On the strong suinmability of orthogonal series
By LASZLO LEINDLER in Szeged

1. Let {p,(x)} (n=0,1, ...) be an orthonormal system on the interval (a, b).
We shall consider series '

8

(1.1 | > ey 0n(3)
with real coefficients satisfying
(1.2) 2l 2 <oo,

0

n

By the Riesz—Fischer theorem, the series (1. i) converges in the mean to a square-
integrable function f(x). By s,(x) and ¢%(x) we denote the n-th partial sums and
the n-th Cesaro means of order «(= —1) of the series (1. 1), i.e. :

$p(x) = Zo ¢y @,(x)

09 = i 3 AED5,09 [AS.“) = ["”]]-.

n

and

2. Concerning the strong and very strong summability of (1. 1), SuNoucHr [3]
proved recently the following theorems: .

Theorem A. If the orthogonal series (1.1) with (1. 2)‘ is (C, 1)-summable
to f(x) almost everywhere in (a, b), then

1
lim 5 ZA(“ Dl )~/ = 0

n—oco

almost everywhere in (a, b) for any a=0 and k=0. .

Theorem B. If

@2.1) 2, c2(loglog n)> < e,
=4
then i ‘
]
lim e 2 AL 5, () —f G = 0

n—co

holds for any a.>0 and k >0, almost everywhere in (a, b), for any increasing sequence:

{k,).
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TANDORI [4] has proved this theorem for e =1 earlier.
In [2] we have generalized this theorem of TANDORI as follows:

Theorem C. Under the hypothesis (2. 1) we have

lim ——— 2’[ 5,(0) —f) =

n-—»oo

.almost everywhere for any (non necessarily monotonic) sequence {I,} of distinct
non-negative integers.
At the same time we proved the following

. Theorem D. Let {a;} be a given sequence of real numbers with D'a? <o and
” nat = (ntDad, (=12, ..).
If the orthogonal series (1. 1) with (1. 2) is Abel-summable to f(x) almost everywhere
in (a, b) and '
i = O(ay),
.then we have
1
lim —— 2 Z[ ol (9 /O = 0

for any y =% almost everywhere in (a, b), for any sequence {1,} of distinct non-negative
integers.

3. In the present note we intend to generalize further these theorems.
We consider a regular summation method 7, determined by a triangular

‘[a,,kéo and 4,= 2 oc,,kJ, i.e. if 5, tends to s, then
k=0

|
n
=4 Zanké‘k—’s-
n k=0

Theorem 1. Let k=0. If there exists a p=1 such that

. o
matrix || 2%

n

v=1

n 1/p n
’(3 1) . ' "“'-lk =2 and {24 ve-l al,l,v} =K 2 Ly

.and if the series (1. 1) with (1.2) is (C, 1)-summable to f(x) almost everywhere in
(a, b), then

3.2 | lim A— Z 0,67~ 1 () — (K = 0

n—oo n \J_
almost everywhere in (a, b) for any y=1%.

It is clear that in the special case y=1 and a,, = 4% (¢ =>0) this theorem
includes the Theorem A of SuNoucHr; in fact,

n . 1/p . .
{Z vv-1<A;a:1>>P} = Ky{r ! ne= D0y = K, ot = K A

v=1

for any a=0 ifp is near enough to 1.
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It is easy to verify that in the cases

1 1
—_ B . _ - — .
Ok k » /j = ~1> Xk k 5 Ok klOg(k+2),
(3.3) :
1

- %% = Flog (k+2) log log (k + 4)

and in those cases, which are similar to the above ones, the condition (3. 1) is
satisfied for any p=1, consequently the statement (3. 2) holds for any k=0 in
the cases mentioned above. .

It follows easily from this theorem:

Theorem 2. Let k=>0. If there exists a p>1 such that the conditions (3. 1)
holds and- if ' '

(3.4 . 2, c2loglog? n<eoo,

then we have
o1 <&
lim — Ay lo-z_ ! ({:ul}a x) _f(x)lk =0

R

almost everywhere in (a, b) for any y=% and for.any: increasing sequence {u,}; here
we have set

af({w}; x) A(p) ZAM sy, ().

Theorem 2 includes. evidently the Theorem B of SuNoucHI in the special case
y=1 and o, =A% (x=0).

Theorem 3. Under the hypothesis of Theorem 2 we have

lirn Z anv|s, @) —fF =0

almost everywhere in (a, b) for any sequence {l,} of distinct non-negative integers.
In particular, we have as |
Corollary 1. If the condition (3. 4) is satisfied, then
( fim —5 A(a) ZA“‘ Pl () =G0k = 0

holds for any o=0 and k=0, almost everywhere in (a, b) for any sequence {l,} of
distinct non-negative integers.

It is easy to see that this corollary generalizes the Theorems B and C.
Finally we prove the following

Theorem 4. Let {d,} be a given real sequence with 3 d? <oo and
3.5 o ond2 = meDdZ,  (n=1,2,..),
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Sfurther let y =% and k =0. If there exists a p=1 siich that the conditions (3. 1) hold,

and if the series (1. 1) is (C, 1) summable to f(x) almost everywhere in (a, b) and,
moreover,

(3.6) ¢t = 0(d}),
then

lim Z |01 () =S = 0

n—eo Lin v=0 -~

almost everywhere in (a, b) for any sequence {l,} of distinct non-negative integers.
This theorem includes the Theorem D in the special case «,,=1 and k=2,
because the conditions (3. 1) are satisfied in the cases of (3. 3) for any p=>1, as
we have seen it.
It seems worth while to observe also the following

Corollary 2. Let {d,} be a given real sequence satisfying the conditions
Z’d2 <o and (3. 5). If the series (1. 1) is (C, 1)- summable to f(x) almost everywhere
in {a, b) and (3. 6) is satisfied, then

1 n .

lim —e5 2 A ol )=t = 0
holds for any oc.>0, k=0, and y>%, almost everywhere in (a, b), for any sequence
{1} of distinct non-negative integers. -

The method of proof of these theorems is that of SuNoucH! [3] and of the
author [2].

In the sequel, we use K, K, K,, ... to denote positive constants, not necessarily
the same on any two occurences.

4. The following lemmas will be required for the proofs of the theorems.
Lemma 1. Let {{,,(x)} (k—l ., N) be an orthogonal system in (a, b) and let

fz//k(x)dx (k=1,2, ..., N).

Then there exists a function &(x) such that

Wi @)+ ... +(x)] =8(x) (/=12,...,N)
in (a, b) and

b N
[ 5 dx = K 1og? N 3 at.
o : k=1
This Lemma is well known (cf. KaczMARZ—STEINHAUS [1], p. 162).

Lemma 2. If 3 ¢2 <-<o, then
: n=0
b

]{fn-l|a;‘-1(x)—o:(x)12}dxéxz.f’c& | [a>—;~].
n=1 n=0 \

a
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This Lemma also is known (cf. [3], Lemma 1).

Lemma 3. Let k>0 and ez <co, If there exists a p=>1 such that the con-
ditions (3. 1) are satisfied, then for y>1% we have

b
1K 2 oo
f { sup [ 2 a0 a’(x)l"] }dxéKsch.
1sSn<oo n v=0 n=0-

Proof. Applying HOLDER’s inequality, we obtain by (3. 1)

nv

. 1[ n . 1/q n ’ 1/p
@.1) = X{Z v—llaz-’(x)—az(x)lqk} {Z vv/qazv} =
n lv=1 . v=1
- n 1/q
= ,K{Z V*llql‘l(x)—at(X)l""} ;
v=1

where g = }—’—‘I_)-T . Since gk =2, we have by Lemma 2 and (4. 1) that

I=n<ew n v=1

: 1/K}2
[P ——l

oo 2/gk
= KI/[ZI' V"I“l‘l(x)—o’l(x)l‘"‘] dx =

a
b

= K, f [Z v—*laz-‘(x>—az(x)|2] dx = K, 2 c}.
v=1 . n=0
5. Proof of Theorem 1. Since, by the hypothesis, the series (1. 1)

is (C, 1)-summable, so the means ¢%(x) (f=0) converge to the function f(x) almost
everywhere in (g, b). From this fact it follows that in the following inequality

- Z 0?1 () —f () =

nv—

G.1) :
= %‘g’;anv o7~ 1 (x)— ot (O)|* + & Z 07 (x) —f()[*

h\—‘

the second sum tends to 0 almost everywhere in (g, b).
We shall show that the first sum tends to zero; too. To this effect, we choose

N, for glven s>0 so that

(5.2) S ces,

n=N|4
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and we consider the series

53 2”, h ¢, for n=N,
. . a =

(5.3) < n@n(x) with g, 0 for n=N,
and

54 Z“’b «h b 0 for n=N,
( . ) - n (P,,(x) Wlt n — cn fOf n> N

Let us denote by o(a; x) and o#(b; x) respectively, the v-th Cesiro means
of order f of the series (5. 3) and (5. 4). It is obvious that -

(5.5) ob(x) = o"v’(a;x)-+ae(b; X))  (v=1,2,..).

For the series (5. 3), the means

Z«x,,vlav Ha; x) — aV(a x)l"

HV'_

converge clearly to zero almost everywhere. As to the series (5. 4), we obtain, ﬁsing.
the Lemma 3 and (5. 2),

: 1/k}2
[{ sup [A Zoc,,vlcﬁ 1(b X)—ol(b; x)]"] } =K, &

l1=n<oco n v=0
a

Hence -
meas {x
/

That is, the means

n 1/k
2 O |03 (b5 x) —02(b; x)l"] > e} =K, s.
v=0 .

, [ 1
lim sup 4

£ 2 anlal (63 9= ol(b: 1
also converge to zero almost everywhere.
The statement (3. 2) follows from the above results by virtue of (5. 5).
This completes the proof of Theorem 1.

Proof of Theorem 2. We set -

Hn

= 2 <k
k=pn-1+1
and .
1 fn '
o Z Cr P (X) for Vn = 07
o,=1
—_—— [OF% (x) fOT Yn= 0.
V#n #n 1 k=pn-1+1
By (3. 4),

oo oo B #n

Dl y2loglog?n = 2, loglog?n 2, cE<eoo.

n=4 n=4 k=pin-1+1
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Hence, and from a well known theorem of KACzMARZ and MENSHOV, it follows.
hat the series '

gn@m

is (C, 1)-summable to f(x) almost everywhere in (a, ). Applying the Theorem- 1
to the above series, we obtain the statement of Theorem 2.

Proof of Theorem 3. Under the condition (3.4) the sequence {s,m(x)}
converges to f(x) almost everywhere in (a, ). We write .

2m+1

cr= >

n=2"41

Let m(=2) be any natural number, for which C, #0. Set uo(m) 2™ and fet u;(my
(1=i=N,, be the smallest natural number for which

pilm) C?
' ¢z =—" and p(m)=2"+!
n=pi—1(m)+1
are valid. It is clear that N,,=m. If C,, =0, we write p,(m)=2" and p,(m)=2"+1.
Let us apply Lemma 1 to the functions
VI = Sy () = S yimyX)  (I=I=N,).

Thus there exists a function 4,,(x) such that

(5.6) [Syscmy (¥) — S ()] = =3,(x) (1=i=N,)
7=
in (a, b) and ‘ . ) | _
b 2rr‘|+l 2n+t
f&,%,(x) dx = K log2m 2 c¢2=K, 2 ctloglog?n.
. n=2m41 n=2m4i )

Then, by (3. 4),

b : v
Zec,;/é,ﬁ(x)dx>oo )
hence the series ‘ ’
| | 3 5w
converges almost everywhere.‘ This gives by (5. 6) that
su,-(m)(x) — $am(x) ~0
for m—eo, almost everywhere in (a, b) Hence also Suemy(X) (m— o) converges to.
the function f(x) almost everywhere in (a, b).

Let us now define the following sequence of 1nd1ces {u,}:if wlmy=1,<p;,(my
then set u,=p(m), and if py (m)=I[, <p(m+1) then p,=py (m)
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It is easy to see that

- Z Oy |51, () ~ R =

nv—

5.7

=

. = Z" oy lslv (x) Sllv (x)lk + 4 ‘Z zx,,vl (X) _f(x)lk'

‘Since s, (x) = f(x) (v—<°), the second sum tends to O almost everywhere in (a, b).

From this point on, the proof runs similarly to the proof of the Theorem 1.
‘Let us define N, {a,} and {b,} in the same way as under (5. 2), (5. 3) and (5. 4).
Let us denote by s,(a; x) and s,(b; x), respectively, the n-th partial sums of series
(5. 3) and (5. 4). It is evident that

(5. 8) o sx)=s,(a; x)+5,(b; x) n=12,..).

We can see easily that

(5.9) + 2 2 i (@5.3) = 3, (@3 -0

.almost everywhere in (a, b). An analogous statement for the series (5. 4), can be
obtained by the followmg easy computation. Using HOLDER’s inequality and (3. 1),

“we obtain

Zanvlslv(b x)—s (b X)

"v_

‘ lq n 1/p
s-A—{Zv-lls,v(b %)= 5,, (b x)l‘”‘} {Z’vwwm} =
v=1

n lv=1

n fa
= K{Z v=ils, (b; x)—s,,(b; x)[‘l"}1 .

v=1

‘Since gk =2, we have

b

) [ . 1/ky2
[P

1=n<oo

a
b

oo 2/qk
«5.10) = KI/[Z v*lls,v(b;x)—suv(b;x)l‘l"} dx =

v=1
a
b

a

51,(b; X) =8, (b; X)IZ] dx
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An easy computation shows that *) »
y

2 Ist, (B ) —s,.,(b; )| dx = Z 2 b =

14 k=py+1
o0 oo . C2
=Z Z > = > DA B
m=0 2m=p,<2m+1 V= mvt1 m=[log N] \2m=p,<2m+t V ] M

I

oo 2m . e
1} C?
| =K c2.
_m=%;’N] (vgl7 V] m zkz%'z k
From this and (5. 10) it follows

: : b

) 1/K)2 - oo
[{ sup [A Zoz,,vls,v(b x)— v(b;x)]"_] }dxé Ky D ¢k
1=n<oo n v=1 k

a

Hence

1/k
lim sup [ Z oc,,v]s,v(b x)— s,,v(b x)| ] > s} = K,e.

ilV-

meas {x

From this we obtain that the means

——Z’amls,xb x) =3, (b; D

n\’_

' converge to zero almost everywhere in (a, b).
Hence and from (5. 9) by (5. 8) we get that

(5.11) — 2 anv|s,v(x)—s,,v(x)l"»o

_almost everywhere A v=
Finally, from (5. 7) and (5. 11) we obtain the statement of Theorem 3.

Proof of Theorem 4. By the hypothesis of the theorem, the series
(1. 1) is (C, 1) summable to f(x), thus

lim —— 2 Oy |0%, () —F (D} = 0

n-—»co n v=0

almost evefywhere in (a, b) for any f >0. Due to this fact, it suffices to prove the state-
ment for the case {<y=1. Since

—Zanvlmv ) f(x)i"<

nV—-

1 Z“nv!al (x) le(x)lk-l——— 2 (Z,“,IO'I‘,(X) _f(x)lk

nv* nv__

we only have to show that the first sum tends to zero.
*) XM denotes that the sum is taken for v. We use the logarithm with basis 2.

7A
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For any positive g, we choose N so that

(5.12) > di<s?.

We define further {g,} and {,} in the same way as  under (. 3) and (5. 4).
Let o"(a x) and a%(b; x) have the same meaning as in the proof of Theorem 1.
It is easy to see that

11111—‘/1—27&,“.[0'7 Ya; x)— 07(a x)F=0
nsoo Ay v=0

almost everywhere in (g, b). The analogous statement for the series (5. 4) is the
basis of the proof of this theorem. After a computation analogous to the proof
of Lemma 3, we get

C - 1 n - . 1/k} 2 4
. f{ sup ['A_ 2 anvlo’.lyv—l(b; X)—O'?v(b;x)lk] } dx =
nv=1

1=n<eo

(5.13) 4 . b .
=K, / [Z y=1|al; (b; x) = ol (b; x)lz] dx

An easy computation shows that

j L/|¢Tty,.714(b;X)--al’,,,(b;x)l2 dx =
(5.14) m=1 1M, :

oo

L,
1 Z’ 7))2 Z(A(v 1))2 k2 bz < K2 12}, ,;1' (1,,,—k+ 1)2;--1k2 b,f.

Let us denote by m; the ith natural number, for which m; =/, , and by u, the ath
natural number, for which u,>1, . Then we have

oo

G.1% 0 Eimi

Imi i
oo m 1 Hp
= 3 Skt DR b Sy Sk ) AR
=t Myl 12 .unlu,. k=
Since [, =m;, the first sum in (5. 15) is less than
. A ' - mi—1 by
(5.16) K3 Z’ NG [ + Z’] (l,,,i—k + l)2v 2 k2 bz
. k=m;

By virtue of (3. 5) and (3. 6), we have for miozN\mio+,
’"‘i

’ Zm' l Z (mi k+ )Zy 2k2d2 =
(5.17) i=io Mitmi k=max(mi, N) A

= Z’ mﬂx(mi L)) 2 ([m._k+l)2y zk

2v
l k=m;

i=ip



Strong summability of orthogonal series 227

Since y>2 and Ly Z=my, it holds

Im; Imy—mi+1
S U —k+ D)2k = > p?72(l,—p+1) = Kl

k=m; p=1
- Hence and frem (5.17) it follows

o 1 Imy

D=5 D Un—k+tDPEa =

Y
i=ig milm.- k=max (m; N)

=K, [d,&+ 2 d,i) = K, 2 d?.
i=N

i=io+1

(5.18)

Let i, be the least natural number for which m; >k. Since $<y=1 and l,,,i =mn;
(i=1,2,. ) it follows

oo mi—1 lm k+1 2y-2
S S ke = 5 kg 3Tk
=1 ml mi k=1 =N+l frd .
(5.19) |
=S k4—l 2y-2 f,' [ kﬁ_IZy 2 o
k=N i=ix m =N = ot

We can estimate the second sum under (5. 15) more easily than the first one. In fact,
considering that p,>I, (n=1,2,...), we have

| buy (l —k+ 1)2y-—2
Q. —k+1)zy 2k b2 = K, edp 3o bkt D2
,,211 w127 g 2 zuék T 4

o oo _ 2y-2 o
= K, dekzzg——k—t.l)——§l<z 2, dz.
k=N =k 12 k=N

Hence and from (5. 13)—(5. 19), considering (5. 12), we obtain that

b
1/k 2 oo
(5.20) /{ sup [ Za,,vla, b; x)—al(b; v)l"] } dx = K, D, d? <e3.
1=n<oco Au v= k=N
The proof runs similarly to the prdof of Theorem 3. From (5. 20) it follows that

meas {

nv—-

1/k
llmsup[ Zoz,,v]a (b x)—oi,(b; ‘c)|"] >8}§K18,

nv|0/ Yo x)—al,(b; )k =0

n— oo

almost?everywhere in (a, b).
This completes the proof of Theorem 4.
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