On the strong summability of orthogonal series

By LÁSZLÓ LEINDLER in Szeged

1. Let $\left\{\varphi_{n}(x)\right\}(n=0,1, \ldots)$ be an orthonormal system on the interval (a, b). We shall consider series

$$
\begin{equation*}
\sum_{n=0}^{\infty} c_{n} \varphi_{n}(x) \tag{1.1}
\end{equation*}
$$

with real coefficients satisfying

$$
\begin{equation*}
\sum_{n=0}^{\infty} c_{n}^{2}<\infty \tag{1.2}
\end{equation*}
$$

By the Riesz-Fischer theorem, the series (1.1) converges in the mean to a squareintegrable function $f(x)$. By $s_{n}(x)$ and $\sigma_{n}^{\alpha}(x)$ we denote the n-th partial sums and the n-th Cesàro means of order $\alpha(>-1)$ of the series (1.1), i.e.

$$
s_{n}(x)=\sum_{v=0}^{\infty} c_{v} \varphi_{v}(x)
$$

and

$$
\sigma_{n}^{\alpha}(x)=\frac{1}{A_{n}^{(\alpha)}} \sum_{v=0}^{n} A_{n-v}^{(\alpha-1)} S_{v}(x) \quad\left(A_{n}^{(\alpha)}=\binom{n+\alpha}{n}\right)
$$

2. Concerning the strong and very strong summability of (1.1), SUNOUCHI [3] proved recently the following theorems:

Theorem A. If the orthogonal series (1.1) with.(1.2) is ($C, 1$)-summable. to $f(x)$ almost everywhere in (a, b), then

$$
\lim _{n \rightarrow \infty} \frac{1}{A_{n}^{(\alpha)}} \sum_{v=0}^{n} A_{n-v}^{(\alpha-1)}\left|s_{v}(x)-f(x)\right|^{k}=0
$$

almost everywhere in (a, b) for any $\alpha>0$ and $k>0$.
Theorem B. If

$$
\begin{equation*}
\sum_{n=4}^{\infty} c_{n}^{2}(\log \log n)^{2}<\infty \tag{2.1}
\end{equation*}
$$

then

$$
\lim _{n \rightarrow \infty} \frac{1}{A_{n}^{(\alpha)}} \sum_{v=0}^{n} \cdot A_{n-v}^{(\alpha-1)}\left|s_{k_{v}}(x)-f(x)\right|^{k}=0
$$

holds for any $\alpha>0$ and $k>0$, almost everywhere in (a, b), for any increasing sequence$\left\{k_{v}\right\}$.

Tandori [4] has proved this theorem for $\alpha=1$ earlier.
In [2] we have generalized this theorem of Tandori as follows:
Theorem C. Under the hypothesis (2.1) we have

$$
\lim _{n \rightarrow \infty} \frac{1}{n+1} \sum_{v=0}^{n}\left[s_{l_{v}}(x)-f(x)\right]^{2}=0
$$

almost everywhere for any (non necessarily monotonic) sequence $\left\{l_{1}\right\}$ of distinct non-negative integers.

At the same time we proved the following
Theorem D. Let $\left\{a_{n}\right\}$ be a given sequence of real numbers' with $\sum a_{n}^{2}<\infty$ and

$$
n a_{n}^{2} \geqq(n+1) a_{n+1}^{2} \quad(n=1,2, \ldots)
$$

If the orthogonal series (1.1) with (1.2) is Abel-summable to $f(x)$ almost everywhere in (a, b) and

$$
c_{n}^{2}=O\left(a_{n}^{2}\right)
$$

then we have

$$
\lim _{n \rightarrow \infty} \frac{1}{n+1} \sum_{v=0}^{n}\left[\sigma_{l_{v}}^{\gamma-1}(x)-f(x)\right]^{2}=0
$$

for any $\gamma>\frac{1}{2}$ almost everywhere in (a, b), for any sequence $\left\{l_{v}\right\}$ of distinct non-negative integers.
3. In the present note we intend to generalize further these theorems.

We consider a regular summation method T_{n} determined by a triangular matrix $\left\lvert\, \frac{\alpha_{n k}}{A_{n}}\right. \|\left(\alpha_{n k} \geqq 0\right.$ and $\left.A_{n}=\sum_{k=0}^{n} \alpha_{n k}\right)$, i.e. if s_{k} tends to s, then

$$
T_{n}=\frac{1}{A_{n}} \sum_{k=0}^{n} \alpha_{n k} s_{k} \rightarrow s
$$

Theorem 1. Let $k>0$. If there exists $a p>1$ such that

$$
\begin{equation*}
\frac{p}{p-1} k \geqq 2 \text { and }\left\{\sum_{v=1}^{n} v^{p-1} \alpha_{n v}^{p}\right\}^{1 / p} \leqq K \sum_{v=1}^{n} \alpha_{n v} \tag{3.1}
\end{equation*}
$$

and if the series (1.1) with (1.2) is (C, 1)-summable to $f(x)$ almost everywhere in (a, b), then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{A_{n}} \sum_{v=0}^{n} \alpha_{n v}\left|\sigma_{v}^{\gamma-1}(x)-f(x)\right|^{k}=0 \tag{3.2}
\end{equation*}
$$

almost everywhere in (a, b) for any $\gamma>\frac{1}{2}$.
It is clear that in the special case $\gamma=1$ and $\alpha_{n v}=A_{n-v}^{(\alpha-1)}(\alpha>0)$ this theorem includes the Theorem A of Sunouchi; in fact,

$$
\left\{\sum_{v=1}^{n} v^{p-1}\left(A_{n-v}^{(\alpha-1)}\right)^{p}\right\}^{1 / p} \leqq K_{1}\left\{n^{p-1} n^{(\alpha-1) p+1}\right\}^{1 / p}=K_{1} n^{\alpha} \leqq K_{2} A_{n}^{(\alpha)}
$$

for any $\alpha>0$ if p is near enough to 1 .

It is easy to verify that in the cases

$$
\begin{equation*}
\alpha_{n k}=k^{\beta}, \quad \beta>-1 ; \quad \alpha_{n k}=\frac{1}{k} ; \quad \alpha_{n k}=\frac{1}{k \log (k+2)} ; \tag{3,3}
\end{equation*}
$$

$$
\dot{\alpha}_{n k}=\frac{1}{k \log (k+2) \log \log (k+4)}
$$

and in those cases, which are similar to the above ones, the condition (3.1) is satisfied for any $p>1$, consequently the statement (3.2) holds for any $k>0$ in the cases mentioned above.

It follows easily from this theorem:
Theorem 2. Let $k>0$. If there exists a $p>1$ such that the conditions (3.1) holds and if

$$
\begin{equation*}
\sum_{n=4}^{\infty} c_{n}^{2} \log \log ^{2} n<\infty \tag{3.4}
\end{equation*}
$$

then we have

$$
\lim _{n \rightarrow \infty} \frac{1}{A_{n}} \sum_{v=0}^{n} \alpha_{n v}\left|\sigma_{v}^{\gamma-1}\left(\left\{\mu_{i}\right\} ; x\right)-f(x)\right|^{k}=0
$$

almost everywhere in (a, b) for any $\gamma>\frac{1}{2}$ and for any increasing sequence $\left\{\mu_{i}\right\}$; here we have set

$$
\sigma_{n}^{\beta}\left(\left\{\mu_{i}\right\} ; x\right)=\frac{1}{A_{n}^{(\beta)}} \sum_{v=0}^{n} A_{n-v}^{(\beta-1)} s_{\mu_{v}}(x) .
$$

Theorem 2 includes evidently the Theorem B of Sunouchi in the special case $\gamma=1$ and $\alpha_{n v}=A_{n-v}^{(\alpha-1)}(\alpha>0)$.

Theorem 3. Under the hypothesis of Theorem 2 we have

$$
\lim _{n \rightarrow \infty} \frac{1}{A_{n}} \sum_{v=0}^{n} \alpha_{n v}\left|s_{l_{v}}(x)-f(x)\right|^{k}=0
$$

almost everywhere in (a, b) for any sequence $\left\{l_{v}\right\}$ of distinct non-negative integers.
In particular, we have as
Corollary 1. If the condition (3.4) is satisfied, then

$$
\lim _{n \rightarrow \infty} \frac{1}{A_{n}^{(\alpha)}} \sum_{v=0}^{n} A_{n-v}^{(\alpha-1)}\left|s_{l_{v}}(x)-f(x)\right|^{k}=0
$$

holds for any $\alpha>0$ and $k>0$, almost everywhere in (a, b) for any sequence $\left\{l_{v}\right\}$ of distinct non-negative integers.

It is easy to see that this corollary generalizes the Theorems B and C.
Finally we prove the following
Theorem 4. Let $\left\{d_{n}\right\}$ be a given real sequence with $\sum d_{n}^{2}<\infty$ and

$$
\begin{equation*}
n d_{n}^{2} \geqq(n+1) d_{n+1}^{2} \quad(n=1,2, \ldots) \tag{3.5}
\end{equation*}
$$

further let $\gamma>\frac{1}{2}$ and $k>0$. If there exists a $p>1$ such that the conditions (3.1) hold, and if the series (1.1) is (C, 1)-summable to $f(x)$ almost everywhere in (a, b) and, moreover,

$$
\begin{equation*}
c_{n}^{2}=O\left(d_{n}^{2}\right) \tag{3.6}
\end{equation*}
$$

then

$$
\lim _{n \rightarrow \infty} \frac{1}{A_{n}} \sum_{v=0}^{n} \alpha_{n v}\left|\sigma_{l_{v}}^{\gamma-1}(x)-f(x)\right|^{k}=0
$$

almost everywhere in (a, b) for any sequence $\left\{l_{v}\right\}$ of distinct non-negative integers.
This theorem includes the Theorem D in the special case $\alpha_{n v}=1$ and $k=2$, because the conditions (3.1) are satisfied in the cases of (3.3) for any $p>1$, as we have seen it.

It seems worth while to observe also the following
Corollary 2. Let $\left\{d_{n}\right\}$ be a given real sequence satisfying the conditions $\sum d_{n}^{2}<\infty$ and (3.5). If the series (1.1) is $(C, 1)$-summable to $f(x)$ almost everywhere in (a, b) and (3.6) is satisfied, then

$$
\lim _{n \rightarrow \infty} \frac{1}{A_{n}^{(\alpha)}} \sum_{v=0}^{n} A_{n-v}^{(\alpha-1)}\left|\sigma_{l_{v}}^{\gamma-1}(x)-f(x)\right|^{k}=0
$$

holds for any $\alpha>0, k>0$, and $\gamma>\frac{1}{2}$, almost everywhere in (a, b), for any sequence $\left\{l_{v}\right\}$ of distinct non-negative integers.

The method of proof of these theorems is that of SunOuchi [3] and of the author [2].

In the sequel, we use K, K_{1}, K_{2}, \ldots to denote positive constants, not necessarily the same on any two occurences.
4. The following lemmas will be required for the proofs of the theorems.

Lemma 1. Let $\left\{\psi_{k}(x)\right\}(k=1, \ldots, N)$ be an orthogonal system in (a, b) and let

$$
a_{k}^{2}=\int_{a}^{b} \psi_{k}^{2}(x) d x \quad(k=1,2, \ldots, N)
$$

Then there exists a function $\delta(x)$ such that

$$
\left|\psi_{1}(x)+\ldots+\psi_{l}(x)\right| \leqq \delta(x) \quad(l=1,2, \ldots, N)
$$

in (a, b) and

$$
\int_{a}^{b} \delta^{2}(x) d x \leqq K_{1} \log ^{2} N \sum_{k=1}^{N} a_{k}^{2}
$$

This Lemma is well known (cf. Kaczmarz-Steinhaus [1], p. 162).
Lemma 2. If $\sum_{n=0}^{\infty} c_{n}^{2}<\infty$, then

$$
\int_{a}^{b}\left\{\sum_{n=1}^{\infty} n^{-1}\left|\sigma_{n}^{\alpha-1}(x)-\sigma_{n}^{\alpha}(x)\right|^{2}\right\} d x \leqq K_{2} \sum_{n=0}^{\infty} c_{n}^{2} \quad\left(\alpha>\frac{1}{2}\right)
$$

This Lemma also is known (cf. [3], Lemma 1).
Lemma 3. Let $k>0$ and $\sum c_{n}^{2}<\infty$. If there exists a $p>1$ such that the conditions (3. 1) are satisfied, then for $\gamma>\frac{1}{2}$ we have

$$
\int_{a}^{b}\left\{\sup _{1 \leqq n<\infty}\left(\frac{1}{A_{n}} \sum_{v=0}^{n} \alpha_{n v}\left|\sigma_{v}^{\gamma-1}(x)-\sigma_{v}^{\gamma}(x)\right|^{k}\right)^{1 / k}\right\}^{2} d x \leqq K_{3} \sum_{n=0}^{\infty} c_{n}^{2}
$$

Proof. Applying Hölder's inequality, we obtain by (3.1)

$$
\begin{align*}
& \frac{1}{A_{n}} \sum_{v=1}^{n} \alpha_{n v}\left|\sigma_{v}^{\gamma-1}(x)-\sigma_{v}^{\gamma}(x)\right|^{k} \leqq \\
& \leqq \frac{1}{A_{n}}\left\{\sum_{v=1}^{n} v^{-1}\left|\sigma_{v}^{\gamma-1}(x)-\sigma_{v}^{\gamma}(x)\right|^{q k}\right\}^{1 / q}\left\{\sum_{v=1}^{n} \nu^{p / q} \alpha_{n v}^{p}\right\}^{1 / p} \leqq \tag{4.1}\\
& \leqq K\left\{\sum_{v=1}^{n} v^{-1}\left|\sigma_{v}^{\gamma-1}(x)-\sigma_{v}^{\gamma}(x)\right|^{q k}\right\}^{1 / q}
\end{align*}
$$

where $q=\frac{p}{p-1}$. Since $q k \geqq 2$, we have by Lemma 2 and (4.1) that

$$
\begin{aligned}
& \int_{a}^{b}\left\{\sup _{1 \leqq n<\infty}\left\{\frac{1}{A_{n}} \sum_{v=1}^{n} \alpha_{n v}\left|\sigma_{v}^{\gamma-1}(x)-\sigma_{v}^{\gamma}(x)\right|^{k}\right)^{1 / k}\right\}^{2} d x \leqq \\
& \leqq K_{1} \int_{a}^{b}\left(\sum_{v=1}^{\infty} v^{-1}\left|\sigma_{v}^{\gamma-1}(x)-\sigma_{v}^{\gamma}(x)\right|^{q k}\right)^{2 / q k} d x \leqq \\
&
\end{aligned} \quad \begin{aligned}
& \leqq K_{1} \int_{a}^{b}\left(\sum_{v=1}^{\infty} v^{-1}\left|\sigma_{v}^{\gamma-1}(x)-\sigma_{v}^{\gamma}(x)\right|^{2}\right) d x \leqq K_{2} \sum_{n=0}^{\infty} c_{n}^{2}
\end{aligned}
$$

5. Proof of Theorem 1. Since, by the hypothesis, the series (1.1) is $(C, 1)$-summable, so the means $\sigma_{n}^{\beta}(x)(\beta>0)$ converge to the function $f(x)$ almost everywhere in (a, b). From this fact it follows that in the following inequality

$$
\frac{1}{A_{n}} \sum_{v=0}^{n} \alpha_{n v}\left|\sigma_{v}^{\gamma-1}(x)-f(x)\right|^{k} \leqq
$$

$$
\begin{equation*}
\leqq \frac{K_{1}}{A_{n}} \sum_{\nu=0}^{n} \alpha_{n v}\left|\sigma_{v}^{\gamma-1}(x)-\sigma_{v}^{\gamma}(x)\right|^{k}+\frac{K_{1}}{A_{n}} \sum_{v=0}^{n} \alpha_{n v}\left|\sigma_{v}^{\gamma}(x)-f(x)\right|^{k} \tag{5.1}
\end{equation*}
$$

the second sum tends to 0 almost everywhere in (a, b).
We shall show that the first sum tends to zero; too. To this effect, we choose N, for given $\varepsilon>0$, so that

$$
\begin{equation*}
\sum_{n \geqq N / 4}^{\infty} c_{n}^{2}<\varepsilon^{3} \tag{5.2}
\end{equation*}
$$

and we consider the series

$$
\sum_{n=1}^{\infty} a_{n} \varphi_{n}(x) \text { with } a_{n}=\left\{\begin{array}{lll}
c_{n} & \text { for } & n \leqq N \tag{5.3}\\
0 & \text { for } & n>N
\end{array}\right.
$$

and

$$
\sum_{n=1}^{\infty} b_{n} \varphi_{n}(x) \text { with } \quad b_{n}=\left\{\begin{array}{lll}
0 & \text { for } & n \leqq N \tag{5.4}\\
c_{n} & \text { for } & n>N
\end{array}\right.
$$

Let us denote by $\sigma_{v}^{\beta}(a ; x)$ and $\sigma_{v}^{\beta}(b ; x)$, respectively, the v-th Cesàro means of order β of the series (5.3) and (5.4). It is obvious that

$$
\begin{equation*}
\sigma_{v}^{\beta}(x)=\sigma_{v}^{\beta}(a ; x)+\sigma_{v}^{\beta}(b ; x) \quad(v=1,2, \ldots) \tag{5.5}
\end{equation*}
$$

For the series (5.3), the means

$$
\frac{1}{A_{n}} \sum_{v=0}^{n} \alpha_{n v}\left|\sigma_{v}^{\gamma-1}(a ; x)-\sigma_{v}^{\gamma}(a ; x)\right|^{k}
$$

converge clearly to zero almost everywhere. As to the series (5.4), we obtain, using the Lemma 3 and (5.2),

$$
\int_{a}^{b}\left\{\sup _{1 \leqq n<\infty}\left(\frac{1}{A_{n}} \sum_{v=0}^{n} \alpha_{n v}\left|\sigma_{v}^{\gamma-1}(b ; x)-\sigma_{v}^{\gamma}(b ; x)\right|^{k}\right)^{1 / k}\right\}^{2} \leqq K_{1} \varepsilon^{3} .
$$

Hence

$$
\text { meas }\left\{x \left\lvert\, \lim \sup \left(\frac{1}{A_{n}} \sum_{v=0}^{n} \alpha_{n v}\left|\sigma_{v}^{\gamma-1}(b ; x)-\sigma_{v}^{\gamma}(b ; x)\right|^{k}\right)^{1 / k}>\varepsilon\right.\right\} \leqq K_{1} \varepsilon
$$

That is, the means

$$
\frac{1}{A_{n}} \sum_{v=0}^{n} \alpha_{n v}\left|\sigma_{v}^{\gamma-1}(b ; x)-\sigma_{v}^{\gamma}(b ; x)\right|^{k}
$$

also converge to zero almost everywhere.
The statement (3.2) follows from the above results by virtue of (5.5).
This completes the proof of Theorem 1.
Proof of Theorem 2. We set
and

$$
\gamma_{n}^{2}=\sum_{k=\mu_{n-1}+1}^{\mu_{n}} c_{k}^{2}
$$

$$
\Phi_{n}(x)=\left\{\begin{array}{lll}
\frac{1}{\gamma_{n}} \sum_{k=\mu_{n-1}+1}^{\mu_{n}} c_{l} \varphi_{k}(x) & \text { for } \gamma_{n} \neq 0 \\
\frac{1}{\sqrt{\mu_{n}-\mu_{n-1}}} \sum_{k=\mu_{n-1}+1}^{\mu_{n}} \varphi_{k}(x) & \text { for } & \gamma_{n}=0
\end{array}\right.
$$

By (3. 4),

$$
\sum_{n=4}^{\infty} \gamma_{n}^{2} \log \log ^{2} n=\sum_{n=4}^{\infty} \log \log ^{2} n \sum_{k=\mu_{n-1}+1}^{\mu_{n}} c_{k}^{2}<\infty
$$

Hence, and from a well known theorem of Kaczmarz and Menshov, it follows hat the series

$$
\sum_{n=1}^{\infty} \gamma_{n} \Phi_{n}(x)
$$

is $(C, 1)$-summable to $f(x)$ almost everywhere in (a, b). Applying the Theorem 1 to the above series, we obtain the statement of Theorem 2.

Proof of Theorem 3. Under the condition (3:4) the sequence $\left\{s_{2^{m}}(x)\right\}$ converges to $f(x)$ almost everywhere in (a, b). We write

$$
C_{m}^{2}=\sum_{n=2^{m}+1}^{2^{m+1}} c_{n}^{2}
$$

Let $m(\geqq 2)$ be any natural number, for which $C_{m} \neq 0$. Set $\mu_{0}(m)=2^{m}$ and let μ_{i} (m), ($1 \leqq i \leqq N_{m}$) be the smallest natural number for which

$$
\sum_{n=\mu_{i}-1(m)+1}^{\mu_{i}(m)} c_{n}^{2} \geqq \frac{C_{m}^{2}}{m} \quad \text { and } \quad \mu_{i}(m) \leqq 2^{m+1}
$$

are valid. It is clear that $N_{m} \leqq m$. If $C_{m}=0$, we write $\mu_{0}(m)=2^{m}$ and $\mu_{1}(m)=2_{1}^{m+1}$. Let us apply Lemma 1 to the functions

$$
\psi_{i}^{(m)}(x)=s_{\mu_{i}(m)}(x)-s_{\mu_{i-1}(m)}(x) \quad\left(1 \leqq i \leqq N_{m}\right)
$$

Thus there exists a function $\delta_{m}(x)$ such that

$$
\begin{equation*}
\left|s_{\mu_{i}(m)}(x)-s_{2^{m}}(x)\right|=\left|\sum_{j=1}^{i} \psi_{j}^{(m)}(x)\right| \leqq \delta_{m}(x) \quad\left(1 \leqq i \leqq N_{m}\right) \tag{5.6}
\end{equation*}
$$

in (a, b) and

$$
\int_{a}^{b} \delta_{m}^{2}(x) d x \leqq K_{1} \log ^{2} m \sum_{n=2^{m}+1}^{2^{m+1}} c_{n}^{2} \leqq K_{2} \sum_{n=2^{m}+1}^{2^{m+1}} c_{n}^{2} \log \log ^{2} n
$$

Then, by (3.4),

$$
\sum_{m=2}^{\infty} \int_{a}^{b} \delta_{m}^{2}(x) d x>\infty
$$

hence the series

$$
\sum_{m=2}^{\infty} \dot{\delta}_{m}^{2}(x)
$$

converges almost everywhere. This gives by (5.6) that

$$
s_{\mu_{i}(m)}(x)-s_{2^{m}}(x) \rightarrow 0
$$

for $m \rightarrow \infty$, almost everywhere in (a, b). Hence also $s_{\mu_{i}(m)}(x)(m \rightarrow \infty)$ converges to the function $f(x)$ almost everywhere in (a, b).

Let us now define the following sequence of indices $\left\{\mu_{v}\right\}$: if $\mu_{i}(m) \leqq l_{v}<\mu_{i+1}(m)$ then set $\mu_{v}=\mu_{i}(m)$, and if $\mu_{N_{m}}(m) \leqq l_{v}<\mu_{0}(m+1)$ then $\mu_{v}=\mu_{N_{m}}(m)$.

It is easy to see that

$$
\begin{align*}
& \frac{1}{A_{n}} \sum_{v=0}^{n} \alpha_{n v}\left|s_{l_{v}}(x)-f(x)\right|^{k} \leqq \tag{5.7}\\
& \quad \leqq \frac{K_{1}}{A_{n}} \sum_{v=0}^{n} \alpha_{n v}\left|s_{l_{v}}(x)-s_{\mu_{v}}(x)\right|^{k}+\frac{K_{1}}{A_{n}} \sum_{v=0}^{n} \alpha_{n v}\left|s_{\mu_{v}}(x)-f(x)\right|^{k}
\end{align*}
$$

Since $s_{\mu_{v}}(x) \rightarrow f(x)(v \rightarrow \infty)$, the second sum tends to 0 almost everywhere in (a, b).
From this point on, the proof runs similarly to the proof of the Theorem 1. Let us define $N,\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ in the same way as under (5.2), (5.3) and (5.4). Let us denote by $s_{n}(a ; x)$ and $s_{n}(b ; x)$, respectively, the n-th partial sums of series (5.3) and (5.4). It is evident that

$$
\begin{equation*}
s_{n}(x)=s_{n}(a ; x)+s_{n}(b ; x) \quad(n=1,2, \ldots) \tag{5.8}
\end{equation*}
$$

We can see easily that

$$
\begin{equation*}
\frac{1}{A_{n}} \sum_{v=0}^{n} \alpha_{n v}\left|s_{l v}(a ; x)-s_{\mu_{v}}(a ; x)\right|^{k} \rightarrow 0 \tag{5.9}
\end{equation*}
$$

almost everywhere in (a, b). An analogous statement for the series (5.4), can be obtained by the following easy computation. Using HöLder's inequality and (3. 1), we obtain

$$
\begin{aligned}
& \frac{1}{A_{n}} \sum_{v=1}^{n} \alpha_{n v}\left|s_{l_{v}}(b ; x)-s_{\mu_{v}}(b ; x)\right|^{k} \leqq \\
& \leqq \frac{1}{A_{n}}\left\{\sum_{v=1}^{n} v^{-1}\left|s_{l_{v}}(b ; x)-s_{\mu_{v}}(b ; x)\right|^{q k}\right\}^{1 / q}\left\{\sum_{v=1}^{n} v^{p / q} \alpha_{n v}^{p}\right\}^{1 / p} \leqq \\
& \leqq K\left\{\sum_{v=1}^{n} v^{-1}\left|s_{l_{v}}(b ; x)-s_{\mu_{v}}(b ; x)\right|^{q k}\right\}^{1 / q}
\end{aligned}
$$

Since $q k \geqq 2$, we have

$$
\int_{a}^{b}\left\{\sup _{1 \leqq n<\infty}\left(\frac{1}{A_{n}} \sum_{v=1}^{n} \alpha_{n v}\left|s_{l_{v}}(b ; x)-s_{\mu_{v}}(b ; x)\right|^{k}\right)^{1 / k}\right\}^{2} d x \leqq
$$

$$
\begin{align*}
& \leqq K_{1} \int_{a}^{b}\left(\sum_{v=1}^{\infty} v^{-1}\left|s_{l_{v}}(b ; x)-s_{\mu_{v}}(b ; x)\right|^{q k}\right)^{2 / q k} d x \leqq \tag{5.10}\\
& \quad \leqq K_{1} \int_{a}^{b}\left(\sum_{v=1}^{\infty} v^{-1}\left|s_{l_{v}}(b ; x)-s_{\mu_{v}}(b ; x)\right|^{2}\right) d x
\end{align*}
$$

An easy computation shows that *)

$$
\begin{gathered}
\sum_{v=1}^{\infty} \frac{1}{v} \int_{a}^{b}\left|s_{l_{v}}(b ; x)-s_{\mu_{v}}(b ; x)\right|^{2} d x=\sum_{v=1}^{\infty} \frac{1}{v} \sum_{k=\mu_{v}+1}^{l_{v}} b_{k}^{2}= \\
=\sum_{m=0}^{\infty} \sum_{2^{m} \leqq \mu_{v}<2^{m+1}}^{(v)} \frac{1}{v} \sum_{k=\mu_{v}+1}^{l_{v}} b_{k}^{2} \leqq \sum_{m=[\log N]}^{\infty}\left(\sum_{2^{m} \leqq \mu_{v}<2^{m+1}} \frac{1}{v}\right) \frac{C_{m}^{2}}{m} \leqq \\
\leqq \sum_{m=[\log N]}^{\infty}\left(\sum_{v=1}^{2^{m}} \frac{1}{v}\right) \frac{C_{m}^{2}}{m} \leqq K_{2} \sum_{k \leqq N / 2}^{\infty} c_{k}^{2}
\end{gathered}
$$

From this and (5.10) it follows

$$
\int_{a}^{b}\left\{\sup _{1 \leqq n<\infty}\left(\frac{1}{A_{n}} \sum_{v=1}^{n} \alpha_{n v}\left|s_{l_{v}}(b ; x)-s_{\mu_{v}}(\dot{b} ; x)\right|^{k}\right)^{1 / k}\right\}^{2} d x \leqq K_{3} \sum_{k \leqq N / 2}^{\infty} c_{k}^{2}
$$

Hence

$$
\text { meas }\left\{x \left\lvert\, \lim \sup \left(\frac{1}{A_{n}} \sum_{v=0}^{n} \alpha_{n v}\left|s_{l_{v}}(b ; x)-s_{\mu_{v}}(b ; x)\right|^{k}\right)^{1 / k}>\varepsilon\right.\right\} \leqq K_{4} \varepsilon
$$

From this we obtain that the means

$$
\frac{1}{A_{n}} \sum_{v=0}^{n} \alpha_{n v}\left|s_{l_{v}}(b ; x)-s_{\mu_{v}}(b ; x)\right|^{k}
$$

converge to zero almost everywhere in (a, b).
Hence and from (5.9) by (5.8) we get that

$$
\begin{equation*}
\frac{1}{A_{n}} \sum_{v=0}^{n} \alpha_{n v}\left|s_{l_{v}}(x)-s_{\mu_{v}}(x)\right|^{k} \rightarrow 0 \tag{5.11}
\end{equation*}
$$

almost everywhere.
Finally, from (5.7) and (5.11) we obtain the statement of Theorem 3.
Proof of Theorem 4. By the hypothesis of the theorem, the series (1.1) is ($C, 1)$-summable to $f(x)$, thus

$$
\lim _{n \rightarrow \infty} \frac{1}{A_{n}} \sum_{v=0}^{n} \alpha_{n v}\left|\sigma_{l_{v}}^{\beta}(x)-f(x)\right|^{k}=0
$$

almost everywhere in (a, b) for any $\beta>0$. Due to this fact, it suffices to prove the statement for the case $\frac{1}{2}<\gamma \leqq 1$. Since

$$
\begin{gathered}
\frac{1}{A_{n}} \sum_{v=0}^{n} \alpha_{n v}\left|\sigma_{l_{v}}^{\gamma-1}(x)-f(x)\right|^{k} \leqq \\
\leqq \frac{K_{1}}{A_{n}} \sum_{v=0}^{n} \alpha_{n v}\left|\sigma_{l_{v}}^{\gamma-1}(x)-\sigma_{l_{v}}^{\gamma}(x)\right|^{k}+\frac{K_{1}}{A_{n}} \sum_{v=0}^{n} \alpha_{n v}\left|\sigma_{l_{v}}^{\gamma}(x)-f(x)\right|^{k}
\end{gathered}
$$

we only have to show that the first sum tends to zero.

[^0]For any positive ε, we choose N so that

$$
\begin{equation*}
\sum_{n=N}^{\infty} d_{n}^{2}<\varepsilon^{3} \tag{5.12}
\end{equation*}
$$

We define further $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ in the same way as under (5.3) and (5.4). Let $\sigma_{v}^{\beta}(a ; x)$ and $\sigma_{v}^{\beta}(b ; x)$ have the same meaning as in the proof of Theorem 1 . It is easy to see that

$$
\lim _{n \rightarrow \infty} \frac{1}{A_{n}} \sum_{v=0}^{n} \alpha_{n v}\left|\sigma_{v}^{\gamma-1}(a ; x)-\sigma_{v}^{\gamma}(a ; x)\right|^{k}=0
$$

almost everywhere in (a, b). The analogous statement for the series (5.4) is the basis of the proof of this theorem. After a computation analogous to the proof of Lemma 3, we get

$$
\begin{gather*}
\int_{a}^{b}\left\{\sup _{1 \leqq n<\infty}\left(\frac{1}{A_{n}} \sum_{v=1}^{n} \alpha_{n v}\left|\sigma_{l_{v}}^{\gamma-1}(b ; x)-\sigma_{l_{v}}^{\gamma}(b ; x)\right|^{k}\right)^{1 / k}\right\}^{2} d x \leqq \\
\leqq K_{1} \int_{a}^{b}\left(\sum_{v=1}^{\infty} \nu^{-1}\left|\sigma_{l_{v}}^{\gamma-1}(b ; x)-\sigma_{l_{v}}^{\gamma}(b ; x)\right|^{2}\right) d x . \tag{5.13}
\end{gather*}
$$

An easy computation shows that

$$
\begin{equation*}
\sum_{m=1}^{\infty} \frac{1}{m} \int_{a}^{b}\left|\sigma_{l_{m}}^{\gamma-1}(b ; x)--\sigma_{l_{m}}^{\gamma}(b ; x)\right|^{2} d x \leqq \tag{5.14}
\end{equation*}
$$

$$
\leqq K_{1} \sum_{m=1}^{\infty} \frac{1}{m\left(A_{l_{m}}^{(\gamma)}\right)^{2}} \sum_{k=1}^{l_{m}}\left(A_{l_{m}-k}^{(\gamma-1)}\right)^{2} k^{2} b_{k}^{2} \leqq K_{2} \sum_{m=1}^{\infty} \frac{1}{m l_{m}^{2 \gamma}} \sum_{k=1}^{l_{m}}\left(l_{m}-k+1\right)^{2 \gamma-2} k^{2} b_{k}^{2} .
$$

Let us denote by m_{i} the i th natural number, for which $m_{i} \leqq l_{m_{i}}$, and by u_{n} the nth natural number, for which $\mu_{n}>l_{\mu_{n}}$. Then we have

$$
\begin{equation*}
\sum_{m=1}^{\infty} \frac{1}{m l_{m}^{2 \gamma}} \sum_{k=1}^{l_{m}}\left(l_{m}-k+1\right)^{2 \gamma-2} k^{2} b_{k}^{2}= \tag{5.15}
\end{equation*}
$$

$$
=\sum_{i=1}^{\infty} \frac{1}{m_{i} l_{m_{i}}^{2 \gamma}} \sum_{k=1}^{l_{m i}}\left(l_{m_{i}}-k+1\right)^{2 \gamma-2} k^{2} b_{k}^{2}+\sum_{n=1}^{\infty} \frac{1}{\mu_{n} l_{\mu_{n}}^{2 \gamma}} \sum_{k=1}^{l_{\mu_{n}}}\left(l_{\mu_{n}}-k+1\right)^{2 \gamma-2} k^{2} b_{k}^{2}
$$

Since $l_{m_{i}} \geqq m_{i}$, the first sum in (5.15) is less than

$$
\begin{equation*}
K_{3} \sum_{i=1}^{\infty} \frac{1}{m_{i} l_{m i}^{2 \gamma}}\left(\sum_{k=1}^{m_{i}-1}+\sum_{k=m_{i}}^{l_{m_{i}}}\right)\left(l_{m_{i}}-k+1\right)^{2 \gamma-2} k^{2} b_{k}^{2} \tag{5.16}
\end{equation*}
$$

By virtue of (3.5) and (3.6), we have for $m_{i_{0}} \leqq N<m_{i_{0}+1}$

$$
\sum_{i=i_{0}}^{\infty} \frac{1}{m_{i} l_{m i}^{2 \gamma}} \sum_{k=\max (m i, N)}^{l_{m_{i}}}\left(l_{m_{i}}-k+1\right)^{2 \gamma-2} k^{2} d_{k}^{2} \leqq
$$

$$
\begin{equation*}
\leqq \sum_{i=i_{0}}^{\infty} \frac{d_{\max \left(m_{i}, N\right)}^{2}}{l_{m_{i}}^{2 \gamma}} \sum_{k=m_{i}}^{l_{m_{i}}}\left(l_{m_{i}}-k+1\right)^{2 \gamma-2} k \tag{5.17}
\end{equation*}
$$

Since $\gamma>\frac{1}{2}$ and $l_{m_{i}} \geqq m_{i}$, it holds

$$
\sum_{k=m_{i}}^{l_{m_{i}}}\left(l_{m_{i}}-k+1\right)^{2 \gamma-2} k \leqq \sum_{p=1}^{l_{m_{i}}-m_{i}+1} p^{2 \gamma-2}\left(l_{m_{i}}-p+1\right) \leqq K_{4} l_{m_{i}}^{2 \gamma}
$$

Hence and from (5.17) it follows

$$
\begin{gather*}
\sum_{i=i_{0}}^{\infty} \frac{1}{m_{i} l_{m_{i}}^{2 \gamma}} \sum_{k=\max \left(m_{i} N\right)}^{l_{m_{i}}}\left(l_{m_{i}}-k+1\right)^{2 \gamma-2} k^{2} d_{k}^{2} \leqq \tag{5.18}\\
\leqq K_{5}\left(d_{N}^{2}+\sum_{i=i_{0}+1}^{\infty} d_{m_{i}}^{2}\right) \leqq K_{5} \sum_{j=N}^{\infty} d_{j}^{2}
\end{gather*}
$$

Let i_{k} be the least natural number for which $m_{i_{k}}>k$. Since $\frac{1}{2}<\gamma \leqq 1$ and $l_{m_{i}} \geqq m_{i}$ ($i=1,2, \ldots$), it follows

$$
\sum_{i=1}^{\infty} \frac{1}{m_{i} l_{m_{i}}^{2 \gamma}} \cdot \sum_{k=1}^{m_{i}-1}\left(l_{m_{i}}-k+1\right)^{2 \gamma-2} k^{2} b_{k}^{2} \leqq \sum_{i=N+1}^{\infty} k^{2} d_{k}^{2} \sum_{i=i_{k}}^{\infty} \frac{\left(l_{m_{i}}-k+1\right)^{2 \gamma-2}}{m_{i} l_{m_{i}}^{2 \gamma}} \leqq
$$

$$
\begin{equation*}
\leqq \sum_{k=N}^{\infty} k d_{k}^{2} \sum_{i=i_{k}}^{\infty} \frac{\left(m_{i}-k+1\right)^{2 \gamma-2}}{m_{i}^{2 \gamma}} \leqq \sum_{k=N}^{\infty} k d_{k}^{2} \sum_{l=k}^{\infty} \frac{(l-k+1)^{2 \gamma-2}}{l^{2 \gamma}} \leqq K_{6} \sum_{k=N}^{\infty} d_{k}^{2} \tag{5.19}
\end{equation*}
$$

We can estimate the second sum under (5.15) more easily than the first one. In fact, considering that $\mu_{n}>l_{\mu_{n}}(n=1,2, \ldots)$, we have

$$
\begin{gathered}
\left.\sum_{n=1}^{\infty} \frac{1}{\mu_{n} l_{\mu_{n}}^{2 \gamma}} \sum_{k=1}^{l_{\mu_{n}}}\left(l_{\mu_{n}}-k+1\right)^{2 \gamma-2} k^{2} b_{k}^{2} \leqq K_{1} \sum_{k=N}^{\infty} k^{2} d_{k}^{2} \sum_{l_{\mu_{n}} \geqq k} n\right) \frac{\left(l_{\mu_{n}}-k+1\right)^{2 \gamma-2}}{\mu_{n} l_{\mu_{n}}^{2 \gamma}} \leqq \\
\leqq K_{1} \sum_{k=N}^{\infty} k d_{k}^{2} \sum_{l=k}^{\infty} \frac{(l-k+1)^{2 \gamma-2}}{l^{2 \gamma}} \leqq K_{2} \sum_{k=N}^{\infty} d_{k}^{2} .
\end{gathered}
$$

Hence and from (5.13)-(5.19), considering. (5.12), we obtain that

$$
\begin{equation*}
\int_{a}^{b}\left\{\sup _{1 \leqq n<\infty}\left(\frac{1}{A_{u}} \sum_{v=1}^{n} \alpha_{n v}\left|\sigma_{v}^{\gamma-1}(b ; x)-\sigma_{v}^{\gamma}(b ; x)\right|^{k}\right)^{1 / k}\right\}^{2} d x \leqq K_{3} \sum_{k=N}^{\infty} d_{k}^{2}<\varepsilon^{3} \tag{5.20}
\end{equation*}
$$

The proof runs similarly to the proof of Theorem 3. From (5.20) it follows that

$$
\text { meas }\left\{x \left\lvert\, \lim \sup \left(\frac{1}{A_{n}} \sum_{v=1}^{n} \alpha_{n v}\left|\sigma_{v}^{\gamma-1}(b ; x)-\sigma_{l_{v}}^{\gamma}(b ; x)\right|^{k}\right)^{1 / k}>\varepsilon\right.\right\} \leqq K_{1} \varepsilon
$$

i.e.

$$
\lim _{n \rightarrow \infty} \frac{1}{A_{n}} \sum_{v=1}^{n} \alpha_{n v}\left|\sigma_{v}^{\gamma-1}(b ; x)-\sigma I_{v}^{\gamma}(b ; x)\right|^{k}=0
$$

almost everywhere in (a, b).
This completes the proof of Theorem 4.

Literature

[1] S. Kaczmarz-H. Steinhaus, Theorie der Orthogonalreihen (Warszawa-Lwów, 1935).
[2] L. Leindler, Über die starke Summierbarkeit der Orthogonalreihen, Acta Sci. Math., 23 (1962), 82-89..
[3] G. Sunouchi, On the strong summability of orthogonal series, Acta Sci. Math., 27 (1966), 71-76.
[4] K. Tandori, Über die orthogonalen Funktionen. VI (Eine genaue Bedingung für die starke Summation), Acta Sci. Math., 20 (1959), 14-18.
(Received April 30, 1966)

[^0]: $\left.{ }^{*}\right) \Sigma^{(v)}$ denotes that the sum is taken for v. We use the logarithm with basis 2 .

