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I. Introduction 

Let M(G) be the set of (bounded regular Borel) measures n on a locally compact 
abelian group G. The following theorem is a well-known characterization of those 
measures which are absolutely continuous (with respect to the Haar measure of G), 
given iu terms of the translates ¡ix (where nx(E)=n(E — x)). 

T h e o r e m A. Let nd M (G). Then n is absolutely continuous if and only if 
ll^jc-^11 a s 0-

For a proof see ([5], p. 230). The norm in the statement of Theorem A is the 
usual measure norm ( = total variation). 

In this paper we introduce two other norms for M(G). Using them we give 1) 
a characterization- of the measures in M{G) whose Fourier—Stieltjes transforms 
vanish at infinity, and 2) a characterization of the continuous ( = non-atomic) 
measures in M(G). In each case the necessary and sufficient condition is similar 
to that in Theorem A — namely, that as ¡xx must approach /( in a suitable 
norm. In case 2) we must restrict ourselves to metrizable groups. 

n . Characterization of measures whose Fourier—Stieltjes transforms 
vanish at infinity 

Let r denote the character group of G. If n £ M(G) let 

|M| r = sup \fi(y)\ 
ver 

where fL is the Fourier—Stieltjes transform of fi — that is fi(y) ~ J (y, t)dn(t). Since 
G 

p. is determined by the values of fi on T [5], we have ||^||r = 0 if and only if fi is the 
0 measure. The other conditions that || - | | r be a norm are readily verified. Here is 
our characterization. 

T h e o r e m B. Let n£M(G). Then fl vanishes at infinity ifand only if H/^ —ju||r —0 
as jc—0. 
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P r o o f . Suppose first that p. vanishes at infinity. Since 

A . G O = ¡ ( y T t j d n J t ) = J faTjd(x(t-x) = f (y,t + x)d/i(/) = (yTx)fi(y), 
G G G 

we have 

yil ytr 

Since, by assumption, u vanishes at infinity,'given1 £ > 0 there Exists a compact 

KczT such that | £ ( y ) | < y i f y£F — K. Moreover, the set U of all x in G such that 

|(y, x) —1| <e/||ju|| r for all y£K is a neighborhood of 0 in G. If y£K we thus have 

( 2 ) l ( 7 , * ) - l | - | / K v ) l < ( « / I N I r ) - I N I i - = e ( * € C / ) , 

while if y ^ r ^ - K we have . . 

(3) \ ( y , x ) - l \ . \ ( l ( y ) \ ^ 2 . j = £ ( . v e C ) . 

From (1), (2), (3) it follows that \\{ix-ti\\r<e if jc6 U. That i s j | ^ x - / t | | - 0 as x - 0 . 
This proves half the theorem. 

To prove the other half we need a lemma (see [1]). 

L e m m a . Let Ube any neighborhoodofO in the locally compact abelian group G. 
Then there exists a compact subset K of T (the character group of G) such that for 
tiny y^T — K there exists x£U with Re (y, x) SO. 

¡Now suppose \\px — n\\r~*0 as x —0. We must show that fi vanishes at infinity. 
Given e > 0 choose a neighborhood U of 0 in G such that \\[ix —p\\r<e (x6 U). Then. 

(4) | ( y , x ) - l | . | £ ( y ) | < 8 ( y € r ; x 6 £ 7 ) . 

For this U choose KaT according to the lemma. Then if y£F — K there exists 
x £ U with Re (y, x) ^ 0 so that |(y, x) — 11 > 1. Using this x in (4) we have |/i(y)| < e-
if y£T — K. This completes the proof. 

III. Characterization of continuous measures 

If G is a non-discrete metrizable group then its character group T is tr-compact. 
In F there is a sequence of open subsets An with compact closure satisfying; 
Atc:A2cz ..., lim m(A„) = and such that 

(5) 1 M«) = !zd6f/(y)dy 
A„ 

exists for all almost periodic functions / on f and is equal to the mean value of 
/ ([2]). Here m(An) means the Haar measure of An. H E W I T T and STROMBERG ([3]) 
have shown that the limit in (5) will exist for many other functions as well, and, 
in fact they proved 
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L e m m a . Let ¡i^M[G). Then ¡xis a continuous measure if and only if M(\fi\)=0. 

We now define our second norm. If fi £ M(G) where G is metrizable, let 

• JT(n) = s u p — i — \fi(y)\ dy. n m{A,.)J 
An 

Our second main result is 

T h e o r e m C. Let G be a metrizable locally compact abelian group and let' 
u f M(G). Then n is a continuous measure if and only if jV(hx~h)-*0 as jc->-0. 

P r o o f . First suppose that /t is continuous. Then by the lemma we have 

M(|AI)= lim ——r / \fL(y)\dy = Q>. Hence, given 8 > 0 there exists N such that 
n->~ m(A„) J 

A„ 

(6) - J j j J d y <= 8/2 (nSN). 

AN 

Moreover, the set U of x in G such that |(y, x) — 11 < e/||/(||r for all y € AN is a neigh-
borhood of 0 in G. Thus, if n=s N we have from (6) 

An An 

Also, if n^N then AnQAN and so, if x£U 

1 
m(A 

^ J \ ( y , x ) - 11 • |/i(y)| dy == Mr • J \ ( y , x ) - l \ d y * 

A„ A„ 

• S MAelMr). 

Thus, if x 6 V, 

or 

or 

m(A„ 

s u p / - 11 • №(V)l DY = £> n m(A„)J 

An 

^ f e - j " ) = e 
Thus, J r ( f i x - f i ) - ^ 0 as 0. This proves half the theorem. 

Now suppose that J f ( i i x — n)-» 0 as x—0. We must prove that /x is continuous. 
Given e > 0 choose a symmetric neighborhood U of 0 in G such that 

(7) jr(fix-p)^e (x£U). 
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Let <p be the function on G defined by 

q>(t) = llm(U) (t£U), 

<p(t) = 0 (teG-U). 

(We are now denoting the Haar measure on G, as well as that on r , by m. We may 
clearly assume that m(U) -< Then <p, the Fourier transform of q>, is real-valued 
(since U is symmetric) and <p vanishes at infinity by the Riemann—Lebesgue theorem. 
Thus, for some compact i c f , 0(?) = i if y£T — K. That is, 

MY) = J(y, X)<p(x)dx = J(y, x)dx S J (yer-K). 

Hence 

,x)]dxm-^ (yer-K), 
T u ) f l l - ( 7 " m(U) J Li V " ' V J 2 

u 
and so 

(8) (ytr-JC). 
v 

Now from (7) we have for any n 

^ AN 

If we multiply by ——— , integrate over U, and invert the order of integration we 
m(U) 

obtain 

, , . . „ „ • 11 dx^ s. m(A, 
A,, AN 

Then certainly 
k ) f i m d y - ^ u ) f l ( y > x ) -

A„ AN ' 

A„-K V 
But if y£An-K then, by (8), J\(y,x)~\\dx^. Hence 

A„-K 

Moreover, it is certainly true for large n that 
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since m(A„)-~ °° as n — °°. Hence 

¿j/ 
An 

for large n, which proves that M(\fi\)= lim . . . I \fi(y)\dy =0 . By the lemma, J 
An 

fi is continuous and the proof is complete. 

IV. Remark on another class of measures 

We have made an attempt at another result along the lines of Theorems 
A, B, C. Let A be the maximal ideal space of the measure algebra M(G). That is, 
A is the space of continuous complex-valued homomorphisms h on M{G). If for 
fi € M(G) we define | | / j | |d= sup \h(fi)\ then, since h(p.) = ß(h) where fi is the Gelfand 

transform of n, U ^ is the spectral norm of ¡i[4: p. 76]. It is now natural to ask: 
For what fi is it true that \\fix—fi\\A —0 as x—0? 

For each x € G let <jx be the unit mass concentrated at x. For h£A the function 
Xh defined by 

X„(x)=h(ax) ( x e G ) 

is easily seen to be a group character of G. However, need not be continuous. 
If we could answer positively a certain question about these %h we could give a 
characterization of the kernel of the hull of Ll(G) in M(G) — the set of all ¡x £ M(G) 
such that fi(h) — 0 for all h^A—.G. The question whose answer we are unable to 
establish is this: Are the h for which Xh ¡ s discontinuous dense in A—Gl If the 
answer to this question is yes then we can easily establish the following: 

Let ß £ M{G). Then n is in the kernel of the hull of Li(G) if and only if — 
as x—0. 
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