A type of extension of Banach spaces
By R. KAUFMAN in Urbana (Illinois, U. S. A.)

The purpose of this article is the study of a certain relation between a Banach
space X and a linear subspace Y. A subset F of the unit.-ball of X* is called a
Y-boundary if foreach y in Y, || y|| =sup{|f(¥)|:f€ F}; X is a bound extension of ¥
if every Y-boundary is an X-boundary. By requiring that X itself admit .no bound -
extension one has an obverse to the “projective resolution” of a compact Haus-
dorff space defined and constructed by GLEASON [l; Theorem 3. 2]. We believe,
moreover, that the theory of P, spaces is naturally included in the present discussion.

Banach spaces may be real or complex but since certain arguments are more
difficult in the complex case; this case is sometimes treated, to the exc1u51on of
the other.

Lemma 0. X is @ bound extension of its subspace Y if and .o'nly if there is no
semi-norm || x|, on Xexcept ixlt itself, such that || x|, =| x|l for all x, and || y|, =}yl
- for all y. : .

Proof. If Fis a Y-boundary in the unit ball of X* we can define ||x||, =
=sup {|f(x)|: f€ F}. Then |x||,=| x| if and only if F is an Xboundary, yielding
the direct implication. Conversely, if | x|, is a semi-norm as given in Lemma 0.,
we can take F={fcX*: |f(x)|<||x||1 for all x} as a Y-boundary; 1f F is an
X-boundary |lx|}, = || x]|.

We shall use the term P, space for a Banach space Z with the “extension prop-
erty”: for each Banach space X, subspace Y, and bounded linear transformation
T of Y into Z, there is an extension 77 of 7 mapping X into Z, and |T’|| =] T|.
For a discussion of P; spaces see KELLEY [3]. A natural and obvious example is the
space B(S) of all bounded function on an abstract set S, under the usual sup-norm;

“this.example shows_that every Banach space can be extended to a P,. space. The
best possible extension is discussed in the next two paragraphs.

Theorem |. If Xisa P1 space and Y a linear subspace 'of X, there is a sub-
space Z2Y, which is a P, space and a bound extension of Y.

Proof. Consider the famﬂy N of semi-norms on X subject to the conditions
of Lemma 0. Zorn’s Lemma yields the existence of a minimal element |x], in N.
X being a P, space there exists a linear transformation T of X into itself such that
T(y)=Yy for each y in ¥ and | T(x)| =| x|, for each x in X. Then the semi-norm
llxl}l —|| T(x)|, x€X, belongs to N, whence l|x]|1 coincides with | x||o. Still another

clement of N is defined by l|x|| > = lim sup H Z’ T '(x) (In fact the limit exists.)
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Since |x|l;=| x|, for all x, and T fixes each member of ¥, | x|, ={ x|l,. T being
a contraction of X (with respect to its.original norm), it is well known that for
every x, | (I—T)x|,=0, or what is the same, T>=T. The space Z= T(X ) contains
Y and is clearly a P, space. Finally, observe that each semi-norm |z[|; on Z has
a natural extension to X by the definition |T(x)|l, =| x|, ; the minimal nature of
| T(x)|| shows then that Z, with its given norm, is a bound extension of Y.

Corollary 2. Let Z be a P, space which.is a bound extension of a subspace Y,
and U an isometry of Y into a space X such that X is a bound extension of U(Y).
There is a unique linear transformation V of X into Z for which

) OV(y»)=y for ye¥, (i) V=1
Moreover, V is an isometry.

Proof. The existence of V is assured by the hypotheses that U be isometric

and Z a P, space. Lemma 0 shows that V is in fact an isometry of X into Z; let V;
- be another transformation with the required .properties. Then there is a linear
contraction S of Z such that S¥(x)=SV(x); by an argument similar to that in

Theorem 1, for each Z it is true that Iz =lim supH — Z S‘(z)[ ‘then S=1 ‘anc:i

V=

]n the two lemmas and theorem immediately below A is a compact- Hausdorff
space, Y a linear subspace of C(4) (real or complex), and by hypothesis there is
no proper closed subset of 4 in which every member of Y assumes its maximum
modulus. Lemimas 3 and 4 contain the irreducible kernel of analysis necessary
for “concrete” applications.

) o .
Lemma 3. If U is a non-empty open subset of A andz =¢=0, there is an
element y in Y which assumes its maximum modulus only in

UN{a: Re y(a) > || yll cos &}.

Proof. Let y, be an element of ¥ which assumes its maximum modulus
only in U and moreover ||y =max Re y,. Let y, be an element of ¥ which attains
its maximum modulus only in the set

Uﬁ{a:Rey,(a)>||y||lcos%}, and | yl|;=max Re y,.

We shall show that for all sufficiently large » the functions /i,=ny, + y, in Y are
suitable for the present lemma. :
Indeed suppose a,€ A4 and |h,,(a,)|—||/1 I,n=1,2,3,.... Since [k, =0y, +

#1131, cos < foreach , (1l + 1yl cos 2= |z (@) 2420 Re (@it +

+yi(@,)P. Thus |y;(a,)|~lly.ll and lim inf Re [yz(a,.)yl(a,.)]é[lylllyzll-COS§~

But the ‘argument of y,(ag,) is ultimately " confined to [— ;, ;] s0 that
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3
(a,,) rs then also restrrcted as asserted for n sufﬁc1ently large

g the argument of yz(a) i$ ultlmately confined to[ 28, ; the argument of

Lemma 4, LethC(A) and 0=d<| f|. Then for some yin Y |y + fl <yl -

Proof We can assume that [ attains the value || f || in A. Let d<s<|| f | and .
V be a nelghborhood of —1 in the plane Then there is a function y in Y which
attains its maximum modulus, 1, only in the set {a: Re f(a)>s}N{a: y(a@)€ V}.
Once y is chosen we can estimate If+nayl as n—oo: |f(a) +nv(@)|? =|f(@)]* +
“+2nRe[f(@)y(@)]+n*|y(@)|?=n*>+2nB+o(n), where B=sup {Re[if(@)]: A€V,
a€ A, Re f(a)=s}. If the lemma is false then for every choice of s and ¥V we must
have | f+ny|| =n—d, whence B= —d. Passing to the limit as V contracts to —1,
we obtain an & such that Ref(a)=s, and —Re f(a)> —d, or Re f (a)ﬁs,
contradiction proving the lemma.

Theorem 5. C(A) is a bound extension of Y.

Proof. If ||x|, i1s a semi-norm as in Lemma O, then for every yey, fe C(A),
~ we have |y+flzly+Slo= IIyII—IIfIlo By Lemma 4, |fl|=Iflo-

Corollary 6. A Banach space X is a bound extension of a subspace Y if and
only if the unit ball of X* contains a w*-closed X-boundary F which is a minimal
w¥-closed Y boundary.

Proof. The converse assertion is clear inasmuch as any Y-boundary is an
X-boundary. On the other hand if the set F exists we can consider that YS XS C(F) .
and by Theorem 5, C(F) is a bound extension of Y. An easy application of the
“Hahn—Banach Theorem shows that X, too, is a bound extension of Y.

Let us apply the previous remarks to a P, space X, and a minimal w*-closed
X-boundary A in the unit ball of X*, By Theorem 5, C(4) is a bound extension
of the P, space X, whence X =C(4). Again from the definition of P, space, there
. is a projection T of the Banach space of bounded functions on A onto C(4), the
projection T having norm one. Since C(4) contains the constant functions, it is
plain that T must preserve the class of non-negative real functions. In particular
if k is the characteristic function of an open subset U of 4, then T(h)=1 on U and
T(h)=0 on the complement of U~, Then U~ must be open: A4 is extremally dis-
connected (KELLEY [3]).

To complete our prevrous considerations, and obtain incidentally a converse
to the last remark, we require a lemma on regular open sets. For the necessary
theory of Boolean algebras, one may consult HarMmos [2], in particular pages
13—17. We adopt the notation that ¢S be the interior of the closure of § for any
subset S in a topologrcal space, and .%(M) be the Boolean algebra of regular open
subsets of M.

. . Lemma 7. Let f be a continuous mapping of a compact Hausdorff space M
onto a Hausdorff space N, such that f(S)s< N for any proper closed subset S of M :
There is defined a Boolean isomorphism m of Z(M) onto #(N):

=of(U), UeR(M).
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The inverse s is given by
=of '(V), VEAN).

Proof. We verify first that m and s are inverse to each other. If VER(N),
surely VS msV; since f~1(V) is dense in f~1(msV), V is dense in-msV and V=msV.
If UeR(M), then f(smU) contains the interior of f(U), so fIU)Uf(smU) is dense
in N and U’UsmU is dense in M, yielding UZS smU. From the fact that f(U) is
dense in f(smU) it follows similarly that U2 smU.

The identity @(EU F)=EVoF for arbitrary subsets E, FE N, shows that
m(U1 VUy)= mU N mU, for U, U, € #(M); this depends on the fact that U, U U,
is dense in U,V U,. To see that m(U, N U,)=mU, NmU,, observe that for certain.
open subsets W, and W, of N, f~'(W,))S U, and f~(W}) isdense in U, i=1,2.
Then f~'(W,NW,) is dense in U,NU,, and m(U, NU)=o(W,NW,)=
=oW,NoW,=mU, NmU, (lemma 4, p. 15, [2]). The facts now established
for m and s complete the proof. ‘

Corollary 8. If N is extremally dlsconnecled [ is a homeomorphism (GLEASON
[1; Lemma 2.3]).

Proof. Since #(N) contains only closed subsets of N, #(M) contains only
subséts of the form f~*(W) for a subset W open in N; the same form prevails for
all open subsets of M, whence f is one-to-one.

Returning to the general problem, we begin with a Banach space X and a minimal
w*-closed X-boundary F in the unit ball of X*. Also, let Z be a bound P, extension
of X; we know at the outset that Z is isometric with C(4) for some extremally dis-
connected compact Hausdorff space 4. We shall show that A4 is the Stone space

- of the Boolean algebra Z(F) and that Q(F) is independent (to within 1somorph|sm)
of the choice of F.

The first step is to consider.a w*-closed subset F, of the unit ball of Z* whose
restriction to X is exactly F; since Z is a bound extension of X, F, is a Z-boundary.
Since Fis a minimal closed X-boundary, we can suppose that F; is a minimal closed
Z-boundary. If we use the familiar representation of Z* by countably additive
Borel measures in A4, we see that F, must contain, for each a€ 4, a measure with
mass 1 at {a}; this does not depend on the disconnectedness of 4. It is convenient
to write A-a for the functional f—Af(a), f€C(4), ac A, 1 a complex number. The
measures in F, which can be represented in the manner just described form a closed
subset which is a boundary for Z and consequently they exhaust F,,-by the mini-
mality. The mapping 7 of F, onto A given by n(2-a)=afor A-ain F,, is continuous
and fulfills the conditions of Lemma 7 and Corollary 8, insuring that x is a homeo-
morphism of F; onto 4. The Boolean algebra #(F,) (or %(A)) determines A to
‘within homeomorphism while Z(F,)=%(F) by Lemma 7. This is the conclusion
sought, in view of the fact that Z(A) coincides with the Boolean algebra of open-.
closed subsets of A. -
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