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The purpose of this article is the study of a certain relation between a Banach 
space Z a n d a linear subspace Y. A subset F of the unit ball of X* is called a 
Y-boundary if for each y in Y, ||_y|| =sup{| / ( j>) | :fdF}; X is a bound extension of Y 
if every Y-boundary is an ^-boundary. By requiring that X itself admit -no bound 
extension one has an obverse to the "projective resolution" of a compact Haus-
dorff space defined and constructed by GLEASON [1; Theorem 3 . 2 ] . We believe, 
moreover, that the theory of P1 spaces is naturally included in the present discussion. 

Banach spaces may be real or complex; but since certain arguments are more 
difficult in the complex case, this case is sometimes treated, to the exclusion of 
the other. 

L e m m a 0. X is a bound extension of its subspace Y if and only if there is no 
semi-norm ||x|| j on Xexcept ||x|| itself, Such that ||x||, ^ || x\\ for all x, and ||>'|| t = 
for all y. 

P r o o f . If F is a 7-boundary in the unit ball of X*, we can define ||x||i = 
= sup { | / ( x ) | : F \ . Then ||x|| l = || x|| if and only if F is an ^-boundary, yielding 
the direct implication. Conversely, if ||JC|1 t is a semi-norm as given in Lemma 0., 
we can take F= {f£X*: |/(x)| S J|j*-||a for all x} as a 7-boundary; if F is an 
X-boundary 11x1̂  = 11x11. 

We shall use the term Py space for a Banach space Z with the "extension prop-
erty": for each Banach space X, subspace Y, and bounded linear transformation 
T of Y into Z, there is an extension 7" of T mapping X into Z, and \\T'\\ =|| T||. 
For a discussion of Pi spaces see KELLEY [3]. A natural and obvious example is the 
space B(S) of all bounded function on an abstract set S, under the usual sup-norm; 
this.example shows, that every Banach space can be extended to a Pv space. The 
best possible extension is discussed in the next two paragraphs. 

T h e o r e m 1. If X is a Pl space and Y a linear subspace [of X, there is a sub-
space Z3 F, which is a PL space and a bound extension of Y. 

P r o o f . Consider the family N of semi-norms on X subject to the conditions 
of Lemma 0. Zorn's Lemma yields the existence of a minimal element ||x||0 in N. 
X being a Pi space there exists a linear transformation T of X into itself such that 
T(y) =y for each y in Y and ¡|T(x)|| S | | x | | 0 for each x in X. Then the semi-norm 
||x||j = || JT(X)|| , x£X, belongs to N, whence ||x||, coincides with ||x||0. Still another 

element of N is defined by | |x | | 2= lim sup * - 2 T \ x ) 
n 1 

(In fact the limit exists.) 
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Since | | x | | 2 ^ | | x | | 0 for all x, and T fixes each member of Y, | |x||2 = ||x||0- T being 
a contraction of X (with respect to its.original norm), it is well known that for 
every x, \\(I-T)x\\2 = 0, or what is the same, T2 = T. The space Z=T(X) contains 
Y and is clearly a Py space. Finally, observe that each semi-norm |[z||i on Z has 
a natural extension to X by the definition | |T(X)| |] = [] JV[| ^; the minimal nature of 
||T(x)|| shows then that Z, with its given norm, is a bound extension of Y. 

C o r o l l a r y 2. Let Z be a P{ space which is a bound extension of a subspace Y, 
and U an isometry of Y into a space X such that X is a bound extension of U(Y). 
There is a unique linear transformation V of X into Z for which 

(i) UV(y)=yfory€Y, (ii) \\V\\SL 

Moreover, V is an isometry. 

P r o o f . The existence of V is assured by the hypotheses that U be isometric 
and Z a P, space. Lemma 0 shows that V is in fact an isometry of X into Z ; let Vl 

• be another transformation with the required properties. Then there is a linear 
contraction S of Z such that SF i (x )= 5F(x); by an argument similar to that in 

Theorem 1, for each Z it is true that | | z | |= l imsup - Z S ' - ( z ) ; then S = 1 and 

V, = V. 
In the two lemmas and theorem immediately below A is a compact Hausdorff 

space, y a linear subspace of C(A) (real or complex), and by hypothesis there is 
no proper closed subset of A in which every member of Y assumes its maximum 
modulus. Lemmas 3 and 4 contain the irreducible kernel of analysis necessary 
for "concrete" applications. 
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L e m m a 3. If U is a non-empty open subset of A and— >E>0, there is an 

element y in Y which assumes its maximum modulus only in 

£/fl {a: Re y(a) > || j | | cos s}. 
P r o o f . Let y, be an element of Y which assumes its maximum modulus 

only in U and moreover | | j | | = m a x R e y L . Let y2 be an element of Y which attains 
its maximum modulus only in the set 

u n | a : R e ^ i ( a ) > | | j ; | | , c o s y j , and ||y\\2 = m a x Re>>2. 

We shall show that for all sufficiently large n the functions h„—ny2 + yl in Y are 
suitable for the present lemma. 

Indeed suppose an£A and |/i„(a..,)| = ||/z„||, « = 1, 2, 3, ... . Since \\hj ^n\\\\y2\\ + 

+ ||.yH i cos for each n, [« |b | |2 | | + |b,1| cosyj S \ny 2 (a n ) \ 2 - + 2n R e b z i a J j ^ f l J U -

+ |y,(a„)|2. Thus b 2 ( a „ ) | - | | ^ 2 | | and lim inf Re [y2(an)yi (a„)] S | |y t | |y2\\ - cos y . 

But the argument of j>i(a„) is ultimately ' confined to y , y j so that 
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——, —J ; the argument of 

h„(a„) is then also restricted as asserted, for n sufficiently large. L e m m a 4. Letf£C(A) and0^d< ||/||. Then for some y in || +/|| < -d. 
P r o o f . We can assume that / attains the value | | / | | in A. Let d<s< | | / | | and . 

F be a neighborhood of — 1 in the plane. Then there is a function y in Y which 
attains its maximum modulus, 1, only in the set {a: Re f(a) >.s} fl {û: yifl) £ V}. 
Once y is chosen we can estimate \\f+ny\\ as n \ f ( a ) + ny(a)\2 — \f(a)\2 + 
+In Re [f(a)yja)\ -rn1 \y(a)\2^n2+ 2nB + o(«), where B = sup {Re [Xf{a)] : X £ V, 
a£A, Re f(a) S51}. If the lemma is false then for every choice of s and V we must 
have | | /+ny| | ë n — d, whence B^—d. Passing to the limit as V contracts to —1, 
we obtain an a such that Re f(a) ^s, and — R e / ( a ) s — d, or Re f(à)^s, a 
contradiction proving the lemma. 

Th eo rem 5. C(A) is a bound extension of Y. 

P r o o f . If IÎ HJ is a semi-norm as in Lemma 0, then for every y d Y,f£C(A), 
we have \\y+f\\ £ | | j + / | | 0 S | | j | | - | l / l l o - By Lemma 4, | |/ | | = | | / | |0 . 

C o r o l l a r y 6. A Banach space X is a bound extension of a subspace Y if and 
only if the unit ball of X* contains a w*-closed X-boundary F which is a minimal 
w*-closed Y boundary. 

P r o o f . The converse assertion is clear inasmuch as any Y-boundary is an 
X-boundary. On the other hand if the set F exists we can consider that YQXQ C(F) 
and by Theorem 5, C(F) is a bound extension of Y. An easy application of the 
Hahn—Banach Theorem shows that X, too, is a bound extension of Y. 

Let us apply the previous remarks to a F, space X, and a minimal w*-closed 
X-boundary A in the unit ball of X*. By Theorem 5, C(A) is a bound extension 
of the Pt space X, whence X= C(A). Again from the definition of P1 space, there 
is a. projection T of the Banach space of bounded functions on A onto C(A), the 
projection T having norm one. Since C(A) contains the constant functions, it is 
plain that T must preserve the class of non-negative real functions. In particular 
if h is the characteristic function of an open subset U of A, then T(h) = 1 on U and 
T(h) = 0 on the complement of U~. Then U~ must be open: A is extremally dis-
c o n n e c t e d (KELLEY [3]). 

To complete our previous considerations, and obtain incidentally a converse 
to the last remark, we require a lemma on regular open sets. For the necessary 
theory of Boolean algebras, one may consult HALMOS [2], in particular pages 
13—17. We adopt the notation that q S be the interior of the closure of S for any 
subset S in a topological space, and ât(M) be the Boolean algebra of regular open 
subsets of M. 

L e m m a 7. Let f be a continuous mapping of a compact Hausdorff space M 
onto a Hausdorff space N, such that f(S)?±N for any proper closed subset S of M~ 
There is defined a Boolean isomorphism m of 3%(M) onto 3i{N): 

mU=ef(U), um(M). 
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The inverse s is given by 
sV=Qf~1(V), 

P r o o f . We verify first that m and J are inverse to each other. If 
surely V^msV; since f~!(V) is dense in f~l(msV), V is dense in msV and V=msV. 
If U£9t(M), then f(smU) contains the interior of / (£/) , so f{U')\Jf{smU) is dense 
in N and U'U smU is dense in M, yielding U^smU. From the fact that / ( [ / ) is 
dense in f(smU) it follows similarly that UQsmU. 

The identity g ( F U F) = qE\J qF for arbitrary subsets E, FQ N, shows that 
m(U, V U2) = mUl\/mU2 for Ux, U2i<%(M); this depends on the fact that Ut U.C/2 
is dense in L^VE/2. To see that m(Uj fl U2) — mUl C\mU2, observe that for certain, 
open subsets WX and W2 of N, U{ and / - 1 (W /

i ) is dense in {/,-, / = 1 , 2 . 
T h e n F~A{WI f l W2) is d e n s e i n ULC\U2, a n d M(UIR\U2) = Q(WIC\W2).= 
= eWi(~]QW2=mUif}mU2 (lemma 4, p. 15, [2]). The facts now established 

for m and s complete the proof. 

C o r o l l a r y 8. If N is extremally disconnected, f is a homeomorphism (GLEASON 
[1; Lemma 2.3]). 

P r o o f . Since £%(N) contains only closed subsets of N,0t(M) contains only 
subsets of the form f~'(W) for a subset W open in N; the same foi>m prevails for 
all open subsets of M, whence / is one-to-one. 

Returning to the general problem, we begin with a Banach space A'and a minimal 
vc*-closed X-boundary F i n the unit ball of X*. Also, let Z be a bound P{ extension 
of X\ we know at the outset that Z is isometric with C(A) for some extremally dis-
connected compact Hausdorff space A. We shall show that A is the Stone space 
of the Boolean algebra &(F) and that 8k{F) is independent (to within isomorphism) 
of the choice of F. 

The first step is to consider a iv*-closed subset F, of the unit ball of Z* whose 
restriction to X i s exactly F; since Z is a bound extension of X, Ft is a Z-boundary. 
Since F is a minimal closed Z-boundary, we can suppose that Fx is a minimal closed 
Z-boundary. If we use the familiar representation of Z* by countably additive 
Borel measures in A, we see that F, must contain, for each a£A, a measure with 
mass 1 at {o}; this does not depend on the disconnectedness of A. It is convenient 
to write X'(t for the functional / — ! / ( « ) , / € C ( A ) , a£A, X a complex number. The 
measures in F] which can be represented in the manner just described form a closed 
subset which is a boundary foi Z and consequently they exhaust Fx,-by the -mini-
mality. The mapping n of F , onto A given by n(X-a) =a for X-a in F , , is continuous 
a n d fulfills the conditions of Lemma 7 and Corollary 8, insuring that n is a homeo-
morphism of F, onto A. The Boolean algebra ^?(Fj) (or M(A)) determines A to 
within homeomorphism, while ^ ( F , ) a ^ ? ( F ) by Lemma 7. This is the conclusion 
sought, in view of the fact that (%(A) coincides with the Boolean algebra of open-
closed subsets of A. 
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