A type of extension of Banach spaces

By R. KAUFMAN in Urbana (Illinois, U. S. A.)

The purpose of this article is the study of a certain relation between a Banach space X and a linear subspace Y. A subset F of the unit ball of X^{*} is called a Y-boundary if for each y in $Y,\|y\|=\sup \{|f(y)|: f \in F\} ; X$ is a bound extension of Y if every Y-boundary is an X-boundary. By requiring that X itself admit no bound extension one has an obverse to the "projective resolution" of a compact Hausdorff space defined and constructed by Gleason [1; Theorem 3.2]. We believe, moreover, that the theory of P_{1} spaces is naturally included in the present discussion.

Banach spaces may be real or complex; but since certain arguments are more difficult in the complex case, this case is sometimes treated, to the exclusion of the other.

Lemma $0 . X$ is a bound extension of its subspace Y if and only if there is no semi-norm $\|x\|_{1}$ on X except $\|x\|$ itself, such that $\|x\|_{1} \leqq\|x\|$ for all x, and $\|y\|_{1}=\|y\|$ for all y.

Proof. If F is a Y-boundary in the unit ball of X^{*}, we can define $\|x\|_{1} \equiv$ $\equiv \sup \{|f(x)|: f \in F\}$. Then $\|x\|_{1} \equiv\|x\|$ if and only if F is an X-boundary, yielding the direct implication. Conversely, if $\|x\|_{1}$ is a semi-norm as given in Lemma 0 ., we can take $F=\left\{f \in X^{*}:|f(x)| \leqq\|x\|_{1}\right.$ for all $\left.x\right\}$ as a Y-boundary; if F is an X-boundary $\|x\|_{1} \equiv\|x\|$.

We shall use the term P_{1} space for a Banach space Z with the "extension property": for each Banach space X, subspace Y, and bounded linear transformation T of Y into Z, there is an extension T^{\prime} of T mapping X into Z, and $\left\|T^{\prime}\right\|=\|T\|$. For a discussion of P_{1} spaces see Kelley [3]. A natural and obvious example is the space $B(S)$ of all bounded function on an abstract set S, under the usual sup-norm; this example shows that every Banach space can be extended to a P_{1}. space. The best possible extension is discussed in the next two paragraphs.

Theorem 1. If X is a P_{1} space and Y a linear subspace 'of X, there is a subspace $Z \supseteq Y$, which is a P_{1} space and a bound extension of Y.

Proof. Consider the family N of semi-norms on X subject to the conditions of Lemma 0 . Zorn's Lemma yields the existence of a minimal element $\|x\|_{0}$ in N. X being a P_{1} space there exists a linear transformation T of X into itself such that $T(y)=y$ for each y in Y and $\|T(x)\| \leqq\|x\|_{0}$ for each x in X. Then the semi-norm $\|x\|_{1}=\|T(x)\|, x \in X$, belongs to N, whence $\|x\|_{1}$ coincides with $\|x\|_{0}$. Still another element of N is defined by $\|x\|_{2} \equiv \lim \sup _{n}\left\|\frac{1}{n} \sum_{1}^{n} T^{i}(x)\right\|$. (In fact the limit exists.)

Since $\|x\|_{2} \leqq\|x\|_{0}$ for all x, and T fixes each member of $Y,\|x\|_{2} \equiv\|x\|_{0} . T$ being a contraction of X (with respect to its original norm), it is well known that for every $x,\|(I-T) x\|_{2}=0$, or what is the same, $T^{2}=T$. The space $Z=T(X)$ contains Y and is clearly a P_{1} space. Finally, observe that each semi-norm $\|z\|_{1}^{\prime}$ on Z has a natural extension to X by the definition $\|T(x)\|_{1} \equiv\|x\|_{1}$; the minimal nature of $\|T(x)\|$ shows then that Z, with its given norm, is a bound extension of Y.

Corollary 2. Let Z be a P_{1} space which is a bound extension of a subspace Y, and U an isometry of Y into a space X such that X is a bound extension of $U(Y)$. There is a unique linear transformation V of X into Z for which
(i) $U V(y)=y$ for $y \in Y$,
(ii) $\|V\| \leqq 1$.

Moreover, V is an isometry.
Proof. The existence of V is assured by the hypotheses that U be isometric and Z a P_{1} space. Lemma 0 shows that V is in fact an isometry of X into Z; let V_{1} be another transformation with the required properties. Then there is a linear contraction S of Z such that $S V_{1}(x) \equiv S V(x)$; by an argument similar to that in Theorem 1, for each Z it is true that $\|z\|=\lim \sup \left\|\frac{1}{n} \sum_{1}^{n} S^{i}(z)\right\| ;$ then $S=I^{\prime}$ and $V_{1}=V$.

In the two lemmas and theorem immediately below A is a compact Hausdorff space, Y a linear subspace of $C(A)$ (real or complex), and by hypothesis there is no proper closed subset of A in which every member of Y assumes its maximum modulus. Lemmas 3 and 4 contain the irreducible kernel of analysis necessary for "concrete" applications.

Lemma 3. If U is a non-empty open subset of A and $\frac{\pi}{4}>\varepsilon>0$, there is an element y in Y which assumes its maximum modulus only in

$$
U \cap\{a: \operatorname{Re} y(a)>\|y\| \cos \varepsilon\}
$$

Proof. Let y_{1} be an element of Y which assumes its maximum modulus only in U and moreover $\|y\|=\max \operatorname{Re} y_{1}$. Let y_{2} be an element of Y which attains its maximum modulus only in the set

$$
U \cap\left\{a: \operatorname{Re} y_{1}(a)>\|y\|_{1} \cos \frac{\varepsilon}{3}\right\}, \quad \text { and } \quad\|y\|_{2}=\max \operatorname{Re} y_{2}
$$

We shall show that for all sufficiently large n the functions $h_{n}=n y_{2}+y_{1}$ in Y are suitable for the present lemma.

Indeed suppose $a_{n} \in A$ and $\left|h_{n}\left(a_{n}\right)\right|=\left\|h_{n}\right\|, n=1,2,3, \ldots$. Since $\left\|h_{n}\right\| \geqq n\| \| y_{2} \|+$ $+\|y\|_{1} \cos \frac{\varepsilon}{3}$ for each $n,\left(n\|y\|_{2}\|+\| y_{1} \| \cos \frac{\varepsilon}{3}\right)^{2} \leqq\left|n y_{2}\left(a_{n}\right)\right|^{2}+2 n \operatorname{Re}\left[y_{2}\left(a_{n}\right) \overline{y_{1}\left(a_{n}\right)}\right]+$ $+\left|y_{1}\left(a_{n}\right)\right|^{2}$. Thus $\left|y_{2}\left(a_{n}\right)\right| \rightarrow\left\|y_{2}\right\|$ and $\lim \inf \operatorname{Re}\left[y_{2}\left(a_{n}\right) \overline{y_{1}\left(a_{n}\right)}\right] \geqq\left\|y_{1}\right\| y_{2} \| \cdot \cos \frac{\varepsilon}{3}$. But the argument of $y_{1}\left(a_{n}\right)$ is ultimately confined to $\left[-\frac{\varepsilon}{3}, \frac{\varepsilon}{3}\right]$ so that
the argument of $y_{2}\left(a_{n}\right)$ is ultimately confined to $\left[-\frac{2 \varepsilon}{3}, \frac{2 \varepsilon}{3}\right]$; the argument of $h_{n}\left(a_{n}\right)$ is then also restricted as asserted, for n sufficiently large.

Lemma 4. Let $f \in C(A)$ and $0 \leqq d<\|f\|$. Then for some y in $Y,\|y+f\|<\|y\|-d$.
Proof. We can assume that f attains the value $\|f\|$ in A. Let $d<s<\|f\|$ and V be a neighborhood of -1 in the plane. Then there is a function y in Y which attains its maximum modulus, 1, only in the set $\{a: \operatorname{Re} f(a)>s\} \cap\{a: y(a) \in V\}$. Once y is chosen we can estimate $\|f+n y\|$ as $n \rightarrow \infty:|f(a)+n y(a)|^{2}=|f(a)|^{2}+$ $+2 n \operatorname{Re}[f(a) \overline{y(a)}]+n^{2}|y(a)|^{2} \leqq n^{2}+2 n B+o(n)$, where $B=\sup \{\operatorname{Re}[\overline{\lambda f}(a)]: \lambda \in V$, $a \in A, \operatorname{Re} f(a) \geqq s\}$. If the lemma is false then for every choice of s and V we must have $\|f+n y\| \geqq n-d$, whence $B \geqq-d$. Passing to the limit as V contracts to -1 , we obtain an a such that $\operatorname{Re} f(a) \geqq s$, and $-\operatorname{Re} f(a) \geqq-d$, or $\operatorname{Re} f(a) \leqq s$, a contradiction proving the lemma.

Theorem 5. $C(A)$ is a bound extension of Y.
Proof. If $\|x\|_{1}$ is a semi-norm as in Lemma 0 , then for every $y \in Y, f \in C(A)$, we have $\|y+f\| \geqq\|y+f\|_{0} \geqq\|y\|-\|f\|_{0}$. By Lemma 4, $\|f\|=\|f\|_{0}$.

Corollary 6. A Banach space X is a bound extension of a subspace Y if and only if the unit ball of X^{*} contains a w^{*}-closed X-boundary F which is a minimal w^{*}-closed Y boundary.

Proof. The converse assertion is clear inasmuch as any Y-boundary is an X-boundary. On the other hand if the set F exists we can consider that $Y \subseteq X \subseteq C(F)$ and by Theorem 5, $C(F)$ is a bound extension of Y. An easy application of the Hahn-Banach Theorem shows that X, too, is a bound extension of Y.

Let us apply the previous remarks to a P_{1} space X, and a minimal w^{*}-closed X-boundary A in the unit ball of X^{*}. By Theorem $5, C(A)$ is a bound extension of the P_{1} space X, whence $X=C(A)$. Again from the definition of P_{1} space, there is a projection T of the Banach space of bounded functions on A onto $C(A)$, the projection T having norm one. Since $C(A)$ contains the constant functions, it is plain that T must preserve the class of non-negative real functions. In particular if h is the characteristic function of an open subset U of A, then $T(h)=1$ on U and $T(h)=0$ on the complement of U^{-}. Then U^{-}must be open: A is extremally disconnected (Kelley [3]).

To complete our previous considerations, and obtain incidentally a converse to the last remark, we require a lemma on regular open sets. For the necessary theory of Boolean algebras, one may consult Halmos [2], in particular pages 13-17. We adopt the notation that ϱS be the interior of the closure of S for any subset S in a topological space, and $\mathscr{R}(M)$ be the Boolean algebra of regular open subsets of M.

Lemma 7. Let f be a continuous mapping of a compact Hausdorff space M onto a Hausdorff space N, such that $f(S) \neq N$ for any proper closed subset S of M : There is defined a Boolean isomorphism m of $\mathscr{R}(M)$ onto $\mathscr{R}(N)$:

$$
m U=\varrho f(U), \quad U \in \mathscr{R}(M)
$$

The inverse s is given by

$$
s V=\varrho f^{-1}(V), \quad V \in \mathscr{R}(N)
$$

Proof. We verify first that m and s are inverse to each other. If $V \in \mathscr{R}(N)$, surely $V \subseteq m s V$; since $f^{-1}(V)$ is dense in $f^{-1}(m s V), V$ is dense in $m s V$ and $V=m s V$. If $U \in \mathscr{R}(M)$, then $f(\operatorname{sm} U)$ contains the interior of $f(U)$, so $f\left(U^{\prime}\right) \cup f(\operatorname{sm} U)$ is dense in N and $U^{\prime} \cup s m U$ is dense in M, yielding $U \subseteq s m U$. From the fact that $f(U)$ is dense in $f(s m U)$ it follows similarly that $U \supseteqq s m U$.

The identity $\varrho(E \cup F)=\varrho E \vee \varrho F$ for arbitrary subsets $E, F \subseteq N$, shows that $m\left(U_{1} \vee U_{2}\right)=m U_{1} \vee m U_{2}$ for $U_{1}, U_{2} \in \mathscr{R}(M)$; this depends on the fact that $U_{1} \cup U_{2}$ is dense in $U_{1} \vee U_{2}$. To see that $m\left(U_{1} \cap U_{2}\right)=m U_{1} \cap m U_{2}$, observe that for certain. open subsets W_{1} and W_{2} of $N, f^{-1}\left(W_{i}\right) \subseteq U_{i}$ and $f^{-1}\left(W_{i}\right)$ is dense in $U_{i}, i=1,2$. Then $f^{-1}\left(W_{1} \cap W_{2}\right)$ is dense in $U_{1} \cap U_{2}$, and $m\left(U_{1} \cap U_{2}\right)=\varrho\left(W_{1} \cap W_{2}\right)=$ $=\varrho W_{1} \cap \varrho W_{2}=m U_{1} \cap m U_{2}$ (lemma 4, p. 15, [2]). The facts now established for m and s complete the proof.

Corollary 8. If N is extremally disconnected, f is a homeomorphism (Gleason [1; Lemma 2.3]).

Proof. Since $\mathscr{R}(N)$ contains only closed subsets of $N, \mathscr{R}(M)$ contains only subsêts of the form $f^{-1}(W)$ for a subset W open in N; the same form prevails for all open subsets of M, whence f is one-to-one.

Returning to the general problem, we begin with a Banach space X and a minimal w^{*}-closed X-boundary F in the unit ball of X^{*}. Also, let Z be a bound P_{1} extension of X; we know at the outset that Z is isometric with $C(A)$ for some extremally disconnected compact Hausdorff space A. We shall show that A is the Stone space of the Boolean algebra $\mathscr{R}(F)$ and that $\mathscr{R}(F)$ is independent (to within isomorphism) of the choice of F.

The first step is to consider a w^{*}-closed subset F_{1} of the unit ball of Z^{*} whose restriction to X is exactly F; since Z is a bound extension of X, F_{1} is a Z-boundary. Since F is a minimal closed X-boundary, we can suppose that F_{1} is a minimal closed Z-boundary. If we use the familiar representation of Z^{*} by countably additive Borel measures in A, we see that F_{1} must contain, for each $a \in A$, a measure with mass 1 at $\{a\}$; this does not depend on the disconnectedness of A. It is convenient to write $\lambda \cdot a$ for the functional $f \rightarrow \lambda f(a), f \in C(A), a \in A, \lambda$ a complex number. The measures in F_{1} which can be represented in the manner just described form a closed su bset which is a boundary for Z and consequently they exhaust F_{1}, by the minimality. The mapping π of F_{1} onto A given by $\pi(\lambda \cdot a)=a$ for $\lambda \cdot a$ in F_{1}, is continuous and fulfills the conditions of Lemma 7 and Corollary 8 , insuring that π is a homeomorphism of F_{1} onto A. The Boolean algebra $\mathscr{R}\left(F_{1}\right)$ (or $\mathscr{R}(A)$) determines A to within homeomorphism, while $\mathscr{R}\left(F_{1}\right) \cong \mathscr{R}(F)$ by Lemma 7 . This is the conclusion sought, in view of the fact that $\mathscr{Z}(A)$ coincides with the Boolean algebra of openclosed subsets of A.

References

[1] A: M. Gleason, Projective topological spaces, Illinois J. Math:, 2 (1958), 482-489.
[2] P. R. Halmos, Lectures on Boolean Algebras (Princeton, 1963).
[3] J. L. Kelley, Banach spaces with the extension property, Trans. Amer. Math Soc., 72 (1952), 323-326.

