
On some results of A. Renyi and C. Renyi 
concerning periodic entire functions 

By I. N. BAKER in London (England) 

In their paper [7] A. and C. RENYI have investigated the possibility that /(g(z)) 
should be an entire periodic function, where f(z) and g(z) are entire and g(z) is 
non-periodic. They proved the following two theorems: 

T h e o r e m 1. If f(z) is an arbitrary non-constant entire function and P(z) an 
arbitrary polynomial of degree S3 , then the entire function f(P(z)) is not periodic. 

T h e o r e m 2. If P(z) is an arbitrary non-constant polynomial and g(z) an entire 
function which is not periodic, then P(g(z)) is not periodic. 

In this note we shall make some improvements on theorem 2 and prove first 

T h e o r e m 3. If f(z) is an arbitrary non-constant entire function of order less 
than -j or of order \ and minimal type, and if g(z) is an entire function which is not 
periodic, then f(g(zj) is not periodic. 

The proof depends on the following 

L e m m a 1. If f(z) and g(z) are non-constant entire functions such that g(z) is 
not periodic but f(g(z)) = F(z) is periodic with period X, and if t is a value for which 
F'(t) 7s 0, then for integral n,w„=g(t + nX) satisfies f(w„) = F(t), while wn = wm if 
and only if n = m. 

Consequently + n / l ) | a s |«| — =<= and g(z) is unbounded on any ray 
z = z0 + Xs, 0^s< oo 

P r o o f of L e m m a 1. It is clear that wn satisfies f(w„) —f(g(t +«!)) = 
= F(t + nX) = F(t) = a, say. If there are integers m,n such that mp^n, wm = wn, 
then consideration of 

a(s) = F(t + ml + s) = f(g( t + mX+.?)) = F(t + nX+ s) = f(g( t + nl+.v)) 

shows that for all sufficiently small |J], 

g(t + mX + s)= g(t + nX+ s) 

is the unique solution of f(w)=a(s) near w,„ = u-„ (we recall that f'{wm) ^ 0 since 
f'(wm)g'(t + mX) = F'(t + mX) = F'(t) ^ 0). It then follows that g(z) is periodic with 
period (m — n)X, against assumption. Thus we conclude that wm ^ w„ for m ^n. 
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Since wn is a .solution of f(wn) = a, it follows that |iv„|— °° as |«|-~«>. On any 
ray L: z — z0 + Xs,s^O, one can find z = t such that F ' ( 0 ^ 0 , and the t + nX then 
lie on L so that g(z) is unbounded on L. 

P r o o f of t h e o r e m 3. Suppose t h a t / a n d g satisfy the conditions oftheorem 3, 
but that F(z) = f(g(z)) is periodic with period, say, X. Denote by L any ray of the 
form z = z0+Xs, i S O . Now g(L) is an unbounded, connected plane set on which 

f(z) is bounded, since the values o f f ( z ) on g(L) are the values of F(z) =f(g(z)) on L, 
and these are bounded, being in fact the values taken on the intersection of L with' 
one period strip of F. But (see e.g. [3]) for a function of the order of growth o f / ( z ) 
there is a sequence i?„->-°° such that the minimum of |/(z)[ tends to °° as [z| — o= 
through the values Rn. This contradicts the boundedness of / (z) on g(L). Thus 
the original assumption that f(g(z)) is periodic is false. 

Theorem 3 is sharp, since to a prescribed type £ > 0 the function, / (z) = 
= cosh (e ]/Z) is of order -¿, type e and / ( z 2 ) — cosh (sz) is periodic. We may note, 
however, that in this example the "inner" function g(z) is the polynomial z2 and 
it is natural to see if more can be proved when the case of quadratic g(z) is set aside. 
Concerning this case one can at least prove 

T h e o r e m 4. If f(z) is an arbitrary non-constant entire function, if g(z) is a 
non-periodic entire function other than a polynomial of degree ~ 2,. and if F(z) = 
—f(g(z)) ' s periodic, then 

(i) g(z) is transcendental, and (ii) the order of F(z) is infinite. 

P r o o f . Part (i) follows at once from Theorem 1. The. proof of part (ii) follows at 
once from the result of PÓLYA [6] that if F—f(g) is of finite order, where fig are 
entire, then either g is a polynomial and / is of finite order or g is not a polynomial, 
and / is of zero order. Since in our case g is not a polynomial.and / h a s order 
we conclude that F(z) has infinite order. 

For the further discussion we note that without loss of generality z may be 
subjected to a linear transformation to make the period of F(z) equal to 2ni, i.e. 

F(z) may be represented as /j(e2), where h(z) = ^ ^ „ z " , 0 < \z\ •<= The case when 

h(z) is entire, i.e. when An = 0 for negative n, may be distinguished as the case when 
F=h(ez) is bounded in the left half-plane R e z < 0 . In this case it is impossible 
that a non-constant F=f(g(z)), where g(z) is a quadratic polynomial, for such 
a decomposition together with the boundedness of F in a left half-plane would 
imply boundedness in a right half-plane also and thus F would be a (periodic) 
entire function bounded in the whole plane. We can prove rather more: 

T h e o r e m 5. If h(z) is a non-constant entire function and F(z) = h(e:), and if 
F may also be represented as F =f(g(z)), where g(z) is a non-periodic entire function 
and f(z) is an entire function, then 

(i) the order of f(z) is at least one, 
(ii) the order of g(z) is at least one, 

(iii) g(z) is p-valent in a suitable left half-plane H: Re z < const, for some 
integer p, i.e. g takes any value at most p times in H, 

(iv) the order of F(z) is infinite, so that h(z) must be transcendental. 
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In the course of this proof we shall need two lemmas: 

L e m m a 2. If for a positive integer p an entire function g(z) is p-valent in a half-
plane H: R e z < C = const, in the sense that g(z) takes no value more than p times 
in H, then 

\g(z)\ = 0(\z\2")-

uniformly as z — in any angle A: |arg z — n\where 6 is a constant less than n/2. 

Such a result was proved by BIEBERBACH [2] in the case p = 1 of univalent functions. 
P r o o f of L e m m a 2. Put t = z — C, s = (t + \)l(t — 1). This substitution 

maps H one-to-one conformally on D: < 1 in such a way that z — °° corresponds 
to / = 1. Moreover cp(s) = g(z) is /?-valent in D. By Miss CARTWRIGHT'S results [4] 
•one has 

|<p(s)| = 0 { ( l - | s | ) - 2 p } uniformly as | s | - l in Z). 

Now, as z ^ t » in an angle A, so that for large \z\, z is in H, we have 

l - | i | 2 = i _ i ± i . l ± l = —2 Re tl(ti — t — t+ 1) 1 ' i-1 t-1 /v 7 

> - 2 R e i / ( | ? | + l)2 since R e / < 0 , 

> K\z\ cos 0/|z|2 =K'j\z\ for a suitable constant K'. 

Thus \g(z)\ = 1 ^ ) 1 = 0 { ( 1 - H ) - 2 ^ } = 0 { ( l - H 2 ) - 2 " } = 0(|z|2"). 

The next lemma is essentially the Phragmen—Lindelof principle in a form 
•convenient for our application. It is proved in this form in e.g. [1]. 

L e m m a 3. If the order of the entire function f(z) is ^P, 0, and if as z — °=> 
outside a number of disjoint angular sectors of the form D: 

0 x < a r g z < 0 2 , 0 2 - 9 ^ — , 

one has 
| /(z)| = 0(exp(|z |" ')) , /?'</?, K constant, 

then the order of f(z) is in fact ^ /?'. : ' 

Taking P < 1 one immediately obtains the 
C o r o l l a r y . An entire function of order ft < 1 cannot be of order strictly 

< p (in particular cannot be <9([z|k)) in any half-plane. 

P r o o f of t h e o r e m 5. If h(0)=a, then F(z) — oc as R e z ^ - » . 
First we show \g(x) | — as x — — Suppose this is not true. Then there is 

a K>Q and a sequence x„—— such that |g(x„) |^K. Now F(x) =f(g(x)) —a 
as x — — We can assume, by choosing a subsequence of x„ if necessary, that 
.g(xn)-*p, \p\ 3 K . Then f(P) = a. Now given s > 0 , we have \f(g(x)) — a | < e for all 
sufficiently large — x, and since the a-points o f / are isolated, it follows that g(x) —j? 
as x—— Indeed /(g(z))—a as R e z - - = » , so that we must have g(z) — ft as 
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R e z — — ¿o. But this is impossible, since by Lemma 1 g(z) is unbounded on any 
line Re z = constant. Thus we have shown that | — as .x— — «>. Consider 
the half-plane H: Re z < c , where c is chosen so that h(z) takes the value a in [z| < ec 

only at z = 0, while \h(z) — a| x 5 > 0 on | z |=e c . Then in H one has F(z)?ia, while 
on the boundary of H one has |F(z) — a| ><5 =-0. As z ^ o o on the negative real 
axis i? in # one has F(z)-*a. 

The values of w=g(z) in H form an unbounded domain G=g(H) and as z — °° 
along R in H, the corresponding values g(z) run to ^ along a path L in G. As if — °° 
along L one has f(w)~*a. Moreover f(w)^a for w in G, while at any boundary 
point of G, |/(w) — a | > 5 . Consequently (see e.g. [5, Chapter XI]) a is a direct 
critical transcendental singularity of the inverse function / _ j ( z ) of f(w). By the. 
D.enjoy—Carleman—Ahlfors theorem [5, p. 313] it follows that the order of 
/ (z) is at least one. This proves part (i). 

Let the integer p denote the multiplicity of z = 0 as a solution of h(z) = a. Then 
the number E > 0 and the c in the definition of H may be chosen so that, for 
0 < | a ' — a|-=e the equation h(t) = a' has exactly p roots, all different, t2, ..., tp. 
in | f |<e c . Thus in H we have F(z) — h(ez) = <x' precisely at the infinite set of points 

S'(a') = { iogi 1 , log / 2 , . .„log/„}. 

We may assume that F'(z) ^ 0 in H. Then by Lemma 1 g(z) does not take the same 
value at any two different values of log tt (for fixed i). Then on the set 5(a) the 
function g(z) can take a given value at most p times, i.e. once on a value of log r1;. 
once on a value of log t2, etc. 

Now if g(z)=g(z') for z, z' in H, then F(z) = F(z') so that z and z' belong to 
the same set S(a'). Hence we have proved (iii) that g(z) takes any given value at 
most p times in H. 

By Lemma 2 we see that g(z) is 0(\z\2p) in H and it follows from Lemma 3 
that the order of g(z) is at least one. 

The infinite order of F(z) follows from P O L Y A ' S result just as in Theorem 3 . 

The example F = e x p (z + ez),f=ez, g — z + ez, h=zez shows that order 1 
can indeed occur for both / and g. In this case p — 1. 
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