On some results of A. Rényi and C. Rényi concerning periodic entire functions

By I. N. BAKER in London (England)

In their paper [7] A. and C. RényI have investigated the possibility that $f(g(z))$ should be an entire periodic function, where $f(z)$ and $g(z)$ are entire and $g(z)$ is non-periodic. They proved the following two theorems:

Theorem 1. If $f(z)$ is an arbitrary non-constant entire function and $P(z)$ an arbitrary polynomial of degree $\geqq 3$, then the entire function $f(P(z))$ is not periodic.

Theorem 2. If $P(z)$ is an arbitrary non-constant polynomial and $g(z)$ an entire function which is not periodic, then $P(g(z))$ is not periodic.

In this note we shall make some improvements on theorem 2 and prove first
Theorem 3. If $f(z)$ is an arbitrary non-constant entire function of order less than $\frac{1}{2}$ or of order $\frac{1}{2}$ and minimal type, and if $g(z)$ is an entire function which is not periodic, then $f(g(z))$ is not periodic.

The proof depends on the following
Lemma 1. If $f(z)$ and $g(z)$ are non-constant entire functions such that $g(z)$ is not periodic but $f(g(z))=F(z)$ is periodic with period λ, and if t is a value for which $F^{\prime}(t) \neq 0$, then for integral $n, w_{n}=g(t+n \lambda)$ satisfies $f\left(w_{n}\right)=F(t)$, while $w_{n}=w_{m}$ if and only if $n=m$.

Consequently $|g(t+n \lambda)| \rightarrow \infty$ as $|n| \rightarrow \infty$ and $g(z)$ is unbounded on any ray $z=z_{0}+\lambda s, 0 \leqq s<\infty$.

Proof of Lemma 1. It is clear that w_{n} satisfies $f\left(w_{n}\right)=f(g(t+n \lambda))=$ $=F(t+n \lambda)=F(t)=a$, say. If there are integers m, n such that $m \neq n, w_{m}=w_{n}$, then consideration of

$$
a(s)=F(t+m \lambda+s)=f(g(t+m \lambda+s))=F(t+n \lambda+s)=f(g(t+n \lambda+s))
$$

shows that for all sufficiently small $|s|$,

$$
g(t+m \lambda+s)=g(t+n \lambda+s)
$$

is the unique solution of $f(w)=a(s)$ near $w_{m}=w_{n}$ (we recall that $f^{\prime}\left(w_{m}\right) \neq 0$ since $\left.f^{\prime}\left(w_{m}\right) g^{\prime}(t+m \lambda)=F^{\prime}(t+m \lambda)=F^{\prime}(t) \neq 0\right)$. It then follows that $g(z)$ is periodic with period $(m-n) \lambda$, against assumption. Thus we conclude that $w_{m} \neq w_{n}$ for $m \neq n$.

Since w_{n} is a solution of $f\left(w_{n}\right)=a$, it follows that $\left|w_{n}\right| \rightarrow \infty$ as $|n| \rightarrow \infty$. On any ray $L: z=z_{0}+\lambda s, s \geqq 0$, one can find $z=t$ such that $F^{\prime}(t) \neq 0$, and the $t+n \lambda$ then lie on L so that $g(z)$ is unbounded on L.

Proof of theorem 3. Suppose that f and g satisfy the conditions of theorem 3, but that $F(z)=f(g(z))$ is periodic with period, say, λ. Denote by L any ray of the form $z=z_{0}+\lambda s, s \geqq 0$. Now $g(L)$ is an unbounded, connected plane set on which $f(z)$ is bounded, since the values of $f(z)$ on $g(L)$ are the values of $F(z)=f(g(z))$ on L, and these are bounded, being in fact the values taken on the intersection of L with one period strip of F. But (see e.g. [3]) for a function of the order of growth of $f(z)$ there is a sequence $R_{n} \rightarrow \infty$ such that the minimum of $|f(z)|$ tends to ∞ as $|z| \rightarrow \infty$ through the values R_{n}. This contradicts the boundedness of $f(z)$ on $g(L)$. Thus the original assumption that $f(g(z))$ is periodic is false.

Theorem 3 is sharp, since to a prescribed type $\varepsilon>0$ the function $f(z)=$ $=\cosh (\varepsilon / \bar{z})$ is of order $\frac{1}{2}$, type ε and $f\left(z^{2}\right)=\cosh (\varepsilon z)$ is periodic. We may note, however, that in this example the "inner" function $g(z)$ is the polynomial z^{2} and it is natural to see if more can be proved when the case of quadratic $g(z)$ is set aside. Concerning this case one can at least prove

Theorem 4. If $f(z)$ is an arbitrary non-constant entire function, if $g(z)$ is a non-periodic entire function other than a polynomial of degree $\leqq 2$, and if $F(z)=$ $=f(g(z))$ is periodic, then
(i) $g(z)$ is transcendental, and
(ii) the order of $F(z)$ is infinite.

Proof. Part (i) follows at once from Theorem 1. The proof of part (ii) follows at once from the result of Pólya [6] that if $F=f(g)$ is of finite order, where f, g are entire, then either g is a polynomial and f is of finite order or g is not a polynomial and f is of zero order. Since in our case g is not a polynomial and f has order $\geqq \frac{1}{2}$ we conclude that $F(z)$ has infinite order.

For the further discussion we note that without loss of generality z may be subjected to a linear transformation to make the period of $F(z)$ equal to $2 \pi i$, i.e. $F(z)$ may be represented as $h\left(e^{z}\right)$, where $h(z)=\sum_{-\infty}^{\infty} A_{n} z^{n}, 0<|z|<\infty$. The case when $h(z)$ is entire, i.e. when $A_{n}=0$ for negative n, may be distinguished as the case when $F=h\left(e^{z}\right)$ is bounded in the left half-plane $\operatorname{Re} z<0$. In this case it is impossible that a non-constant $F=f(g(z))$, where $g(z)$ is a quadratic polynomial, for such a decomposition together with the boundedness of F in a left half-plane would imply boundedness in a right half-plane also and thus F would be a (periodic) entire function bounded in the whole plane. We can prove rather more:

Theorem 5. If $h(z)$ is a non-constant entire function and $F(z)=h\left(e^{z}\right)$, and if F may also be represented as $F=f(g(z))$, where $g(z)$ is a non-periodic entire function and $f(z)$ is an entire function, then
(i) the order of $f(z)$ is at least one,
(ii) the order of $g(z)$ is at least one,
(iii) $g(z)$ is p-valent in a suitable left half-plane $H: \operatorname{Re} z<c o n s t$. for some integer p, i.e. g takes any value at most p times in H,
(iv) the order of $F(z)$ is infinite, so that $h(z)$ must be transcendental.

In the course of this proof we shall need two lemmas:
Lemma 2. If for a positive integer p an entire function $g(z)$ is p-valent in a halfplane $H: \operatorname{Re} z<C=$ const. in the sense that $g(z)$ takes no value more than p times in H, then

$$
|g(z)|=O\left(|z|^{2 p}\right)
$$

uniformly as $z \rightarrow \infty$ in any angle $A:|\arg z-\pi| \leqq \theta$, where θ is a constant less than $\pi / 2$.
Such a result was proved by BIEBERBACH [2] in the case $p=1$ of univalent functions.
Proof of Lemma 2. Put $t=z-C, s=(t+1) /(t-1)$. This substitution 'maps H one-to-one conformally on $D:|s|<1$ in such a way that $z=\infty$ corresponds to $t=1$. Moreover $\varphi(s) \equiv g(z)$ is p-valent in D. By Miss Cartwright's results [4] one has

$$
|\varphi(s)|=O\left\{(1-|s|)^{-2 p}\right\} \quad \text { uniformly as } \quad|s| \rightarrow 1 \quad \text { in } \cdot D .
$$

Now, as $z \rightarrow \infty$ in an angle A, so that for large $|z|, z$ is in H, we have

$$
\begin{aligned}
1-|s|^{2}=1 & -\frac{t+1}{t-1} \cdot \frac{\bar{t}+1}{\bar{t}-1}=-2 \operatorname{Re} t /(t \bar{t}-t-\bar{t}+1) \\
& >-2 \operatorname{Re} t /(|t|+1)^{2} \quad \text { since } \operatorname{Re} t<0 \\
& >K|z| \cos \theta /|z|^{2}=K^{\prime}| | z \mid \quad \text { for a suitable constant } K^{\prime} .
\end{aligned}
$$

Thus $|g(z)|=|\varphi(s)|=O\left\{(1-|s|)^{-2 p}\right\}=O\left\{\left(1-|s|^{2}\right)^{-2 p}\right\}=O\left(|z|^{2 p}\right)$.
The next lemma is essentially the Phragmén-Lindelöf principle in a form convenient for our application. It is proved in this form in e.g. [1]:

Lemma 3. If the order of the entire function $f(z)$ is $\leqq \beta, \beta>0$, and if as $z \rightarrow \infty$ outside a number of disjoint angular sectors of the form D :

$$
\theta_{1}<\arg z<\theta_{2}, \quad \theta_{2}-\theta_{1}<\frac{\pi}{\beta},
$$

one has

$$
|f(z)|=O\left(\exp \left(|z|^{\beta^{\prime}}\right)\right), \beta^{\prime}<\beta, K \text { constant }
$$

then the order of $f(z)$ is in fact $\leqq \beta^{\prime}$.
Taking $\beta<1$ one immediately obtains the
Corollary. An entire function of order $\beta<1$ cannot be of order strictly $<\beta$ (in particular cannot be $O\left(|z|^{k}\right)$) in any half-plane.

Proof of theorem 5. If $h(0)=\alpha$, then $F(z) \rightarrow \alpha$ as $\operatorname{Re} z \rightarrow-\infty$.
First we show $|g(x)| \rightarrow \infty$ as $x \rightarrow-\infty$. Suppose this is not true. Then there is a $K>0$ and a sequence $x_{n} \rightarrow-\infty$, such that $\left|g\left(x_{n}\right)\right| \leqq K$. Now $F(x)=f(g(x)) \rightarrow \alpha$ as $x \rightarrow-\infty$. We can assume, by choosing a subsequence of x_{n} if necessary, that $g\left(x_{n}\right) \rightarrow \beta,|\beta| \leqq K$. Then $f(\beta)=\alpha$. Now given $\varepsilon>0$, we have $|f(g(x))-\alpha|<\varepsilon$ for all sufficiently large $-x$, and since the α-points of f are isolated, it follows that $g(x) \rightarrow \beta$ as $x \rightarrow-\infty$. Indeed $f(g(z)) \rightarrow \alpha$ as $\operatorname{Re} z \rightarrow-\infty$, so that we must have $g(z) \rightarrow \beta$ as
$\operatorname{Re} z \rightarrow-\infty$. But this is impossible, since by Lemma $1 g(\dot{z})$ is unbounded on any line $\operatorname{Re} z=$ constant. Thus we have shown that $|g(x)| \rightarrow \infty$ as $x \rightarrow-\infty$. Consider the half-plane $H: \operatorname{Re} z<c$, where c is chosen so that $h(z)$ takes the value α in $|z|<e^{c}$ only at $z=0$, while $|h(z)-\alpha|>\delta>0$ on $|z|=e^{c}$. Then in H one has $F(z) \neq \alpha$, while on the boundary of H one has $|F(z)-\alpha|>\delta>0$. As $z \rightarrow \infty$ on the negative real axis R in H one has $F(z) \rightarrow \alpha$.

The values of $w=g(z)$ in H form an unbounded domain $G=g(H)$ and as $z \rightarrow \infty$ along R in H, the corresponding values $g(z)$ run to ∞ along a path L in G. As $w \rightarrow \infty$ along L one has $f(w) \rightarrow \alpha$. Moreover $f(w) \neq \alpha$ for w in G, while at any boundary point of $G,|f(w)-\alpha|>\delta$. Consequently (see e.g. [5, Chapter XI]) α is a direct critical transcendental singularity of the inverse function $f_{-1}(z)$ of $f(w)$. By the. Denjoy-Carleman-Ahlfors theorem [5, p. 313] it follows that the order of $f(z)$ is at least one. This proves part (i).

Let the integer p denote the multiplicity of $z=0$ as a solution of $h(z)=\alpha$. Then the number $\varepsilon>0$ and the c in the definition of H may be chosen so that, for $0<\left|\alpha^{\prime}-\alpha\right|<\varepsilon$ the equation $h(t)=\alpha^{\prime}$ has exactly p roots, all different, $t_{1}, t_{2}, \ldots, t_{p}$. in $|t|<e^{c}$. Thus in H we have $F(z)=h\left(e^{z}\right)=\alpha^{\prime}$ precisely at the infinite set of points

$$
S\left(\alpha^{\prime}\right)=\left\{\log t_{1}, \log t_{2}, \ldots, \log t_{p}\right\}
$$

We may assume that $F^{\prime}(z) \neq 0$ in H. Then by Lemma $1 g(z)$ does not take the same value at any two different values of $\log t_{i}$ (for fixed i). Then on the set $S(\alpha)$ the function $g(z)$ can take a given value at most p times, i.e. once on a value of $\log t_{1}$, once on a value of $\log t_{2}$, etc.

Now if $g(z)=g\left(z^{\prime}\right)$ for z, z^{\prime} in H, then $F(z)=F\left(z^{\prime}\right)$ so that z and z^{\prime} belong to the same set $S\left(\alpha^{\prime}\right)$. Hence we have proved (iii) that $g(z)$ takes any given value at most p times in H.

By Lemma 2 we see that $g(z)$ is $O\left(|z|^{2 p}\right)$ in H and it follows from Lemma 3. that the order of $g(z)$ is at least one.

The infinite order of $F(z)$ follows from Pólya's result just as in Theorem 3.
The example $F=\exp \left(z+e^{z}\right), f=e^{z}, g=z+e^{z}, h=z e^{z}$ shows that order 1 can indeed occur for both f and g. In this case $p=1$.

References

[1] I. N. Baker, Entire functions with linearly distributed values, Math. Z., 86 (1964), 263-267.
[2] L. Bieberbach, Zwei Sätze über das Verhalten analytischer Funktionen in der Umgebung. wesentlich singulärer Stellen, Math. Z., 2 (1918), 158-170.
[3] R. Boas, Entire functions (New York, 1954).
[4] M. L. Cartwright, Some inequalities in the theory of functions, Math. Ann., 111 (1935), 98-118.
[5] R. Nevanlinna, Eindeutige analytische Funktionen (Berlin, 1953).
[6] G. Pólya, On an integral function of an integral function, J. London Math. Soc., 1 (1926), 12-15.
[7] A. Rényi and C. Rényi, Some remarks on periodic entire functions, J. Analyse Math., 14, (1965), 303-310.

