Homomorphisms of a semigroup onto normal bands

By MARIO PETRICH in University Park (Pennsylvania, U. S. A.)

1. Introduction and summary

Homomorphisms of an arbitrary semigroup S onto semigroups belonging to a special class \mathscr{C} of semigroups furnish some information about the structure of S. Of particular interest is the case when \mathscr{C} is a class of bands, for in such a case all the classes of the decomposition of S induced by such homomorphisms are subsemigroups of S. The problem of finding a sufficiently explicit characterization of homomorphisms onto arbitrary bands appears difficult. In [3] and [4], we have found such a characterization for the case when \mathscr{C} is the class of all semilattices and the class of all rectangular bands, respectively. In the present work we solve the problem when \mathscr{C} is the class of all [left] normal bands (for definitions see section 2). Normal bands have been studied by Yamada and Kimura [9], and right normal bands by Vagner [8]; and Shain [5], [6] (the latter two call right normal bands "restrictive semigroups").

In section 2 we give the definitions and notation used in the paper. In it we introduce a number of concepts which are used in succeeding sections; section 3 discusses some of their properties. Section 4 contains main results of the paper, viz., characterization of congruences induced by homomorphisms onto [left] normal bands. In section 5 we discuss some general properties of normal bands and, in section 6, subdirect products of such bands. Section 7 contains a representation of normal bands as subsets of a set under certain multiplication.

Some of the results in this paper parallel those in [3] and [4] (similar methods are used); we will not expressly mention similarity with these papers.

2. Definitions and notation

Throughout S will denote an arbitrary semigroup unless stated otherwise. A one element set $X=\{x\}$ will be simply denoted by x. For properties of most of the concepts that are introduced below see [3] and [4]. Let H be a non-empty subset of S and let $x, y, z \in S$.
H is said to be left (right) dense if $x y \in H$ implies $x \in H(y \in H)$, quasi dense if (i) $x^{2} \in H$ implies $x \in H$ and (ii) $x z \in H$ if and only if, $x y z \in H$. A left dense and right dense subsemigroup of S is called a face of S. The smallest face of S containing H is denoted by $N(H) . H$ is said to be a left (right) normal complex (abbreviated 1. n.
complex [r. n. complex]) if H is a left dense right ideal (l.d.r.i.) [right dense left ideal (r.d.l.i.)] of $N(H) . H$ ist said to be a normal complex (n complex) if H is a quasi dense subsemigroup of $N(H)$. By $A(x)[B(x)]$ denote the smallest l.n. [r.n.] complex of S containing x. (It is easy to see that the non-empty intersection of l.n. [r.n.] complexes is again a 1. n. [r. n.] complex.)

By σ_{H} we denote the equivalence relation on S whose classes are the non-empty sets in the family of sets: $H, N(H) \backslash S N, \backslash N(H)$. If \mathscr{F} is a non-empty family of nonrempty subsets of S, we set $\sigma_{\mathscr{F}}=\bigcap_{H \in \mathscr{F}} \sigma_{H}$; if \mathscr{F} is empty, $\sigma_{\mathscr{F}}$ denotes the universal relation on S. We let $\lambda_{x}=\sigma_{A(x)}, \varrho_{x}=\sigma_{B(x)}, \tau_{x}=\lambda_{x} \cap \varrho_{x}$. For $a \in S$, we write $H^{\cdot} . a=$ $=\{x \in S \mid x a \in H\}, H . a=\{x \in S \mid a x \in H\}$.

Following [9], we say that a band S is left (right) normal if it satisfies the identity $x y z=x z y[x y z=y x z]$, normal if it satisfies the identity $x y z x=x z y x$. If ξ is a congruence on an arbitrary semigroup S such that S / ξ is a left normal, right normal, or normal band, respectively, ξ is called a left normal, right normal, normal congruence (1.n., r.n., in. congruence, respectively).

By S^{0} we denote the semigroup S with zero adjoined (irrespective of whether S has a zero or not). U, L, R will, respectively, stand for a one element semigroup, two element left zero semigroup; two element right zero semigroup. If A is any set, $|A|$ denotes its cardinality.

If $S_{\alpha}, \alpha \in A$, is a non-empty family of semigroups, $\prod_{\alpha \in A} S_{\alpha}$ denotes their Cartesian (or direct) product, that is, the semigroup defined on the Cartesian product of sets S_{α} with coordinatewise multiplication; if $A=\{1,2\}$ we write $S_{1} \times S_{2}$ instead of $\prod_{i=1}^{2} A_{i} . S$ is a subdirect product of semigroups S_{α} if S isomorphic to a subsemigroup S^{\prime} of $\prod_{\alpha \in A} S_{\alpha}$ such that for all $\alpha \in A, \pi_{\alpha}\left(S^{\prime}\right)=S_{\alpha}$ (π_{α} is the α-th projection). If $\left\{B_{i}\right\}_{i=1}^{n}$ is a partition of A and for every $i, 1 \leqq i \leqq n$, all semigroups S_{α} with $\alpha \in B_{i}$ are isomorphic to a semigroup T_{i}, we say that S is a subdirect product of $\left|B_{1}\right|$ copies of $T_{1},\left|B_{2}\right|$ copies of $T_{2}, \ldots,\left|B_{n}\right|$ copies of T_{n}. Subdirect irreducibility is taken in the usual sense (a one element semigroup is excluded).

For all concepts and notation not mentioned above the reader is referred to [2]. We will omit all statements that can be obtained from our results by the left-right duality.

3. Basic properties of concepts used

We will repeatedly use the next proposition without express mention.
Proposition 1 (cf. [9], Theorem 10). Any normal band S satisfies the identity

$$
a x_{1} x_{2} \ldots x_{n} b=a x_{i_{1}} x_{i_{2}} \ldots x_{i_{n}} b
$$

where $\left\{i_{1}, i_{2}, \ldots, i_{n}\right\}$ is a permutation of the set $\{1,2, \ldots, n\}$.
Proof. We prove the case $n=2$; the general case is treated by induction. It is clear that normality implies (1) for $a=b$. Thus

$$
\begin{aligned}
& a x y b=(a x y b)(a x y b)=(a x y b a)(x y b)=(a y x b a)(x y b)= \\
& =(a y x)(b a x y b)=(a y x)(b a y x b)=(a y x b)(a y x b)=a y x b .
\end{aligned}
$$

Theorem 1. The intersection of a 1.n. congruence and a r.n. congruence is a n. congruence. Conversely, every n. congruence \sim is the intersection of the finest 1.n. congruence on S containing \sim and the finest r.n. congruence on S containing \sim.

Proof. The first statement of the theorem is immediate. Hence let \sim be a n. congruence and for any $x, y \in S$, define

$$
\begin{aligned}
& x \stackrel{\perp}{\sim} \text { if and only if } x \sim y x \text { and } y \sim x y, \\
& x \stackrel{\mathrm{r}}{\sim} y \text { if and only if } x \sim x y \text { and } y \sim y x .
\end{aligned}
$$

We show that $\stackrel{\perp}{\sim}$ is the finest l.n. congruence on S containing \sim; the case of \sim is treated analogously. If $x \stackrel{\perp}{\sim} y$ and $y \stackrel{\perp}{\sim} z$, then

$$
x \sim y x \sim z y x \sim(z y)(z x) \sim y(z x) \sim(y z) x \sim z x
$$

and analogously $z \sim x z$. Thus $x \stackrel{1}{\sim} z$, and ${ }^{\prime} \sim$ is an equivalence relation (symmetry and transitivity are obvious). If $x \stackrel{\perp}{\sim} y$, then for any $z \in S$,

$$
x z \sim y x z \sim(y z)(x z)
$$

similarly $y z \sim(x z)(y z)$ so that $x z \stackrel{\perp}{\sim} y z$; analogously $z x \stackrel{\perp}{\sim} z y$ and hence $\stackrel{\perp}{\sim}$ is a congruence and is clearly a l.n. congruence. Let $\stackrel{\approx}{\approx}$ be any l.n. congruence containing \sim. Then for $x \stackrel{1}{\sim} y$, we have $x \sim y x, y \sim x y$ and thus $x \stackrel{1}{\approx} y x, y \stackrel{1}{\approx} x y$. Consequently

$$
x \stackrel{1}{\approx} y x \stackrel{1}{\approx} y(x y) \stackrel{1}{\approx} y y \stackrel{1}{\approx} y
$$

that is, $\dot{\sim}$ is contained in $\underset{\sim}{\approx}$. It follows easily that $\sim=\stackrel{\sim}{\sim} \cap$.
The next theorem establishes a connection between l.n. complexes and l.n. congruences.

Theorem 2. The following conditions on a complex H of S are equivalent:
a) H is a l.n. complex of S;
b) σ_{H} is a l.n. congruence on S;
c) for all $a \in N(H), H^{\cdot} \cdot a=H$.

Proof. a) implies b). If $N(H)=S$, then H is a l.d.r.i. of S and $S / \sigma_{H} \cong L$, and if $N(H)=H$, then H is a face of S and σ_{H} is a semilattice congruence. Hence suppose that $H \neq N(H) \neq S$, and let $A=N(H)^{\prime} \backslash H, B=S \backslash N(H)$. Then by the definition of a I.n. complex, the following inclusions hold:

H	A	B	
H	H	H	B
A	A	A	B
B	B	B	B

where, e.g., $H A \subseteq H$, etc. Defining multiplication according to this table, we see that $\{H, A, B\} \cong \bar{L}^{0}$ and thus σ_{H} is a l.n. congruence.
b) implies c). Since σ_{H} is a 1.n. congruence and it has at most 3 classes, S / σ_{H} is isomorphic to one of the semigroups U, U^{0}, L, L^{0}. If $S / \sigma_{H} \cong U, H=S$; if $S / \sigma_{H} \cong U^{0}, H$ is a face of S; if $S / \sigma_{H} \cong L, H$ is a 1.d.r.i. of S; in any of these cases,
c) is established without difficulty. Finally, if $S / \sigma_{H} \cong L^{0}$ and $a \in N(H)$, then c) follows easily from the above table since this case then reduces to considering the semigroup $\{H, A\}$ which is isomorphic to L.
c) implies a). This follows easily from the definition of a l.n. complex.

Proposition 2. A complex H is a l.n. complex of S if and only if H is left dense in S and has the property: if $x \in S$ is such that every prime ideal of S which contains x also intersects H, then $H x \subset H$.

Proof. Necessity. Since H is left dense in $N(H)$, it is also left dense in S. If $x \in S$ has the property stated above, then $x \in N(H)$ since otherwise $S \backslash N(H)$ would be a prime ideal of S containing x and not intersecting H. The inclusion $H x \subseteq \boldsymbol{H}$ now follows by the definition of a l.n. complex.

Sufficiency. As before, we conclude that $x \in S$ with the above property must be contained in $N(H)$. Thus H is a l.d.r.i. of $N(H)$ as desired.

Recall that $A(x)$ is the smallest l.n. complex of S containing x.
Theorem 3. Let x be an element of S, let

$$
\begin{gathered}
A_{1}(x)=x \cup x N(x), \\
A_{2 n}(x)=\left\{y \in S \mid A_{2 n-1}(x) \cap R(y) \neq \square\right\}, \\
A_{2 n+1}(x)=A_{2 n}(x) \cup A_{2 n}(x) N\left(A_{2 n}(x)\right),
\end{gathered}
$$

for $n=1,2, \ldots$ Then $A(x)=\bigcup_{n=1}^{\infty} A_{n}(x)$.
Proof. We write A_{n} and A instead of $A_{n}(x)$ and $A(x)$, respectively, and let $T=\bigcup_{n=1}^{\infty} A_{n}$. Since $a \in A$, we have $N(x) \subseteq N(A)$ and thus $x N(x) \subseteq A N(A) \subseteq A$ whence $A_{1} \subseteq A$. Suppose that $A_{n} \subseteq A, n \geqq 1$. If n is even, then $A_{n+1}=A_{n} \cup A_{n} N\left(A_{n}\right)$ and $A_{n} \subseteq A$ implies $A_{n} N\left(A_{n}\right) \subseteq A N(A) \subseteq A$, that is, $A_{n+1} \subseteq A$. If n is odd, then for $y \in A_{n+1}$ we have $A_{n} \cap R(y) \neq \square$. Thus $y z \in A_{n}$ for some $z \in S^{1}$; hence $y z \in A$ so that $y \in A$. Consequently $A_{n+1} \subseteq A$ and by induction we conclude that $T \subseteq A$.

For the opposite inclusion, it suffices to show that T is a l.n. complex. Let $y z \in T$; then $y z \in A_{n}$ for some n. We may suppose that n is even since $A_{1} \subseteq A_{2} \subseteq \ldots$. Then $A_{n-1} \cap R(y z) \neq \square$ whence $A_{n-1} \cap R(y) \neq \square$ and thus $y \in A_{n} \subseteq T$. Next let $y \in T$ and $z \in N(T)$. Since $A_{1} \subseteq A_{2} \subseteq \ldots$, we have $N\left(A_{1}\right) \subseteq N\left(A_{2}\right) \subseteq \ldots$ and hence

$$
z \in N(T)=N\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\bigcup_{n=1}^{\infty} N\left(A_{n}\right)
$$

We thus have $y \in A_{m}$ and $z \in N\left(A_{n}\right)$ and we may suppose that $m=n$ and n is even. Hence $y z \in A_{n} N\left(A_{n}\right) \subseteq A_{2 n+1} \subseteq T$. Consequently T is a l.n. complex of S and thus $A=T$.

Proposition 3. Let H be a n. complex of S and let a be an element of S. Then
a) $A(H)=H \cdot a$;
b) $H=\left(H^{\cdot} \cdot a\right) \cap\left(H^{\cdot} a\right)$;
c) $N(H)=N\left(H^{\cdot} \cdot a\right)$.

Proof. Items a) and b) follow easily from the definitions and Theorem 2, [4]. Clearly $H^{\cdot} . a \subseteq N(H)$, which implies $N^{\prime}\left(H^{\cdot} . a\right) \subseteq N(H)$. Conversely, $H \subseteq H^{\cdot} . a$ implies $N(H) \subseteq N(\bar{H} \cdot a)$ and c) is established.

Theorem 4. The non-empty intersection H of $a \ln$. complex C and $a \mathrm{r} . \mathrm{n}$. complex D is a n. complex and $N(H)=N(C) \cap N(D)$. Conversely, if H is a n. complex, then $H=A(H) \cap B(H)$ and $N(H)=N(A(H))=N(B(H))$.

Proof. Let C and D be as above and $H \equiv C \cap D \neq \square$. Let $E=N(C) \cap N(D)$; $H=C \cap D \subseteq E$, so that $N(H) \subseteq E$ since E is then a face. Let $C^{\prime}=C \cap E$ and $D^{\prime}=D \cap E$; then

$$
H=C \cap D=(C \cap N(C)) \cap(D \cap N(D))=(C \cap E) \cap(D \cap E)=C^{\prime} \cap D^{\prime}
$$

where $C^{\prime} \subseteq E, D^{\prime} \subseteq E$. Further, $C^{\prime} E \subseteq C E \subseteq C N(C) \subseteq C$ and $C^{\prime} E \subseteq E$ which implies $C^{\prime} E \subseteq C^{\prime}$. Also $x y \in C^{\prime} \subseteq C$ implies $x \in C$ which together with $x \in E$ (since $x y \in C^{\prime} \subseteq E$ and E is a face) implies $x \in C^{\prime}$. Consequently C^{\prime} is a l.d.r.i. of E; similarly D^{\prime} is a r.d.1.i. of E, and thus $H=C^{\prime} \cap D^{\prime}$ is a quasi dense subsemigroup of E. If $x \in E$, then for any $c \in C^{\prime}, d \in D^{\prime}, c x d \in C^{\prime} \cap D^{\prime}=H \subseteq N(H)$ whence $x \in N(H)$. Thus $E \subseteq N(H)$ the opposite inclusion being obvious, we have $E=N(H)$. Therefore $N(H)=\bar{N}(C) \cap$ $\cap N(D)$.

For the converse it suffices to apply Proposition 3.
Remark. It follows from the definitions that a complex H of S is a n. complex if and only if for all $x, y, z \in S$:
a) $x, y \in H$ implies $x y \in H$;
b) $x^{2} \in H$ implies $x \in H$;
c) $x y z \in H$ implies $x z \in H$;
d) $x z \in H, y \in N(H)$ implies $x y z \in H$.

4. Homomorphisms onto normal bands

Let S be a fixed semigroup, \mathscr{A} the family of all proper l.n. complexes of S together with the empty set, and \mathfrak{H} the set of all l.n. congruences on S. On the set $\mathfrak{P}(\mathscr{A})$ of all non-empty subsets of \mathscr{A} define the function α by: $\alpha\left(\mathscr{A}^{\prime}\right)=\sigma_{\mathscr{A}}$ (for notation see section 2). Then we have the following result which is fundamental for most of this paper.

Theorem 5. The function α maps $\mathfrak{P}(\mathscr{A})$ onto \mathfrak{A} and is inclusion inverting.
Proof. If $\mathscr{A}^{\prime}=\square, \sigma_{\mathscr{A}^{\prime}}$ is the universal relation and hence $\sigma_{\mathscr{A}^{\prime}} \in \mathfrak{M}$. Otherwise $\mathscr{A}^{\prime} \neq \square$ which implies that for every $A \in \mathscr{A}^{\prime}, \sigma_{A}$ is a 1.n. congruence by Theorem 2; consequently $\sigma_{\mathscr{A}^{\prime}}=\prod_{A \in \mathscr{A ^ { \prime }}} \sigma_{A} \in \mathfrak{H}$. This shows that α maps $\mathfrak{P}(\mathscr{A})$ into \mathfrak{N}.

We show next that α maps $\mathfrak{P}(\mathscr{A})$ onto $\mathfrak{A l}$. Hence let \sim be any proper l.n. congruence on S. For every $x \in S$, let

$$
A_{x}=\{y \in S \mid x \sim y x\},
$$

and let \mathscr{A}^{\prime} be the family of all distinct sets A_{x} such that $A_{x} \neq S$, as x ranges over all elements of S. We will show that $\mathscr{A}^{\prime} \in \mathfrak{P}(\mathscr{A})$ and that $\sigma_{\mathscr{A}^{\prime}}=\sim$.
A^{\prime} is not empty for in such a case we would have $A_{x}=S$ for all $x \in S$ which would imply for all $x, y \in S, x \sim y x, y \sim x y$. But then

$$
x \sim y x \sim x y x \sim x y \sim y
$$

contradicting the hypothesis that \sim is proper. Thus to show that $\mathscr{A}^{\prime} \in \mathfrak{P}(\mathscr{A})$, it suffices to prove that for all $x \in S ; A_{x} \in \mathscr{A}$ if $A_{x} \neq S$. We fix $x \in S$ and let

$$
T_{x}=\{y \in S \mid x \sim x y\}
$$

If $y, z \in T_{x}$, then $x \sim x y \sim x z$ and thus $x \sim(x y)(x z) \sim x y z$, that is, $y z \in T_{x}$. Conversely, if $y z \in T_{x}$, then $x \sim x y z$ and hence

$$
x \sim x y z \sim x x y z \sim(x y)(x y z) \sim x y x \sim x x y \sim x y
$$

that is, $y \in T_{x}$; similarly $z \in T_{x}$. Consequently T_{x} is a face of S. If $y \in A_{x}$, then $x \sim y x$ whence $x \sim x y x \sim x y$ and thus $y \in T_{x}$. Hence $A_{x} \subseteq T_{x}$ and thus $N\left(A_{x}\right) \subseteq T_{x}$ since T_{x} is a face. Further, if $y \in T_{x}$, then $x \sim x y$ whence $x \sim(x y) x$ so that $x y \in A_{x} \subseteq N\left(A_{x}\right)$. But $x y \in N\left(A_{x}\right)$ implies $y \in N\left(A_{x}\right)$ which proves $T_{x} \subseteq N\left(A_{x}\right)$. Consequently $T_{x}=N\left(A_{x}\right)$.

If $y z \in A_{x}$, then $x \sim y z x$ and we have $y x \sim y(y z x) \sim y z x \sim x$ so that $y \in A_{x}$. If $y \in A_{x}, z \in T_{x}$, then $x \sim y x \sim x z$ and thus $x \sim y x \sim y x z \sim(y z) x$, that is, $y z \in A_{x}$. Consequently A_{x} is a l.d.r.i. of $T_{x}=N\left(A_{x}\right)$ and hence $A_{x} \in \mathscr{A}$ if $A_{x} \neq S$.

We show next that $\sigma_{s^{\prime}}=\sim$. Suppose that $x \sigma_{\mathscr{A}^{\prime}} y$. Then $x \in A_{x}$ implies that $y \in A_{x}$, that is, $x \sim y x$; dually $y \sim x y$ and thus $x \sim y x \sim x y x \sim x y \sim y$.

Conversely, suppose that $x \sim y$ and let $z \in S$. If $x \in A_{z}$, then $z \sim x z$ and thus $z \sim y z$, that is, $y \in A_{z}$. If $x \in N\left(A_{z}\right) \backslash A_{z}$, then $z \sim z x$ since $x \in N\left(A_{z}\right)=T_{z}$, which implies $z \sim z y$ and $y \in N\left(A_{z}\right)$. If y were an element of A_{z}, then $z \sim y x$ which would imply $z \sim y z \sim x z$, that is, $x \in A_{z}$ contradicting the hypothesis. Consequently $y \in N\left(A_{z}\right) \backslash T_{z}$. The implications established also prove that $x \notin N\left(A_{z}\right)$ implies $y \notin N\left(A_{z}\right)$. By symmetry we conclude that $x \sigma_{A_{z}} y$ and since z is arbitrary, also $x \sigma_{\mathscr{A}} y$. Therefore $\sigma_{s}=\sim$.

The last statement of the theorem is now clear.
Corollary. $\sigma_{\mathscr{A}}$ is the finest 1.n. congruence on S.
Let \mathscr{C} be the family of all proper l.n. complexes and proper r.n. complexes of S together with the empty set, and \mathbb{C} be the set of all l.n. congruences and r.n. congruences on S. On the set $\mathfrak{P}(\mathscr{C})$ of all non-empty subsets of \mathscr{C} define the function. γ^{\prime} by: $\gamma\left(\mathscr{C}^{\prime}\right)=\sigma_{\mathscr{C}^{\prime}}$.

Theorem 6. The function γ maps $\mathfrak{P}(\mathscr{C})$ onto \mathbb{C} and is inclusion inverting.
Proof. This follows easily from Theorem 5 and its dual, and Theorem 1.
Corollary 1. $\sigma_{\mathscr{E}}$ is the finest n . congruence on S.
Letting \mathscr{D} be the family of all n . complexes of S, we have the following result by the preceding corollary and Theorem 1.

Corollary 2. $\sigma_{\mathscr{A}}$ is the finest n . congruence on S.
Note that \mathscr{C} can not be replaced by \mathscr{D} in Theorem 6.

Recall that for any $x \in S, \lambda_{x}=\sigma_{A(x)}, \varrho_{x}=\sigma_{B(x)}, \tau_{x}=\lambda_{x} \cap \varrho_{x}$. Hence by Theorem 2 . (its dual) $\lambda_{x}\left[\varrho_{x}\right]$ is a l.n. [r.n.] congruence and hence by Theorem $1, \tau_{x}$ is a n . congruence. It is not hard to show that $\sigma_{s \in}=\bigcap_{x \in S} \lambda_{x}$ and $\sigma_{\mathscr{Z}}=\sigma_{\mathscr{G}}=\bigcap_{x \in S} \tau_{x}$. The next proposition follows easily from the definitions.

Proposition 4. For any $x \in S$, we have
a) $S / \lambda_{x} \cong U$ if and only if $A(x)=S$;
b) $S / \lambda_{x} \cong L$ if and only if $A(x) \neq N(x)=S$;
c) $S / \lambda_{x} \cong U^{0}$ if and only if $A(x)=N(x) \neq S$;
d) . $S / \lambda_{x} \cong L^{0}$ if and only if $A(x) \neq N(x) \neq S$.

The next theorem characterizes the n. congruences τ_{x}.
Theorem 7. For any $x \in S$, we have:
a) $S / \tau_{x} \cong U$ if and only if $A(x)=S=B(x)$;
b) $S / \tau_{x} \cong L$ if and only if $A(x) \neq S=B(x)$;
c) $S / \tau_{x} \cong R$. if and only if $A(x)=S \neq B(x)$;
d) $S / \tau_{x} \cong L \times R$ if and only if $A(x) \neq N(x)=S \neq B(x)$;
e) $S / \tau_{x} \cong U^{0}$ if and only if $A(x)=B(x) \neq S$;
f) $S / \tau_{x} \cong L^{0}$ if and only if $A(x) \neq N(x)=B(x) \neq S$;
g) $S / \tau_{x} \cong R^{0}$ if and only if $B(x) \neq N(x)=A(x) \neq S$;
h) $S / \tau_{x} \cong(L \times R)^{0}$ if and only if $A(x) \neq N(x) \neq B(x), N(x) \neq S$,
and these are all homomorphic images S / τ_{x}.
Proof. As a sample we outline the proof of h); the other cases are treated. analogously (most of them are simpler to prove than h)). We note first that by, Theorem 4, $N(x)=N(A(x))=N(B(x))$.

Necessity of h). Since S / τ_{x} has a zero, we must have $N(x) \neq S$. Then $N(x) / \xi_{x} \cong$ $\cong L \times R$, where ξ_{x} is the restriction of τ_{x} to $N(x)$, which by d) (d) in turn follows. easily from Proposition 4, part b) and its dual) implies that $A(x) \neq N(x) \neq B(x)$. Sufficiency of h) is proved by essentially reversing the steps in the proof of necessity.

The last statement of the theorem follows by enumerating all possible cases of relationships among $A(x), B(x), N(x)$, and S.

5. Some properties of normal bands

We now investigate the properties of l.n. [r.n.] complexes of normal bands. The next theorem will be useful, it is also of independent interest.

Theorem 8. Let S be any semigroup such that for all $a, x, y, b \in S, a x y b=a y x b$. Then for any $x \in S$, we have:
a) $N(x)=\{y \in S \mid S y S \cap\langle x\rangle \neq \square\}$ (the smallest face containing x);
b) $P(x)=\{y \in S \mid y S \cap x S \neq \square\}$ (the smallest 1.d.r.i. containing x);
c) $A(x)=\{y \in S \mid y S \cap\langle x\rangle \neq \square\}$ (the smallest 1.n. complex containing x).

Proof. a) Let $T(x)=\{y \in S \mid S y S \cap\langle x\rangle \neq \square\}$. If $a, b \in T(x)$, then $u a v=x^{m}$, $. z b w=x^{n}$ for some $u, v, z, w \in S$ and some m, n. Hence $(u z) a b(v w)=(u a v)(z b w)=$ $=x^{m+n}$ and thus $a b \in T(x)$. Conversely; if $a b \in T(x)$, then $u a b v=x^{m}$ for some $u, v \in S$ and some m, which implies $a, b \in T(x)$. Thus $T(x)$ is a face of S containing x and hence $N(x) \cong T(x)$. The opposite inclusion being evident, we have $N(x)=T(x)$.
b) Let $T(x)=\{y \in S \mid y S \cap x S \neq \square\}$. If $a \in T(x), b \in S$, then $a u=x v$ for some $u, v \in S$. Thus $a u b^{2}=x v b^{2}$ whence $a b(u b)=x\left(v b^{2}\right)$ so that $a b \in T(x)$. Conversely, if $a b \in T(x)$, then obviously $a \in T(x)$. Hence $T(x)$ is a l.d.r.i. of S containing x and thus $P(x) \subseteq T(x)$. Again the opposite inclusion is obvious, and we have $P(x)=T(x)$.
c) Let $T(x)=\{y \in S \mid y S \cap\langle x\rangle \neq \square\}$. By the definition of $A(x)$ and parts a), b) of the present theorem, $A(x)=\{y \in N(x) \mid y N(x) \cap x N(x) \neq \square\}$. If $a \in T(x)$, then $a u=x^{n}$ for some $u \in S$ and some n. Hence $a(u x)=x x^{n}$, where clearly $u x, x^{n} \in N(x)$ and $a \in A(x)$. Conversely, suppose that $a \in A(x)$. Then $a \in N(x)$ and $a u=x v$ for some $u, v \in N(x)$. By part a), $z v w=x^{m}$ for some $z, w \in S$ and some m. Consequently $a(u z w)=x v z w=x(z v w)=x^{m+1}$, and $a \in T(x)$. Therefore $A(x)=T(x)$.

Corollary 1. In a normal band S, for any $x \in S$, we have:
a) $N(x)=\{y \in S \mid x=x y x\}$;
b) $P(x)=\{y \in S \mid y a=x a$ for some $a \in S\}$;
c) $A(x)=\{y \in S \mid x=y x\}$.

Proof. a) This is valid in any band $S(6.2,[3])$.
b) If $y u=x v$, then $y(v u)=(y u)(v u)=(x v)(v u)=x(v u)$.
c) If $y u=x$, then $y x=y u=x$.

Corollary 2. In a normal band S, the following statements are equivalent for any $x \in S$:
a) N_{x} is a left zero semigroup;
b) x is a left zero of $N(x)$;
c) $B(x)=N(x)$.

Proof. We prove only that c) implies a). If $a \in N_{x}$, then $x=x a x$ by part a) of Corollary 1 which together with the hypothesis and the dual of part c) of Corollary 1 implies $x=x a$.

Note that a) and b) in Corollary 2 are equivalent in any band. Let S be a normal band, and let

$$
\begin{aligned}
& D_{1}=\left\{x \in S| | N_{x} \mid=1\right\}, \\
& D_{2}=\left\{x \in S| | N_{x} \mid>1 \text { and } N_{x} \text { is a left zero semigroup }\right\}, \\
& D_{3}=\left\{x \in S| | N_{x} \mid>1 \text { and } N_{x} \text { is a right zero semigroup }\right\}, \\
& D_{4}=S \backslash\left(D_{1} \cup D_{2} \cup D_{3}\right) .
\end{aligned}
$$

Further, let K be the intersection of all ideals of S and let

$$
\begin{aligned}
& F_{i}=D_{i} \cap K \\
& G_{i}=D_{i} \cap(S \backslash K),
\end{aligned}
$$

for $i=1,2,3,4$. Finally let $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ denote, respectively, the semigroups $U, L, R, L \times R$. We are now ready to prove the main theorem of this section.

Theorem 9. Let x be any element of a normal band S. Then for $i=1,2,3,4$,
a) $S / \tau_{x} \cong \alpha_{i}$ if and only if $x \in F_{i}$,
b) $S / \tau_{x} \cong \alpha_{i}^{0}$ if and only if $x \in G_{i}$.

Proof. We note that $K=\{y \in S \mid N(y)=S\}$, that by Theorem 4, $N(x)=$ $=N(A(x))=N(B(x))$, and that $A(x)=B(x)$ implies $A(x)=N(x)$. The theorem now follows from Theorem 7 and Corollary 2 to Theorem 8 and its dual.

We say that a family \mathscr{F} of equivalence relations on a set T distinguishes elements of T if $\bigcap_{\varphi \in \mathscr{F}} \varphi=\iota_{T}$, where ι_{T} is the identity relation on T.

Theorem 10. S is a normal band if and only if the family $\left\{\tau_{x}\right\}_{x \in S}$ distinguishes elements of S.

Proof. Necessity. Let $x, y \in S$ and suppose that for all $z \in S, x \tau_{z} y$. In particular $x \tau_{x} y$ which implies $y \in A(x) \cap B(x)$. By minimality of $A(x)$ and $B(x)$, we have $A(y) \subseteq$ $\sqsubseteq A(x)$ and $B(y) \subseteq B(x)$. Similarly $x \tau_{r} y$ implies $A(x) \subseteq A(y), B(x) \subseteq B(y)$. Consequently $A(x)=A(y), B(x)=B(y)$. By Corollary 1 to Theorem 8 (part c) and its dual), we have for all $z, w, \in S$:

$$
\begin{aligned}
& x=z x \text { if and only if } y=z y \\
& x=x w \text { if and only if } y=y w .
\end{aligned}
$$

Since x and y are idempotent, $x=x y=y$.
Sufficiency. Since τ_{x} is a n. congruence, so is $\bigcap_{x \in S} \tau_{x}$ which by the hypothesis is equal to ι_{S}, the identity relation on S. But then S itself is a normal band.

One similarly establishes
Proposition 5. S is a left normal band if and only if the family $\left\{\lambda_{x}\right\}_{x \in S}$ dis-. tinguishes elements of S.

6. Normal bands and subdirect products

We next use some results of the previous section to obtain representations of normal bands as subdirect products of subdirectly irreducible normal bands.

Let S be a normal band. Then by Theorem $10, \bigcap_{x \in S} \tau_{x}=\iota_{s}$ which by Birkhoff's theorem (Theorem 9, p. 92, [1]) implies that S is a subdirect product of semigroups $S / \tau_{x}, x \in S$. Theorem 9 yields all the semigroups S / τ_{x} in terms of the sets F_{i} and $G_{i}, i=1,2,3,4$. In the notation of that theorem, $S / \tau_{x} \cong \alpha_{1}=U$ if and only if $x \in F_{1}$.

Since $F_{1}=D_{1} \cap K$ it is clear that if $F_{1} \neq \square, F_{1}$ consists of a single element which is the zero of S. Further, if $S / \tau_{x} \cong \alpha_{4}^{0}=(L \times R)^{0}$, then by the definition of τ_{x} ($\tau_{x}=\lambda_{x} \cap \varrho_{x}$), we must have $S / \lambda_{x} \cong L^{0}, S / \varrho_{x} \cong R^{0}$. It is easy to verify that $U^{0}, L, R, L^{0}, R^{0}$ are subdirectly irreducible. Using Theorem 9 for counting the number of copies of these semigroups among the semigroups S / τ_{x} and taking into account the above discussion, we obtain the next theorem which is the main result of this section.

Theorem 11. Any normal band S having more than one element is the subdirect product of .

$$
\left|F_{2}\right|+\left|F_{4}\right| \quad \text { copies of } L, \quad\left|F_{3}\right|+\left|F_{4}\right| \quad \text { copies of } \quad R,
$$

$\left|G_{1}\right| \quad$ copies of $U^{0}, \quad\left|G_{2}\right|+\left|G_{4}\right|$ copies of $L^{0}, \quad\left|G_{3}\right|+\left|G_{4}\right|$ copies of R^{0}.
The total number of copies is $|S|$ if S has no zero and $|S|-1$ if S has a zero. The semigroups $L, R, U^{0}, L^{0}, R^{0}$ are subdirectly irreducible.

Remark. We have already noted that if $F_{1} \neq \square$, then it consists of a single element which is the zero of S. Similarly Corollary 2 to Theorem 8 implies that if $F_{2} \neq \square$, then F_{2} is the set of all left zeros of S and is the kernel of S; an analogous statement is valid for F_{3}. Hence at most one of the sets F_{1}, F_{2}, F_{3} is non-empty.

Corollary 1. All the semigroups considered contain more than one element.
a) A left normal band is the subdirect product of
$\left|F_{2}\right| \quad$ copies of $L, \quad\left|G_{1}\right|$ copies of $U^{0}, \quad\left|G_{2}\right| \quad$ copies of L^{0}.
b) A left zero semigroup is a subdirect product of

$$
|S| . \text { copies of } L
$$

c) A semilattice is the subdirect product of

$$
\begin{array}{llllll}
|S|-1 & \text { copies of } & U^{0} & \text { if } & S & \text { is finite, } \\
|S| & \text { copies of } & U^{0} & \text { if } & S & \text { is infinite. }
\end{array}
$$

Proof. Part a) follows from the theorem; it can also be derived directly, by the same method of proof as above, from Propositions 4 and 5. Part b) follows directly from the theorem. If S is a finite semilattice, then S has a zero. If S is an infinite semilattice with zero, then $|S|=|S \backslash 0|=\left|G_{1}\right|$. Hence c) holds.

Corollary 2 (cf. Theorem 1, [5] and Corollaire I, Théorème V, [7]). These are the only subdirectly irreducible
a) normal bands: $L, R, U^{0}, L^{0}, R^{0}$;
b) left normal bands: L, U^{0}, L^{0};
c) left zero semigroups: L;
d) - semilattices: U^{0}.

Corollary 3. (cf. Theorem 4, [9] which is a stronger statement). Every normal band is a subdirect product of a left and a right normal band.

Proof. This follows from the theorem since the product of, e.g., copies of L^{\prime}, U^{0}, L^{0} is a left normal band; similarly for R, U^{0}, L^{0}. This corollary also follows from Theorem 1.

One might ask what kind of bands are subdirect products of, say, left zero semigroups and semilattices, or some other combination of classes of semigroups we have considered. The desired results can be obtained from Theorem 11 or certain of its corollaries.

7. A representation of normal bands

The following construction is an easy modification of the one given by Shain [5] for right normal bands. It gives a representation of a normal band by subsets of a set under certain multiplication.

Let B, C, and D be sets, let $E=\{1,2\}$ and suppose that $B, C \times E, D \times E$ are pairwise disjoint. Let

$$
A=B \cup(C \times E) \cup(D \times E),
$$

and let \mathscr{F} be the set of all subsets of A under the following multiplication: for $\mathfrak{A}, \mathfrak{B} \in \mathscr{F}$;

$$
\begin{align*}
\mathfrak{A} \cdot \mathfrak{B} \cap B & =\mathfrak{H} \cap \mathfrak{B} \cap B \tag{1}\\
\mathfrak{H} \cdot \mathfrak{B} \cap(C \times E) & =\mathfrak{H} \cap(C \times E), \\
\mathfrak{A} \cdot \mathfrak{B} \cap(D \times E) & =\mathfrak{B} \cap(D \times E) .
\end{align*}
$$

It is easy to see that \mathscr{F} is a normal band; in analogy to [5] we call subsemigroups of \mathscr{F} special normal bands.

Theorem 12. Every normal band is isomorphic to a special normal band.
Proof. Let S be a normal band; then using Theorem 11, we may suppose that $S \subseteq \prod_{i \in I} S_{i}$, where S_{i} is one of the semigroups: $\dot{L}, R, U^{0}, L^{0}, R^{0}$, and projection $\pi_{i}(S)=S_{i}$ for all $i \in \dot{I}$. Let

$$
\begin{aligned}
& B=\left\{i \in I \mid S_{i}=U^{0}\right\}, \\
& C=\left\{i \in I \mid S_{i}=L \quad \text { or } \quad S_{i}=L^{0}\right\}, \\
& D=\left\{i \in I \mid S_{i}=R \quad\right. \text { or } \\
& \left.S_{i}=R^{0}\right\} .
\end{aligned}
$$

Let $U=\{1\}, L=\left\{l_{1}, l_{2}\right\}, R=\left\{r_{1}, r_{2}\right\}$. Let A, E, and \mathscr{F} be as above and define the function $\varphi: S \rightarrow \mathscr{F}$ by letting $\varphi(x) \subseteq A$ be defined by:

$$
\begin{align*}
& \varphi(x) \cap B=\left\{i \in B \mid \pi_{i}(x)=1\right\} \\
& \varphi(x) \cap(C \times E)=\bigcup_{j=1}^{2}\left\{(i, j) \in C \times E \mid \pi_{i}(x)=l_{j}\right\} \tag{2}\\
& \varphi(x) \cap(D \times E)=\bigcup_{j=1}^{2}\left\{(i, j) \in D \times E \mid \pi_{i}(x)=r_{j}\right\}
\end{align*}
$$

A straightforward calculation shows that φ is an isomorphism; here $\varphi(S)$ is a special normal band.

Theorem 13 (cf. Theorem 2, [5] and Corollaire II, Théorème V, [7]). With the notation as in the introduction to this section, we have:
a) \mathscr{F} is a left normal band if and only if $D=\square$;
b) : \mathscr{F} is a left zero semigroup if and only if $B=D=\square$;
c) \mathscr{F} is a semilattice if and only if $C=D=\square$;
d) \mathscr{F} is a rectangular band if and only if $B=\square$.

Defining a "special left normal band", a "special left zero semigroup", etc., analogously as a special normal band above, the statements corresponding to Theorem 12 are valid for bands in a)-d).

Proof. The proof is an adaptation of the proof of Theorem 12 and is omitted.
Remark. If we replace (1) by

$$
\mathfrak{Q r} \cdot \mathfrak{B} \cap \dot{B}=(\mathfrak{H} \cup \mathfrak{B}) \cap B
$$

\mathscr{F} is still a normal'band and Theorem 12 remains valid where in the proof, (2) is replaced by

$$
\varphi(x) \cap B=\left\{i \in B \mid \pi_{i}(x)=0\right\}
$$

(0 is the zero of U^{0}).

Bibliography

[1] G. Birkhoff, Lattice theory (New York, 1948).
[2] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups. Vol. I (Providence, 1961).
[3] M. Petrich, The maximal semilattice decomposition of a semigroup, Math. Z., 85 (1964), 68-82.
[4] M. Petrich, The maximal matrix decomposition of a semigroup, Portugaliae Math. (to appear).
[5] B. M. Shain, A contribution to the theory of restrictive semigroups, Izv. vys. uch. zav., Mat., 2 (33) (1963), 152-154 (Russian).
[6] B. M. Shain, Restrictive bisemigroups, Izv. vys. uch. zav., Mat., 1 (44) (1965), 168-179 (Russian).
[7] G. Thierrin, Sur la structure des demi-groupes, Alger Math., 3 (1956), 161-171.
[8] V. V. Vagner, Restrictive'semigroups, Izv. vys. uch. zav., Mat., 6 (31) (1962), 19-27 (Russian).
[9] M. Yamada and N. Kimura, Note on idempotent semigroups. II, Proc. Japan Acad., 34 (1958), 110-112.

THE PENNSYLVANIA STATE UNIVERSTTY ,

