The norm in the statement of Theorem A is the usual measure norm (=total variation).

In this paper we introduce two other norms for M(G). Using them we give 1) a characterization of the measures in M(G) whose Fourier—Stieltjes transforms vanish at infinity, and 2) a characterization of the continuous (=non-atomic) measures in M(G). In each case the necessary and sufficient condition is similar to that in Theorem A — namely, that as $x \to 0$, μ_x must approach μ in a suitable norm. In case 2) we must restrict ourselves to metrizable groups.

II. Characterization of measures whose Fourier—Stieltjes transforms vanish at infinity

Let Γ denote the character group of G. If $\mu \in M(G)$ let

$$\|\mu\|_{\Gamma} = \sup_{\gamma \in \Gamma} |\hat{\mu}(\gamma)|$$

where $\hat{\mu}$ is the Fourier-Stieltjes transform of μ - that is $\hat{\mu}(\gamma) = \int \overline{(\gamma, t)} d\mu(t)$. Since

 μ is determined by the values of $\hat{\mu}$ on Γ [5], we have $\|\mu\|_{\Gamma} = 0$ if and only if μ is the 0 measure. The other conditions that $\|\cdot\|_{\Gamma}$ be a norm are readily verified. Here is our characterization.

Theorem B. Let $\mu \in M(G)$. Then $\hat{\mu}$ vanishes at infinity if and only if $\|\mu_x - \mu\|_{\Gamma} \to 0^+$ as $x \to 0$.

¹) Research supported by the National Science Foundation Grant GP-3930.

Proof. Suppose first that $\hat{\mu}$ vanishes at infinity. Since

$$\hat{\mu}_{x}(\gamma) = \int_{G} \overline{(\gamma, t)} d\mu_{x}(t) = \int_{G} \overline{(\gamma, t)} d\mu(t - x) = \int_{G} \overline{(\gamma, t + x)} d\mu(t) = \overline{(\gamma, x)} \hat{\mu}(\gamma),$$

we have

(5)

(1)
$$\|\mu_x - \mu\|_{\Gamma} = \sup_{\gamma \in \Gamma} |\hat{\mu}_x(\gamma) - \hat{u}(\gamma)| = \sup_{\gamma \in \Gamma} |(\gamma, x) - 1| \cdot |\hat{\mu}(\gamma)|.$$

Since, by assumption, \hat{u} vanishes at infinity, given $\varepsilon > 0$ there exists a compact $K \subset \Gamma$ such that $|\hat{\mu}(\gamma)| < \frac{\varepsilon}{2}$ if $\gamma \in \Gamma - K$. Moreover, the set U of all x in G such that $|(\gamma, x) - 1| < \varepsilon/||\mu||_{\Gamma}$ for all $\gamma \in K$ is a neighborhood of 0 in G. If $\gamma \in K$ we thus have

(2)
$$|(\gamma, x) - 1| \cdot |\hat{\mu}(\gamma)| < (\varepsilon/||\mu||_{\Gamma}) \cdot ||\mu||_{\Gamma} = \varepsilon \quad (x \in U),$$

while if $\gamma \in \Gamma - K$ we have .

3)
$$|(\gamma, x) - 1| \cdot |\hat{\mu}(\gamma)| < 2 \cdot \frac{\varepsilon}{2} = \varepsilon$$
 $(x \in G)$

From (1), (2), (3) it follows that $\|\mu_x - \mu\|_{\Gamma} < \varepsilon$ if $x \in U$. That is $\|\mu_x - \mu\| \to 0$ as $x \to 0$. This proves half the theorem.

To prove the other half we need a lemma (see [1]).

Lemma. Let U be any neighborhood of 0 in the locally compact abelian group G. Then there exists a compact subset K of Γ (the character group of G) such that for any $\gamma \in \Gamma - K$ there exists $x \in U$ with Re $(\gamma, x) \leq 0$.

Now suppose $\|\mu_x - \mu\|_{\Gamma} \to 0$ as $x \to 0$. We must show that $\hat{\mu}$ vanishes at infinity. Given $\varepsilon > 0$ choose a neighborhood U of 0 in G such that $\|\mu_x - \mu\|_{\Gamma} < \varepsilon$ $(x \in U)$. Then (4) $|(\gamma, x) - 1| \cdot |\hat{\mu}(\gamma)| < \varepsilon$ $(\gamma \in \Gamma; x \in U)$.

For this U choose $K \subset \Gamma$ according to the lemma. Then if $\gamma \in \Gamma - K$ there exists $x \in U$ with Re $(\gamma, x) \leq 0$ so that $|(\gamma, x) - 1| > 1$. Using this x in (4) we have $|\hat{\mu}(\gamma)| < \varepsilon$ if $\gamma \in \Gamma - K$. This completes the proof.

III. Characterization of continuous measures

If G is a non-discrete metrizable group then its character group Γ is σ -compact. In Γ there is a sequence of open subsets A_n with compact closure satisfying $A_1 \subset A_2 \subset \dots$, $\lim_{n \to \infty} m(A_n) = \infty$, and such that

$$M(f) = \lim_{n \to \infty} \frac{1}{m(A_n)} \int_{A_n} f(\gamma) \, d\gamma$$

exists for all almost periodic functions f on Γ and is equal to the mean value of f([2]). Here $m(A_n)$ means the Haar measure of A_n . HEWITT and STROMBERG ([3]) have shown that the limit in (5) will exist for many other functions as well, and, in fact they proved

Some classes of measures

Lemma. Let $\mu \in M(G)$. Then μ is a continuous measure if and only if $M(|\hat{\mu}|) = 0$. We now define our second norm. If $\mu \in M(G)$ where G is metrizable, let

$$\mathcal{N}(\mu) = \sup_{n} \frac{1}{m(A_{n})} \int_{A_{n}} |\hat{\mu}(\gamma)| \, d\gamma$$

Our second main result is

Theorem C. Let G be a metrizable locally compact abelian group and let $\mu \in M(G)$. Then μ is a continuous measure if and only if $\mathcal{N}(\mu_x - \mu) \to 0$ as $x \to 0$.

Proof. First suppose that μ is continuous. Then by the lemma we have $M(|\hat{\mu}|) = \lim_{n \to \infty} \frac{1}{m(A_n)} \int_{A_n} |\hat{\mu}(\gamma)| d\gamma = 0$. Hence, given $\varepsilon > 0$ there exists N such that

(6)
$$\frac{1}{m(A_n)}\int_{A_n} |\hat{\mu}(\gamma)| \, d\gamma < \varepsilon/2 \quad (n \geq N).$$

Moreover, the set U of x in G such that $|(\gamma, x) - 1| < \varepsilon/||\mu||_{\Gamma}$ for all $\gamma \in A_N$ is a neighborhood of 0 in G. Thus, if $n \ge N$ we have from (6)

$$\frac{1}{m(A_n)}\int_{A_n}|(\gamma, x)-1|\cdot|\hat{\mu}(\gamma)|\,d\gamma \leq \frac{1}{m(A_n)}\int_{A_n}2|\hat{\mu}(\gamma)|<\varepsilon \qquad (x\in G).$$

Also, if $n \leq N$ then $A_n \subseteq \overline{A}_N$ and so, if $x \in U$

$$\frac{1}{m(A_n)} \int_{A_n} |(\gamma, x) - 1| \cdot |\hat{\mu}(\gamma)| \, d\gamma \leq \|\mu\|_{\Gamma} \cdot \frac{1}{m(A_n)} \int_{A_n} |(\gamma, x) - 1| \, d\gamma \leq \\ \leq \|\mu\|_{\Gamma} (\varepsilon/\|\mu\|_{\Gamma}) \cdot \frac{1}{m(A_n)} \int_{A_n} d\gamma = \varepsilon.$$

Thus, if $x \in U$,

$$\sup_{n} \frac{1}{m(A_{n})} \int_{A_{n}} |(\gamma, x) - 1| \cdot |\hat{\mu}(\gamma)| \, d\gamma \leq \varepsilon,$$

or

$$\sup_{n} \frac{1}{m(A_{\mu})} \int_{A_{n}} |\hat{\mu}_{x}(\gamma) - \hat{\mu}(\gamma)| d\gamma \leq \varepsilon,$$
$$\mathcal{N}(\mu_{x} - \mu) \leq \varepsilon$$

or

Thus, $\mathcal{N}(\mu_x - \mu) \rightarrow 0$ as $x \rightarrow 0$. This proves half the theorem.

Now suppose that $\mathcal{N}(\mu_x - \mu) \to 0$ as $x \to 0$. We must prove that μ is continuous. Given $\varepsilon > 0$ choose a symmetric neighborhood U of 0 in G such that

(7)
$$\mathcal{N}(\mu_x - \mu) < \varepsilon \quad (x \in U).$$

R. R. Goldberg — A. B. Simon

Let φ be the function on G defined by

$$\varphi(t) = 1/m(U) \qquad (t \in U),$$

$$\varphi(t) = 0 \qquad (t \in G - U).$$

(We are now denoting the Haar measure on G, as well as that on Γ , by m. We may clearly assume that $m(U) < \infty$.) Then $\hat{\varphi}$, the Fourier transform of φ , is real-valued (since U is symmetric) and $\hat{\varphi}$ vanishes at infinity by the Riemann—Lebesgue theorem. Thus, for some compact $K \subset \Gamma$, $\hat{\varphi}(\gamma) \leq \frac{1}{2}$ if $\gamma \in \Gamma - K$. That is,

$$\hat{\varphi}(\gamma) = \int_{G} \overline{(\gamma, x)} \varphi(x) \, dx = \frac{1}{m(U)} \int_{U} (\gamma, x) \, dx \leq \frac{1}{2} \qquad (\gamma \in \Gamma - K).$$

Hence

$$\frac{1}{m(U)}\int_{U} [1-(\gamma, x)] dx \geq \frac{1}{2} \qquad (\gamma \in \Gamma - K),$$

and so

(8)
$$\frac{1}{m(U)}\int_{U}|(\gamma, x)-1|\,dx \geq \frac{1}{2} \qquad (\gamma \in \Gamma - K).$$

Now from (7) we have for any n

$$\frac{1}{m(A_n)}\int_{A_n}|(\gamma, x)-1|\cdot|\hat{\mu}(\gamma)|\,d\gamma<\varepsilon\qquad(x\in U).$$

If we multiply by $\frac{1}{m(U)}$, integrate over U, and invert the order of integration we obtain

$$\frac{1}{m(A_n)}\int_{A_n} |\hat{\mu}(\gamma)| \, d\gamma \cdot \frac{1}{m(U)} \int_{A_n} |(\gamma, x) - 1| \, dx < \varepsilon.$$

Then certainly

$$\frac{1}{m(A_n)}\int_{A_n-K} |\hat{\mu}(\gamma)| \, d\gamma \cdot \frac{1}{m(U)} \int_{U} |(\gamma, x)-1| \, dx < \varepsilon.$$

But if $\gamma \in A_n - K$ then, by (8), $\frac{1}{m(U)} \int_U |(\gamma, x) - 1| dx \ge \frac{1}{2}$. Hence

$$\frac{1}{m(A_n)}\int_{A_n-K}|\hat{\mu}(\gamma)|\,d\gamma<2\varepsilon.$$

Moreover, it is certainly true for large *n* that

$$\frac{1}{m(A_n)}\int_{K} |\hat{\mu}(\gamma)| d\gamma < \varepsilon$$

160

since $m(A_n) \to \infty$ as $n \to \infty$. Hence

$$\frac{1}{m(A_n)}\int_{A_n}|\hat{\mu}(\gamma)|\,d\gamma<3\varepsilon$$

for large *n*, which proves that $M(|\hat{\mu}|) = \lim_{n \to \infty} \frac{1}{m(A_n)} \int_{A_n} |\hat{\mu}(\gamma)| d\gamma = 0$. By the lemma,

 μ is continuous and the proof is complete.

IV. Remark on another class of measures

We have made an attempt at another result along the lines of Theorems A, B, C. Let Δ be the maximal ideal space of the measure algebra M(G). That is, Δ is the space of continuous complex-valued homomorphisms h on M(G). If for $\mu \in M(G)$ we define $\|\mu\|_{A} = \sup_{h \in \Delta} |h(\mu)|$ then, since $h(\mu) = \hat{\mu}(h)$ where $\hat{\mu}$ is the Gelfand transform of μ , $\|\mu\|_{A}$ is the spectral norm of μ [4: p. 76]. It is now natural to ask: For what μ is it true that $\|\mu_{x} - \mu\|_{A} \to 0$ as $x \to 0$?

For each $x \in G$ let σ_x be the unit mass concentrated at x. For $h \in \Delta$ the function χ_h defined by

$$\chi_h(x) = h(\sigma_x) \quad (x \in G)$$

is easily seen to be a group character of G. However, χ_h need not be continuous. If we could answer positively a certain question about these χ_h we could give a characterization of the kernel of the hull of $L^1(G)$ in M(G) — the set of all $\mu \in M(G)$ such that $\hat{\mu}(h) = 0$ for all $h \in \Delta - \hat{G}$. The question whose answer we are unable to establish is this: Are the h for which χ_h is discontinuous dense in $\Delta - \hat{G}$? If the answer to this question is yes then we can easily establish the following:

Let $\mu \in M(G)$. Then μ is in the kernel of the hull of $L^1(G)$ if and only if $\|\mu_x - \mu\|_A \to 0$ as $x \to 0$.

References

[1] R. R. GOLDBERG and A. B. SIMON, The Riemann-Lebesgue theorem on groups, Acta Sci. Math., 27 (1966), 35-40.

[2] E. HEWITT and K. Ross, Abstract Harmonic Analysis (Berlin, 1963).

[3] E. HEWITT and K. R. STROMBERG, A remark on Fourier-Stieltjes transforms, An. Acad. Brasil. Ci., 34 (1962), 175-180.

[4] L. LOOMIS, Introduction to Abstract Harmonic Analysis (New York, 1953).

[5] W. RUDIN, Measure algebras on abelian groups, Bull. Amer. Math. Soc., 65 (1959), 227-247.

NORTHWESTERN UNIVERSITY

(Received January 11, 1966)

3 A