Ergodic type theorems in von Neumann algebras

By I. KOVÁCS*) and J. SZÚCS in Szeged

Let A be a von Neumann algebra ${ }^{1}$) in a complex Hilbert space $\mathfrak{5}$, and let \mathscr{G} be a group of automorphisms of \mathbf{A}^{2}). Denote by $\mathbf{A}^{\mathscr{g}}$ the set of all elements of \mathbf{A} which are invariant with respect to each element of \mathscr{G}. Taking into account the: algebraic and topological properties of the elements of \mathscr{G} ([13], chap. I, §4, Th. 2, Cor. 1), ione can see easily that $\mathbf{A}^{\mathscr{g}}$ is a von Neumann subalgebra of A. For any $T \in \mathbf{A}$, let $\mathscr{K}_{0}(T, \mathscr{G})$ denote the smallest convex subset of \mathbf{A} which contains the orbit of T under \mathscr{G}^{3}). Let $\mathscr{K}(T, \mathscr{G})$ be the weak closure of $\mathscr{K}_{0}(T, \mathscr{G})^{4}$). The investigations concerning the center-valued trace theory of von Neumann algebras and the results of some other works (for example [1], [2], [7]) naturally give the idea of seeking conditions on \mathbf{A} and \mathscr{G} under which the set $\mathscr{K}(T, \mathscr{G})$ meets $\mathbf{A}^{\mathscr{G}}$ for every $T \in \mathbf{A}$.

The purpose of this paper is to give a sufficient condition in order that $\mathscr{K}(T, \mathscr{G}) \cap \mathbf{A}^{\mathscr{G}}$ consist of exactly one element for every $T \in \mathbf{A}$ (Theorem 1.) This is the subject of $\S 2$. The next $\S 3$ is devoted to establishing under this condition a mapping of \mathbf{A} onto $\mathbf{A}^{\mathscr{y}}$ which reminds us, from many points of view, of the Dixmier trace ζ of a finite von Neumann algebra (Theorem 2). In §4, some simple consequences of the above results are given. § 1 contains preliminary results and examples.

The main results of this paper were announced in [5], with the proof of Theorem. 1 in a less detailed form.

§ 1

First of all let us set down some notations.
If \mathbf{A}^{\prime} is a von Neumann algebra and \mathscr{G} is a group of automorphisms of \mathbf{A}, denote by $\mathscr{R}(\mathbf{A}, \mathscr{G})$ the set of all ultra-weakly continuous linear forms on \mathbf{A} which

[^0]are invariant with respect to \mathscr{G} (that is if $\sigma \in \mathscr{R}(\mathbf{A}, \mathscr{G})$ then for every $T \in \mathbf{A}$ and $\theta \in \mathscr{G}$ we have $\sigma(\theta(T))=\sigma(T))$. Let $\mathscr{R}^{+}(\mathbf{A}, \mathscr{G})$ denote the set of all positive elements of $\mathscr{R}(\mathbf{A}, \mathscr{G})$. For any element σ of $\mathscr{R}^{+}(\mathbf{A}, \mathscr{G}), E_{\sigma}$ will denote the support of σ ([3], chap. I, §4, Def. 3). It is easy to see that $E_{\sigma} \in \mathbf{A}^{\xi}$. The group of all inner automorphisms of A will be denoted by $\mathscr{I}(\mathbf{A})$.

With these notations we have the following
Proposition 1. Let \mathbf{A} be a von Neumann algebra in a complex Hilbert space \mathfrak{H}, and let \mathscr{G} be. a group of automorphisms of \mathbf{A}. The following four conditions are equivalent:
(i) For every $\left.T \in \mathbf{A}^{+}{ }^{5}\right), T \neq 0$ there exists an element σ of $\mathscr{R}^{+}(\mathbf{A}, \mathscr{G})$ such that $\cdot \sigma(T) \neq 0$;
(ii) For every $T \in\left(\mathbf{A}^{g}\right)^{+}, T \neq 0$ there exists an element σ of $\mathscr{R}^{+}(\mathbf{A}, \mathscr{G})$ with $\sigma(T) \neq 0 ;$
(iii) There exists a family $\left\{\sigma_{1}\right\}_{1} \in I$ of elements of $\mathscr{R}^{+}(\mathbf{A}, \mathscr{G})$ such that $E_{\sigma_{1}} E_{\sigma_{\chi}}=0$ for $\iota \neq x$ and $\sum_{i \in I} E_{\sigma_{i}}=I_{\mathfrak{5}} .{ }^{6}$)
(iv) $\sup _{\sigma \in \mathscr{R}+(\mathrm{A}, \mathscr{g})} E_{\sigma}=I_{5}$.

Proof. (i) \Rightarrow (ii) is evident.
(ii) \Rightarrow (iii). In fact, let $\left\{\sigma_{\imath}\right\}_{\llcorner\in I}$ be a maximal family of elements of $\mathscr{R}^{+}(\mathbf{A}, \mathscr{G})$ such that $E_{\sigma_{\imath}} E_{\sigma_{\chi}}=0$ for $\iota \neq \chi$. Such a family exists by the Zorn's lemma. Set $E=\sum_{i \in I} E_{\sigma_{i}}$, and prove that $E=I_{5}$. To do this, suppose the contrary that is that $E \neq I_{\mathfrak{5}}$. Put $F=I_{\mathfrak{5}}-E$. Since $F \in\left(\mathbf{A}^{g}\right)^{+}, F \neq 0$, in virtue of (ii), there exists an element σ of $\mathscr{R}^{+}(\mathbf{A}, \mathscr{G})$ such that $\sigma(F) \neq 0$. Set $\sigma^{\prime}(T)=\sigma(F T F)$ for every $T \in \mathbf{A}$. As $F \in \mathbf{A}^{\mathscr{G}}$, we obtain that $\sigma^{\prime} \in \mathscr{R}^{+}(\mathbf{A}, \mathscr{G})$. Furthermore, we have $\sigma^{\prime} \neq 0$ and $\sigma^{\prime}(E)=0$. This means that $E_{\sigma^{\prime}} \neq 0$ and $E_{\sigma^{\prime}} \leqq F$, and this contradicts the maximality of the family $\left\{\sigma_{l}\right\}_{\imath} \in I$.
(iii) \Rightarrow (iv) is evident.
(iv) \Rightarrow (i). Suppose that (i) is not true. Then there exists an element $T \in \mathbf{A}^{+}, T \neq 0$ such that $\sigma(T)=0$ for every $\sigma \in \mathscr{R}+(\mathbf{A}, \mathscr{G})$: This means that $E_{\sigma} T E_{\sigma}=0$ for every $\cdot \sigma \in \mathscr{R}+(\mathbf{A}, \mathscr{G})$. Thus for every $x \in \mathfrak{S}$ we get $\left\|T^{\frac{1}{2}} E_{\sigma} x\right\|=0$, i.e. $T^{\frac{1}{2}} E_{\sigma}=0$. As, by (iv), $\sup E_{\sigma}=I_{515}$, we obtain that $T^{\frac{1}{2}}=0$, that is $T=0$ which is impossible, and this completes the proof of Proposition 1.

Definition 1. Let \mathbf{A} be a von Neumann algebra and let \mathscr{G} be a group of .automorphisms of \mathbf{A}. \mathbf{A} is said to be finite with respect to \mathscr{G} (or \mathscr{G}-finite) if \mathbf{A} and \mathscr{G} satisfy any of the equivalent conditions of Proposition 1.

Remarks. 1. To say that \mathbf{A} is $\mathscr{I}(\mathbf{A})$-finite is equivalent to say that \mathbf{A} is finite in the usual sense of the global theory of the von Neumann algebras ([3], chap. I, § 6, Def. 5).
2. If \mathbf{A} is \mathscr{G}-finite then \mathbf{A} is finite with respect to any subgroup of \mathscr{G}.

[^1]Now let us give examples for pairs (A, \mathscr{G}) such that \mathbf{A} is \mathscr{G}-finite.

1. A is a finite von Neumann algebra and \mathscr{G} is an arbitrary subgroup of $\mathscr{I}(\mathbf{A})$.
2. \mathbf{A} is a finite factor and \mathscr{G} is an arbitrary group of automorphisms of \mathbf{A}. In fact, if $\operatorname{Tr}(\cdot)$ is the canonical trace of \mathbf{A} ([3], chap. III, no. 4) and θ is an arbitrary element of \mathscr{G} then $\varphi(T)=\operatorname{Tr}(\theta(T))(T \in \mathbf{A})$ is also a normalized trace ${ }^{7}$) on \mathbf{A}. Therefore, for every $T \in \mathbf{A}$ we have $\operatorname{Tr}(T)=\varphi(T)=\operatorname{Tr}(\theta(T))([3]$, chap. I. § 6, Th. 3, Cor.), and this means that $\operatorname{Tr}(\cdot) \in \mathscr{B}+(\mathbf{A}, \mathscr{G})$. Since $\operatorname{Tr}(\cdot)$ is a strictly positive linear form on \mathbf{A}, we obtain that \mathbf{A} is \mathscr{G}-finite.
3. Let \mathbf{A}_{1} and \mathbf{A}_{2} be von Neumann algebras in the Hilbert spaces \mathfrak{S}_{1} and \mathfrak{S}_{2}, respectively. Let \mathscr{G}_{i} be a group of automorphisms of \mathbf{A}_{i} for every $i=1$, 2. Put $\mathfrak{H}=\mathfrak{G}_{1} \otimes \mathfrak{G}_{2}$ and $\mathbf{A}=\mathbf{A}_{1} \otimes \mathbf{A}_{2}$. If $\theta_{1} \in \mathscr{G}_{1}$ and $\theta_{2} \in \mathscr{G}_{2}$, there exists a uniquely defined automorphism θ of \mathbf{A} such that $\theta\left(T_{1} \otimes T_{2}\right)=\theta_{1}\left(T_{1}\right) \otimes \theta_{2}\left(T_{2}\right)$ for every $T_{1} \in \mathbf{A}_{1}$ and $T_{2} \in \mathbf{A}_{2}$ ([3], chap. I, § 4. Prop. 2). Denote by $\mathscr{G}_{1} \otimes \mathscr{G}_{2}$ the set of all θ obtained from all possible pairs $\left\{\theta_{1} \in \mathscr{G}_{1}, \theta_{2} \in \mathscr{G}_{2}\right\}$ in this way. Under the usual multiplication, $\mathscr{G}=\mathscr{G}_{1} \otimes \mathscr{G}_{2}$ is a group of automorphisms of \mathbf{A}.

Proposition 2. If \mathbf{A}_{1} is \mathscr{G}_{1}-finite and \mathbf{A}_{2} is \mathscr{G}_{2}-finite then \mathbf{A} is \mathscr{G}-finite.
Proof. In virtue of Definition 1, it is enough to show that $\sup _{\sigma \in \mathscr{S}+(\mathbf{A}, \mathscr{G})} E_{\sigma}=I_{\mathfrak{5}}$. To do this, consider an arbitrary element $\sigma_{i} \in \mathscr{R}^{+}\left(\mathbf{A}_{i}, \mathscr{G}_{i}\right)(i=1,2)$. It is known ([3], chap. I, §4, Th. 1) that for each $i=1,2$, there exists a sequence $\left\{x_{k}^{(i)}\right\}_{k=1}^{\infty}$ ' of elements of \mathfrak{H}_{i} with $\sum_{k=1}^{\infty}\left\|x_{k}^{(i)}\right\|^{2}<+\infty$ such that for every $T_{i} \in \mathbf{A}_{i}$ we have

$$
\sigma_{i}\left(T_{i}\right)=\sum_{k=1}^{\infty}\left(T_{i} x_{k}^{(i)} \mid x_{k}^{(i)}\right)
$$

Now for every $T \in \mathbf{A}$, put

$$
\sigma(T)=\sum_{k=1}^{\infty} \sum_{l=1}^{\infty}\left(T\left[x_{k}^{(1)} \otimes x_{l}^{(2)}\right] \mid x_{k}^{(1)} \otimes x_{l}^{(2)}\right)
$$

It is easy to see that $\sigma\left(T_{1} \otimes T_{2}\right)=\sigma_{1}\left(T_{1}\right) \sigma_{2}\left(T_{2}\right)$ for every $T_{1} \in \mathbf{A}_{1}, T_{2} \in \mathbf{A}_{2}$. By linearity and continuity, from this we can conclude that $\sigma \in \mathscr{R}^{+}(\mathbf{A}, \mathscr{G})$. Furthermore,

$$
\left.E_{\sigma_{1}} \mathfrak{Y}_{1}=\mathfrak{X}_{\left\{x_{k}^{(1)}\right\}_{k=1}^{\infty}}^{\mathrm{A}^{\prime}}, \quad E_{\sigma_{2}} \mathfrak{Y}_{2}=\mathfrak{X}_{\left\{x_{k}^{(2)}\right\}_{k=1}^{\infty}}^{\mathrm{A}^{\prime}} \quad \text { and } \quad E_{\sigma} \mathfrak{H}=\mathfrak{X}_{\left\{x_{k}^{(1)} \otimes x_{l}^{(2)}\right\}_{k, l=1}^{\infty}}^{\mathrm{A}^{\prime}} \quad{ }^{\mathbf{8}}\right)
$$

([3], chap. I, § 4, no. 6).
On the other hand, we have $\mathbf{A}_{1}^{\prime} \otimes \mathbf{A}_{2}^{\prime} \cong \mathbf{A}^{\prime}$. This implies that

$$
\begin{equation*}
E_{\sigma_{1}} \otimes E_{\sigma_{2}} \leq E_{\sigma} \tag{1.1}
\end{equation*}
$$

Since \mathbf{A}_{1} and \mathbf{A}_{2} are $\mathscr{G}_{1^{-}}$and \mathscr{G}_{2}-finite, respectively, we have that

$$
\sup _{\sigma_{1} \in \mathscr{P}+\left(\mathbf{A}_{1}, \mathscr{I}_{1}\right), \sigma_{2} \in \mathscr{P}+\left(\mathbf{A}_{2}, \mathfrak{S}_{2}\right)} E_{\sigma_{1}} \otimes E_{\sigma_{2}}=I_{5} .
$$

This together with (1.1) gives that $\sup _{\sigma \in \mathscr{R}+(\mathbf{A}, \mathscr{g})} E_{\sigma}=I_{5}$, and so the proof of Proposition 2 is complete. ${ }^{9}$)

[^2]Proposition 2 enables us to give examples, for pairs $(\mathbf{A}, \mathscr{G})$ such that \mathbf{A} is purely infinite ([3], chap. I, $\S 6$, Def. 5), \mathscr{G} is a non-trivial group of automorphisms ${ }^{10}$) of \mathbf{A}, and \mathbf{A} is \mathscr{G}-finite. For instance, let \mathbf{M}_{1} be a finite factor, and let \mathscr{G}_{1} be an arbitrary but non-trivial group of automorphisms of \mathbf{M}_{1}. Let \mathbf{M}_{2} be a purely infinite von Neumann algebra. Then $\mathbf{A}=\mathbf{M}_{1} \otimes \mathbf{M}_{2}$ is purely infinite ([6]). Put $\mathscr{G}=\mathscr{G} \mathscr{1}_{1} \otimes \mathscr{I}$, where \mathscr{I} is the trivial group of automorphisms of $\mathbf{M}_{\mathbf{2}}$. Then \mathscr{G} is a non-trivial group of automorphisms of \mathbf{A} and \mathbf{A} is \mathscr{G}-finite (cf. Ex. 2 above and Prop. 2).

$\S 2$

Our main result can be stated as follows.
Theorem 1. Let \mathbf{A} be a von Neumann algebra and let \mathscr{G} be a group of automorphisms of \mathbf{A}. Suppose that \mathbf{A} is \mathscr{G}-finite. Then for every $T \in \mathbf{A}, \mathscr{K}(T, \mathscr{G}) \cap \mathbf{A}^{\mathscr{g}}$ consists of exactly one element.

A key-role in the proof of this theorem is played by the ergodic theorem of Alaoglu and Birkhoff ([4], Th. 1.1.3.). For convenience, we recall the reader just for a particular part of it we need.

1. Lemma 1. Let \mathfrak{G} be a complex Hilbert space, and let \mathscr{U} be a group of unitar y operators in \mathfrak{H}. For an arbitrary $x \in \mathfrak{S}$, denote by $c(x, \mathscr{U})$ the smallest convex subse t of \mathfrak{G} which contains the orbit of x under \mathscr{U}. Let $\bar{c}(x, \mathscr{U})$ be the closure of $c(x, \mathscr{U})$ in \mathfrak{G}. Then there exists a unique element x_{0} in $\bar{c}(x, \mathscr{U})$ such that $U x_{0}=x_{0}$ for every $U \in \mathscr{U}$. The mapping $x \rightarrow x_{0}$ is linear.

Proof of Theorem 1. Let T be an arbitrary but fixed element of \mathbf{A}, and consider an arbitrary σ in $\mathscr{R}^{+}(\mathbf{A}, \mathscr{G})$. As σ is ultra-weakly continuous,

$$
m_{\sigma}=\left\{S \in \mathbf{A}: \sigma\left(S^{*} S\right)=0\right\}
$$

is an ultra-weakly closed left ideal of A. Consider the quotient vector space $\mathbf{A} / \mathrm{m}_{a}$, and let $S \rightarrow \eta_{\sigma}(S)$ denote the canonical mapping of \mathbf{A} onto $\mathbf{A} / \mathrm{m}_{\sigma}$. For every $R, S \in \mathbf{A}$, set

$$
\begin{equation*}
\left\langle\eta_{\sigma}(R) \mid \eta_{\sigma}(S)\right\rangle_{\sigma}=\sigma\left(S^{*} R\right) \tag{2.1}
\end{equation*}
$$

Then the vector space $\mathbf{A} / \mathrm{nt}_{\boldsymbol{\sigma}}$ becomes a pre-Hilbert space with respect to the inner product (2.1). Let \mathfrak{S}_{σ} be the completion of $\mathbf{A} / \mathrm{m}_{\sigma}$ in the norm defined by (2.1). ${ }^{11}$) Now, let θ be an arbitrary element of \mathscr{G}. For any $\eta_{\sigma}(S) \in \mathbf{A} / \mathfrak{m}_{\sigma}(S \in \mathbf{A})$, put

$$
\begin{equation*}
\stackrel{(\sigma)}{\theta_{0}} \eta_{\sigma}(S)=\eta_{\sigma}(\theta(S)) \tag{2.2}
\end{equation*}
$$

First of all we note that ${\stackrel{(\sigma)}{\theta_{0}}}_{\theta_{0}}$ is uniquely defined, that is its definition does not depend on the special choice of the representatives of the elements of $\mathbf{A} / \mathfrak{m}_{\sigma}$. Indeed,

[^3]since σ is invariant with respect to θ, θ sends mt_{σ} onto itself. So, if S_{1} and S_{2} are two elements of \mathbf{A} such that $\eta_{\sigma}\left(S_{1}\right)=\eta_{\sigma}\left(S_{2}\right)$ then $S_{1}-S_{2} \in \mathfrak{n}_{\sigma}$ and
$$
\stackrel{(\sigma)}{\theta_{0}} \eta_{\sigma}\left(S_{1}\right)-\stackrel{(\sigma)}{\theta_{0}} \eta_{\sigma}\left(S_{2}\right)=\eta_{\sigma}\left(\theta\left(S_{1}\right)\right)-\eta_{\sigma}\left(\theta\left(S_{2}\right)\right)=\eta_{\sigma}\left(\theta\left(S_{1}-S_{2}\right)\right)=0
$$
which means that $\stackrel{(\sigma)}{\theta_{0}} \eta_{\sigma}\left(S_{1}\right)=\stackrel{(\sigma)}{\theta_{0}} \eta_{\sigma}\left(S_{2}\right)$. It is clear that $\stackrel{(\sigma)}{\theta_{0}}$ is linear. Furthermore, $\quad \stackrel{(\sigma}{\theta}_{0}^{(\mathbf{A} / \underset{(\sigma)}{ }} \underset{\left(\mathfrak{m}_{\sigma}\right)}{ } \subseteq \mathbf{A} / \mathfrak{m}_{\sigma}$ by definition. Now, if $\eta_{\sigma}(S)$ is an arbitrary element of $\mathbf{A} / \mathfrak{m}_{\sigma}$, then $\stackrel{(\sigma)}{\theta_{0}} \eta_{\sigma}\left(\theta^{-1}(S)\right)=\eta_{\sigma}(S)$ which means that $\stackrel{(\sigma)}{\theta_{0}}$ is surjective.

Consider now two arbitrary elements S_{1} and S_{2} of A. Then we have

$$
\begin{gather*}
\left\langle\hat{\theta}_{0}^{(\sigma)} \eta_{\sigma}\left(S_{1}\right) \mid \theta_{0}^{(\sigma)} \eta_{\sigma}\left(S_{2}\right)\right\rangle_{\sigma}=\sigma\left(\theta\left(S_{2}^{*}\right) \theta\left(S_{1}\right)\right)=\sigma\left(\theta\left(S_{2}^{*} S_{1}\right)\right)= \tag{2.3}\\
=\sigma\left(S_{2}^{*} S_{1}\right)=\left\langle\eta_{\sigma}\left(S_{1}\right) \mid \eta_{\sigma}\left(S_{2}\right)\right\rangle_{\sigma}
\end{gather*}
$$

Therefore, $\stackrel{(\sigma)}{\theta_{0}}$ can be uniquely extended to a unitary operator $\stackrel{(\sigma)}{\theta}$ of \mathfrak{S}_{σ}. Furthermore, it is not hard to prove that $[\theta]^{*}=\left(\theta^{-1}\right)^{(\sigma)}$, and that the family $\{\stackrel{(\sigma)}{\theta}\}_{\theta \in \mathcal{F}}$ is a group under the usual multiplication of unitary operators. Denote this group by ${ }^{(\sigma)}$. Now, applying Lemma 1 to \mathfrak{H}_{σ} and $\stackrel{(\sigma)}{\mathscr{G}}$, we obtain a unique point, say $\stackrel{(\sigma)}{x}$, in $\bar{c}\left(\eta_{\sigma}(T), \stackrel{(\sigma)}{\mathscr{G}}\right)$ such that

$$
\stackrel{(\sigma)(\sigma)}{\theta} \stackrel{(\sigma)}{x}
$$

for every $\stackrel{(\sigma)}{\theta} \in \stackrel{(\boldsymbol{\sigma})}{\mathscr{G}}$. We are going to prove that $\stackrel{(\sigma)}{x} \in \mathbf{A} / \mathrm{mt}_{\sigma}$. To do this, consider a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ of elements of $c\left(\eta_{\sigma}(T), \stackrel{(\sigma)}{\mathscr{G}}\right)$ with $\left\|x_{n}-\stackrel{(\sigma)}{x}\right\|_{\sigma} \rightarrow 0$ if $n \rightarrow \infty$. Let $\left\{T_{n}\right\}_{n-1}^{\infty}$ be a sequence of elements of $\mathscr{K}_{0}(T, \mathscr{G})$ such that $\eta_{\sigma}\left(T_{n}\right)=x_{n}$ for every $n=1,2, \ldots$. Then we have

$$
\begin{equation*}
\sigma\left(\left(T_{m}-T_{n}\right)^{*}\left(T_{m}-T_{n}\right)\right)=\left\|\eta_{\sigma}\left(T_{m}\right)-\eta_{\sigma}\left(T_{n}\right)\right\|_{\sigma}^{2}=\left\|x_{m}-x_{n}\right\|_{\sigma}^{2} \rightarrow 0 \tag{2.5}
\end{equation*}
$$

for $m, n \rightarrow \infty$. As $\left\|T_{m}-T_{n}\right\| \leqq 2\|T\|^{12}$), in virtue of [3], chap. I, §4, Prop. 4, we conclude from (2.5) that $\left(T_{m}-T_{n}\right) E_{\sigma} \rightarrow 0$ strongly for $m, n \rightarrow \infty$. Therefore, there exists a well-defined element S_{1} of A such that

$$
\begin{equation*}
T_{n} E_{\sigma} \rightarrow S_{1} \tag{2.6}
\end{equation*}
$$

strongly for $n \rightarrow \infty$. Now, as $\left\|T_{n} E_{\sigma}-S_{1}\right\| \leqq 2\|T\|(n=1,2, \ldots)$, using again the proposition of [3] which has just been quoted, we obtain that

$$
\begin{equation*}
\left\|x_{n}-\eta_{\sigma}\left(S_{1}\right)\right\|_{\sigma}^{2}=\left\|\eta_{\sigma}\left(T_{n}\right)-\eta_{\sigma}\left(S_{1}\right)\right\|_{\sigma}^{2}=\sigma\left(\left(T_{n}-S_{1}\right)^{*}\left(T_{n}-S_{1}\right)\right) \rightarrow 0 \tag{2.7}
\end{equation*}
$$

for $m, n \rightarrow \infty$. So,

$$
\begin{equation*}
\stackrel{(\sigma)}{x}=\eta_{\sigma}\left(S_{1}\right) \quad \text { with } \quad S_{1} \in \mathbf{A}, \tag{2.8}
\end{equation*}
$$

${ }^{12}$) || || denotes the usual norm of bounded linear operators.
that is
(σ)

$$
\begin{equation*}
x \in \mathbf{A} / \mathrm{m}_{\boldsymbol{\sigma}} . \tag{2.9}
\end{equation*}
$$

As the ultra-weak topology is compatible with the vector space structure of \mathbf{A} and m_{σ} is ultra-weakly closed, the set $\bar{\eta}_{\sigma}(\underset{x}{(\sigma)}$) is ultra-weakly closed in \mathbf{A}. Set

$$
\mathbf{A}_{\sigma}^{t}(T)=\begin{gather*}
-1(\alpha) \tag{2.10}\\
\eta_{\sigma}(x)
\end{gather*} \mathbf{A}_{t}
$$

where $t=\|T\|$ and $\mathbf{A}_{t}=\{S \in \mathbf{A}:\|S\| \leqq t\}$. Then $\mathbf{A}_{\sigma}^{t}(T)$ is weakly closed as the weak topology coincides with the ultra-weak one on norm-bounded parts of \mathbf{A}. Furthermore, $\mathbf{A}_{\sigma}^{t}(T)$ is not empty as it contains at least S_{1} constructed above (see (2.8)). As a next step of our proof, let us construct the set $\mathbf{A}_{\sigma}^{t}(T)$ for every $\sigma \in \mathscr{R}^{+}(\mathbf{A}, \mathscr{G})$. Then, if $\sigma_{1}, \sigma_{2} \in \mathscr{R}^{+}(\mathbf{A}, \mathscr{G})$, we have

$$
\begin{equation*}
\mathbf{A}_{\sigma_{1}+\sigma_{2}}^{t}(T) \subseteq \mathbf{A}_{\sigma_{1}}^{t}(T) \quad(i=1,2) \tag{2.11}
\end{equation*}
$$

Since $\sigma_{1}+\sigma_{2} \in \mathscr{R}+(\mathbf{A}, \mathscr{G})$ and $\left.\sigma_{1}+\sigma_{2} \geqq \sigma_{i}{ }^{13}\right)(i=1,2)$, to prove (2.11) we have to show that if $\sigma^{\prime}, \sigma^{\prime \prime} \in \mathscr{R}^{+}(\mathbf{A}, \mathscr{G})$ with $\sigma^{\prime} \leqq \sigma^{\prime \prime}$ then $\mathbf{A}_{\sigma^{\prime \prime}}^{t}(T) \leqq \mathbf{A}_{\sigma^{\prime}}^{t}(T)$. Well, suppose that we are given $\sigma^{\prime}, \sigma^{\prime \prime}$ from $\mathscr{R}^{+}(\mathbf{A}, \mathscr{G})$ with $\sigma^{\prime} \leqq \sigma^{\prime \prime}$, and take an arbitrary element S of $\mathbf{A}_{\sigma^{\prime \prime}}^{t}(T)$. We have to prove that $S \in \mathbf{A}_{\sigma^{\prime}}^{t}(T)$. First we note that $S \in \mathbf{A}_{\sigma^{\prime \prime}}^{t}(T)$ implies $\|S\| \leqq t$. So to show that $S \in \mathbf{A}_{\sigma^{\prime}}^{t}(T)$, it suffices to prove that ${ }^{\left(\sigma^{\prime}\right)}(S)={ }_{\sigma^{\prime}}^{\left(\sigma^{\prime}\right)}$ (where (σ^{\prime})
x plays the same role in the case of σ^{\prime} as $\underset{x}{ }$ did in the case of σ). Let $\left\{T_{n}\right\}_{n=1}^{\infty}$ be a sequence of elements of $\mathscr{K}_{0}(T, \mathscr{G})$ such that

$$
\left\|\eta_{\sigma^{\prime \prime}}\left(T_{n}\right)-\stackrel{\left(\sigma^{\prime \prime}\right)}{x}\right\|_{\sigma^{\prime \prime}} \rightarrow 0 \quad(n \rightarrow \infty) .
$$

By our assumption, $S \in \mathbf{A}_{\sigma^{\prime \prime}}^{t}(T)$ that is $\eta_{\sigma^{\prime \prime}}(S)=\stackrel{\left(\sigma^{\prime \prime}\right)}{x}$. Therefore, we have

$$
\begin{gathered}
\left\|\eta_{\sigma^{\prime}}\left(T_{n}\right)-\eta_{\sigma^{\prime}}(S)\right\|_{\sigma^{\prime}}^{2}=\sigma^{\prime}\left(\left(T_{n}-S\right)^{*}\left(T_{n}-S\right)\right) \leqq \\
\leqq \sigma^{\prime \prime}\left(\left(T_{n}-S\right)^{*}\left(T_{n}-S\right)\right)=\left\|\eta_{\sigma^{\prime \prime}}\left(T_{n}\right)-\eta_{\sigma^{\prime \prime}}(S)\right\|_{\sigma^{\prime \prime}}^{2}=\left\|\eta_{\sigma^{\prime \prime}}\left(T_{n}\right)-\stackrel{\left(\sigma^{\prime \prime}\right)}{x}\right\|_{\sigma^{\prime \prime}}^{2} \rightarrow 0
\end{gathered}
$$

if $\dot{n} \rightarrow \dot{\infty}$. So we obtain that $\eta_{\sigma^{\prime}}(S) \in \bar{c}\left(\eta_{\sigma^{\prime}}(T), \stackrel{\left(\sigma^{\prime}\right)}{\mathscr{G}}\right)$, and it remains to prove that $\eta_{\sigma^{\prime}}(\dot{S})$ is invariant with respect to each element of $\stackrel{\left(\sigma^{\prime}\right)}{\mathscr{G}}$. Let $\stackrel{\left(\sigma^{\prime}\right)}{\theta} \in \stackrel{\left(\sigma^{\prime}\right)}{\mathscr{G}}$ be arbitrary. Then

$$
\begin{aligned}
& \left\|\theta \eta_{\sigma^{\prime}}(S)-\eta_{\sigma^{\prime}}(R)\right\|_{\sigma^{\prime}}=\left\|\eta_{\sigma^{\prime}}(\theta(S))-\eta_{\sigma^{\prime}}(S)\right\|_{\sigma^{\prime}} \leqq \\
& \leqq\left\|\eta_{\sigma^{\prime \prime}}(\theta(S))-\eta_{\sigma^{\prime \prime}}(S)\right\|_{\sigma^{\prime \prime}}=\left\|\theta^{\left(\sigma^{\prime \prime}\right)\left(\sigma^{\prime \prime}\right)} x-{\left(\sigma^{\prime \prime}\right)}_{x}^{x}\right\|_{\sigma^{\prime \prime}}=0 .
\end{aligned}
$$

So $\stackrel{\left(\sigma^{\prime}\right)}{\theta} \eta_{\sigma^{\prime}}(S)=\eta_{\sigma^{\prime}}(S) \underset{\left(\sigma^{\prime}\right)}{\text { for every }} \stackrel{\left(\sigma^{\prime}\right)}{\theta \in\left(\sigma^{\prime}\right)} \mathscr{G}_{\mathscr{G}}$. Using the uniqueness of $\stackrel{\left(\sigma^{\prime}\right)}{x}$ in $\bar{c}\left(\eta_{\sigma^{\prime}}(T), \stackrel{\left(\sigma^{\prime}\right)}{\mathscr{G}}\right)$ we get that $\eta_{\sigma^{\prime}}(S)=\stackrel{\left(\sigma^{\prime}\right)}{x}$, indeed. Hence (2.11) is proved. In virtue of (2.11); the

[^4]amily $\left\{\mathbf{A}_{\sigma}^{t}(T)\right\}_{\sigma \in \mathfrak{R}+(\mathbf{A}, \mathfrak{g})}$ is a filter basis on \mathbf{A}_{t}. It is known that \mathbf{A}_{t} is weakly ompact ([3], chap. I, § 3, Th. 2). Thus, as each $\mathbf{A}_{\sigma}^{t}(T)$ is weakly closed, we obtain that
\[

$$
\begin{equation*}
\mathbf{A}^{t}(T)=\bigcap_{\sigma \in \mathscr{R}+(\mathbf{A}, \mathscr{G})} \mathbf{A}_{\sigma}^{t}(T) \neq \varnothing . \tag{2.12}
\end{equation*}
$$

\]

Now put

$$
\begin{equation*}
\mathbf{A}_{\sigma}(T)=\bar{\eta}_{\sigma}^{-1}(\tilde{(\sigma)} \tag{2.13}
\end{equation*}
$$

for every $\sigma \in \mathscr{R}+(\mathbf{A}, \mathscr{G})$. Then

$$
\begin{equation*}
\mathbf{A}(T)=\bigcap_{\sigma \in \mathscr{R}+(\mathbf{A}, \mathscr{G})} \mathbf{A}_{\sigma}(T) \tag{2.14}
\end{equation*}
$$

is not empty since $\mathbf{A}_{\sigma}^{t}(T) \subseteq \mathbf{A}_{\sigma}(T)$ for every $\sigma \in \mathscr{R}+(\mathbf{A}, \mathscr{G})$ and (2.12) holds. Now if $S_{1} \in \mathbf{A}(T)$ and $S_{i} \in \mathbf{A}(T)$, then for every $\sigma \in \mathscr{R}^{+}(\mathbf{A}, \mathscr{G})$ we obtain that

$$
\eta_{\sigma}\left(S_{1}\right)=\eta_{\sigma}\left(S_{2}\right)=\stackrel{(\sigma)}{x}
$$

hence $\sigma\left(\left(S_{1}-S_{2}\right)^{*}\left(S_{1}-S_{2}\right)\right)=0$. As \mathbf{A} is supposed to be \mathscr{G}-finite, we get that $S_{1}=S_{2}$. This means that $\mathbf{A}(T)=\mathbf{A}^{t}(T)$, and it consists of exactly one element. Denote this. unique element by T^{g}. We are going to show that

$$
\begin{equation*}
\mathscr{K}(T, \mathscr{G}) \cap \mathbf{A}^{\mathscr{G}}=\left\{T^{\mathscr{G}}\right\} \tag{2.14}
\end{equation*}
$$

where $\left\{T^{\mathscr{G}}\right\}$ denotes the set consisting of the element $T^{\mathscr{C}}$ alone. To do this, consider an arbitrary element θ of \mathscr{G}. For every $\sigma \in \mathscr{R}^{+}(\mathbf{A}, \mathscr{G})$ we have

$$
\begin{gathered}
\sigma\left(\left(\theta\left(T^{g}\right)-T^{g}\right)^{*}\left(\theta\left(T^{g}\right)-T^{g}\right)\right)=\left\|\eta_{\sigma}\left(\theta\left(T^{g}\right)\right)-\eta_{\sigma}\left(T^{g}\right)\right\|_{\sigma}^{2}= \\
=\left\|\theta^{(\sigma)(\sigma)} x-x\right\|_{\sigma}^{2}=0 .
\end{gathered}
$$

Hence $\theta\left(T^{\mathscr{G}}\right)=T^{\mathscr{G}}$ which gives (2. 15).

$$
T^{\mathscr{g}} \in \mathbf{A}^{x}
$$

Now let x_{1}, \ldots, x_{n} be an arbitrary finite family of elements of \mathfrak{H}. Then there exists an element σ_{0} of $\mathscr{R}^{+}(\mathbf{A}, \mathscr{G})$ such that $E_{\sigma_{0}} x_{i}=x_{i}$ for every $i=1, \ldots, n$. In fact, consider a family $\left\{\sigma_{\imath}\right\}_{t \in I}$ of elements of $\mathscr{R}^{+}(\mathbf{A}, \mathscr{G})$ with $\sigma_{\imath}\left(I_{5}\right)=1(\iota \in I), E_{\sigma_{1}} E_{\sigma_{\varkappa}}=0$ for $\iota \neq \chi$, and $\sum_{i \in I} E_{\sigma_{l}}=I_{5}$. Then there exists a countable subfamily $\left\{\sigma_{i_{n}}\right\}_{n=1}^{\infty}$ of $\left\{\sigma_{t}\right\}_{i \in I}$ such. that $\left(\sum_{n=1}^{\infty} E_{\sigma_{i_{n}}}\right) x_{i}=x_{i}(i=1, \ldots, n)$. For every $T \in \mathbf{A}$ put

$$
\sigma_{0}(T)=\sum_{n=1}^{\infty} \frac{1}{2^{n}} \sigma_{\iota_{n}}(T)
$$

It is clear that $\sigma_{0} \in \mathscr{R}+(\mathbf{A}, \mathscr{G})$ ([3], chap. I, $\S 3$, no. 3). Furthermore, if for a projection P of \mathbf{A} we have $\sigma_{0}(P)=0$, then $\sigma_{t_{n}}(P)=0$ for every $n=1,2, \ldots$. This means that $\sum_{n=1}^{\infty} E_{\sigma_{l_{n}}} \leqq E_{\sigma_{0}}$. On the other hand,

$$
\begin{gathered}
\sigma_{0}\left(E_{\sigma_{0}}-\sum_{n=1}^{\infty} E_{\sigma_{\iota_{n}}}\right)=\sum_{n=1}^{\infty} \frac{1}{2^{n}}\left[\sigma_{t_{n}}\left(E_{\sigma_{0}}\right)-\sigma_{l_{n}}\left(E_{\sigma_{t_{n}}}\right)\right]= \\
=\sum_{n=1}^{\infty} \frac{1}{2^{n}}\left[\sigma_{t_{n}}\left(E_{\sigma_{l_{n}}}\right)-\sigma_{t_{n}}\left(E_{\sigma_{t_{n}}}\right)\right]=0
\end{gathered}
$$

From this it follows that $E_{\sigma_{0}}-\sum_{n=1}^{\infty} E_{\sigma_{i_{n}}} \leqq I-E_{\sigma_{0}}$, which gives that $E_{\sigma_{0}}-\sum_{n=1}^{\infty} E_{\sigma_{\ell_{n}}}=0$. So $E_{\sigma_{0}}=\sum_{n=1}^{\infty} E_{\sigma_{l_{n}}}$, that is $E_{\sigma_{0}} x_{i}=x_{i}(i=1,2, \ldots, n)$. Now let $\left\{T_{m}\right\}_{m=1}^{\infty}$ be a sequence of elements of $\mathscr{K}_{0}(T, \mathscr{G})$ such that $\left\|\eta_{\sigma_{0}}\left(T_{m}\right)-\eta_{\sigma_{0}}\left(T^{\mathscr{}}\right)\right\|_{\sigma_{0}} \rightarrow 0$ for $m \rightarrow \infty$. This implies that

$$
\left(T_{m}-T^{g}\right) E_{\sigma_{0}} \rightarrow 0
$$

strongly for $m \rightarrow \infty$ ([3], chap. I, §4, Prop 4). Thus, for every $\varepsilon>0$ there exists an index $m_{0}=m_{0}(\varepsilon)$ such that

$$
\left\|\left(T_{m_{0}}-T^{g}\right) E_{\sigma_{0}} x_{i}\right\|<\varepsilon \quad(i=1, \ldots, n)
$$

As $E_{\pi_{0}} x_{i}=x_{i}(i=1, \ldots, n)$, we get that

$$
\left\|\left(T_{m_{0}}-T^{g}\right) x_{i}\right\|<\varepsilon \quad(i=1, \ldots, n)
$$

Hence, $T^{\mathscr{G}} \in \mathscr{K}(T, \mathscr{G})$, as the strong closure and the weak closure of $\mathscr{K}_{0}(T, \mathscr{G})$ coincide ([3], chap. I, §3, Th. 1). Thus we have proved that

$$
\begin{equation*}
\left\{T^{\mathscr{g}}\right\} \subseteq \mathscr{K}(T, \mathscr{G}) \cap \mathbf{A}^{\mathscr{g}} \tag{2.16}
\end{equation*}
$$

Now let \dot{S} be an arbitrary element of $\mathscr{K}(T, \mathscr{G}) \cap A^{\mathscr{G}}$. Then using again [3], chap. $\mathrm{I}, \S 4$, Prop. 4, it is not hard to see that for every $\sigma \in \mathscr{R}^{+}(\mathbf{A}, \mathscr{G})$ we have $\eta_{\sigma}(S) \in \bar{c}\left(\eta_{\sigma}(T), \stackrel{(\sigma)}{\mathscr{G}}\right)$ and $\eta_{\sigma}(S)$ is invariant with respect to the elements of $\stackrel{(\sigma)}{\mathscr{G}}$. Therefore, we have $\eta_{\sigma}(S)={ }_{x}^{(\sigma)}$ for every $\sigma \in \mathscr{R}^{+}(\mathbf{A}, \mathscr{G})$. Hence we obtain that $S \in A(T)=\left\{T^{g}\right\}$, that is

$$
\begin{equation*}
\mathscr{K}(T, \mathscr{G}) \cap \mathbf{A}^{\mathscr{g}} \subseteq\left\{T^{\mathscr{G}}\right\} \tag{2.17}
\end{equation*}
$$

which implies, together with (2. 16), that

$$
\begin{equation*}
\left\{T^{\mathscr{g}}\right\}=\mathscr{K}(T, \mathscr{G}) \cap \mathbf{A}^{\mathscr{g}} \tag{2.18}
\end{equation*}
$$

Since T was arbitrary in \mathbf{A}, Theorem 1 is completely proved.

§ 3

Now we are in the position to prove
Theorem 2. Let \mathbf{A} be a von Neumann algebra in a complex Hilbert space $\mathfrak{5}$, and let \mathscr{G} be a group of automorphisms of \mathbf{A}. Suppose that \mathbf{A} is \mathscr{G}-finite. Then the mapping $T \rightarrow T^{g{ }^{14}}$) possesses the following properties:
(i) for every $\sigma \in \mathscr{R}(\mathbf{A}, \mathscr{G})$ and $T \in \mathbf{A}$ we have $\sigma(T)=\sigma\left(T^{\text {g }}\right)$;
(ii) $T \rightarrow T^{\mathscr{S}}$ is linear and strictly positive; ${ }^{15}$)

[^5](iii) if $T \in \mathbf{A}, S \in \mathbf{A}^{\mathscr{g}}$ we have $(S T)^{\mathscr{G}}=S T^{\mathscr{G}}$ and $(T S)^{\mathscr{S}}=T^{g} S$;
(iv) $T \rightarrow T^{\mathscr{G}}$ is ultra-weakly and ultra-strongly continuous;
(v) for every $T \in \mathbf{A}^{g}$ we have $T=T^{\text {g }}$;
(vi) $(\theta(T))^{\mathscr{G}}=T^{\mathscr{G}}$ for every $T \in \mathbf{A}$ and $\theta \in \mathscr{G}$.

Conversely, if we do not suppose that \mathbf{A} is \mathscr{G}-finite but we know that there exists an ultra-weakly continuous positive linear mapping $T \rightarrow T^{\prime}$ of \mathbf{A} onto $\mathbf{A}^{\text {g }}$ such that
a) $T=T^{\prime}$ for every $T \in \mathbf{A}^{\mathscr{S}}$,
b) $(\theta(T))^{\prime}=T$ for every $T \in \mathbf{A}, \theta \in \mathscr{G}$,
then \mathbf{A} is necessarily \mathscr{G}-finite and for every $T \in \mathbf{A}$ we have $\left.T^{\prime}=T^{\mathscr{G}}\left(c f .{ }^{14}\right)\right)$.
Proof. (i) It suffices to take into account the construction of $T^{\mathscr{G}}$ and to note that if $\sigma \in \mathscr{R}(\mathbf{A}, \mathscr{G})$ then σ is weakly continuous on every norm-bounded part of \mathbf{A}, in particular on $\mathscr{K}(T, \mathscr{G})$.
(ii) Consider two arbitrary elements S and T of \mathbf{A}. Then we have $S^{\mathscr{g}}+T^{\mathscr{g}} \in \mathbf{A}^{\mathscr{g}}$. We are going to prove that $S^{\mathscr{S}}+T^{\mathscr{G}}$ belongs to $\mathscr{K}(S+T, \mathscr{G})$, too. According to the notations used in the proof of Theorem 1 , for every $\sigma \in \mathscr{R}+(\mathbf{A}, \mathscr{G}), \eta_{\sigma}\left(S^{\mathscr{G}}\right)$ is the fixed point of $\bar{c}\left(\eta_{\sigma}(S), \stackrel{(\sigma)}{\mathscr{G}}\right)$ and $\eta_{\sigma}\left(T^{\mathscr{G}}\right)$ is the fixed point of $\bar{c}\left(\eta_{\sigma}(T), \stackrel{(\sigma)}{\mathscr{G}}\right)$, given by Lemma 1. In virtue of the second assertion of this lemma, $\eta_{\sigma}\left(S^{g}\right)+\eta_{\sigma}\left(T^{g}\right)=$ $=\eta_{\sigma}\left(S^{\mathscr{G}}+T^{(\mathscr{G}}\right)$ is the fixed point of $\bar{c}\left(\eta_{\sigma}(S)+\eta_{\sigma}(T), \stackrel{(\sigma)}{\mathscr{G}}\right)=\bar{c}\left(\eta_{\sigma}(S+T), \stackrel{(\sigma)}{\mathscr{G}}\right)$ for every $\sigma \in \mathscr{R}+(\mathbf{A}, \mathscr{G})$. This means that $S^{\mathscr{G}}+T^{\mathscr{G}} \in \mathbf{A}(S+T)=\mathscr{K}(S+T, \mathscr{G}) \cap \mathbf{A}^{\mathscr{G}}$. Thus $S^{\mathscr{G}}+T^{\mathscr{G}}=(S+T)^{\mathscr{G}}$. It is evident that $T \rightarrow T^{\mathscr{G}}$ is homogenous. Now if $T \in \mathbf{A}^{+}$, then $T^{\mathscr{G}} \geqq 0$ as $T^{\mathscr{G}} \in \mathscr{K}(T, \mathscr{G}) \cong \mathbf{A}^{+}$. If $T \in \mathbf{A}^{+}$and $T \neq O$, then $T^{\mathscr{G}} \neq O$. Indeed, if $T^{\mathscr{G}}=O$ then, in virtue of (i), we have $\sigma(T)=\sigma\left(T^{\mathscr{g}}\right)=0$ for every $\sigma \in \mathscr{R}+(\mathbf{A}, \mathscr{G})$. Since \mathbf{A} is \mathscr{G}-finite, from this it follows $T=O$, which completes the proof of (ii).
(iii) follows easily from the construction of the mapping $T \rightarrow T^{43}$.
(iv) First we prove that the mapping $T \rightarrow T^{\mathscr{G}}$ is normal that is if $\left\{T_{\imath}\right\}_{i \in I}$ is an upward directed family of elements of \mathbf{A}^{+}with $\sup _{i \in I} T_{i}=T$, then $\sup _{i \in I} T_{i}^{g}=T^{g}$ holds. In fact, since $T \rightarrow T^{\mathscr{G}}$ is positive, $\left\{T_{i}^{\mathscr{G}}\right\}$ is an upward directed family of $\left(\mathrm{A}^{g}\right)^{+}$ and $T_{i}^{g} \leqq T^{g g}(\iota \in I)$. Put $S=\sup _{i \in I} T_{i}^{g}$. Then $S \in A^{g g}\left([3]\right.$, App. II.), and $S \leqq T^{\mathscr{g}}$. In virtue of (i), for every $\sigma \in \mathscr{R}^{+}(\mathbf{A}, \mathscr{G})$ we obtain that

$$
\begin{aligned}
& \sigma\left(T^{\mathscr{g}}-S\right)=\sigma\left(T^{g}\right)-\sigma(S)=\sigma(T)-\sup _{\imath \in I} \sigma\left(T_{\imath}^{g}\right)= \\
& \quad=\sigma(T)-\sup _{\imath \in I} \sigma\left(T_{\imath}\right)=\sigma(T)-\sigma(T)=0 .
\end{aligned}
$$

So $T^{\mathscr{G}}=S=\sup T_{i}^{\mathscr{S}}$. From this it follows that $T \rightarrow T^{\mathscr{G}}$ is ultra-weakly continuous ([3], chap. I, § 4, Th. 2). Furthermore, for every $T \in \mathbf{A}$ we obtain

$$
\begin{aligned}
O \leqq\left[\left(T-T^{\mathscr{G}}\right)^{*}\left(T-T^{\mathscr{G}}\right)\right]^{\mathscr{G}} & =\left(T^{*} T\right)^{\mathscr{G}}-T^{* \mathscr{G}} T^{\mathscr{G}}-T^{* \mathscr{G}} T^{\mathscr{G}}+T^{* \mathscr{G}} \cdot T^{\mathscr{G}}= \\
& =\left(T^{*} T\right)^{\mathscr{G}}-T^{* \mathscr{G}} T^{\mathscr{G}}
\end{aligned}
$$

(cf. (ii) and (iii)). Thus $T^{* g} T^{\mathscr{G}} \leqq\left(T^{*} T\right)^{\mathscr{G}}$, and this gives that $T \rightarrow T^{\mathscr{G}}$ is ultra-strongly continuous as well ([3]. chap. I, §4, Th. 2).
(v) is evident.
(vi) is a consequence of the fact that $\mathscr{K}(\theta(T), \mathscr{G})=\mathscr{K}(T, \mathscr{G})$ for every $T \in \mathbf{A}$. Hence the first part of Theorem 2 is proved.

As far as the second part of Theorem 2 is concerned, we can proceed as follows. Let T_{0} be an arbitrary element of $\left(\mathbf{A}^{g}\right)^{+}$such that $T_{0} \neq O$. Then there exists an element x of \mathfrak{H} such that $\left(T_{0} x \mid x\right)>0$. For every $T \in \mathbf{A}$ put

$$
\begin{equation*}
\sigma(T)=\left(T^{\prime} x \mid x\right) \tag{3.1}
\end{equation*}
$$

By our hypotheses on the mapping $T \rightarrow T^{\prime}$, one can easily see that $\sigma \in \mathscr{R}+(\mathrm{A}, \mathscr{G})$ with $\sigma\left(T_{0}\right) \neq 0$. Thus, in virtue of Definition $1, \mathbf{A}$ is \mathscr{G}-finite. Furthermore, if $T \in \mathbf{A}$, then for every $S \in \mathscr{K}_{0}(T, \mathscr{G})$ we get that $S^{\prime}=T^{\prime}$ (cf. especially hypothesis b) in Theorem 2). As $T \rightarrow T^{\prime}$ is supposed to be ultra-weakly continuous, the same holds for every $S \in \mathscr{K}(T, \mathscr{G})$. In particular $T^{\prime}=\left(T^{\mathscr{G}}\right)^{\prime}=T^{\mathscr{G}}$, which completes the proof of Theorem 2.

Definition 2. If the von Neumann algebra \mathbf{A} is finite with respect to a group \mathscr{G} of its automorphisms, then the mapping $T \rightarrow T^{\mathscr{G}}$ given in Theorem 2 is called the \mathscr{G}-canonical mapping of \mathbf{A}.

§ 4

1. Let us give some direct consequences of the results of §§2-3.

Proposition 3. Let A be a von Neumann algebra, and let \mathscr{G} be a group of automorphisms of \mathbf{A}. Suppose that \mathbf{A} is \mathscr{G}-finite. If $\sigma_{1}, \sigma_{2} \in \mathscr{R}(\mathbf{A}, \mathscr{G})$ are such that, for every $T \in \mathbf{A}^{\mathfrak{g}}, \sigma_{1}(T)=\sigma_{2}(T)$ holds, then $\sigma_{1}=\sigma_{2}$.

Proof. If $T \in \mathbf{A}$ then

$$
\sigma_{1}(T)=\sigma_{1}\left(T^{g}\right)=\sigma_{2}\left(T^{g}\right)=\sigma_{2}(T)
$$

(cf. Theorem 2, (i)), where $T \rightarrow T^{\mathscr{G}}$ is the \mathscr{G}-canonical mapping of \mathbf{A}, and this proves Proposition 3.

In the following for a given pair $(\mathbf{A}, \mathscr{G}), \mathscr{R}\left(\mathbf{A}^{\mathscr{Y}}\right)$ will denote the set of all ultraweakly continuous linear forms on $\mathbf{A}^{\mathscr{G}}$. Then under the same condition on \mathbf{A} and \mathscr{G} as in Proposition 3, we have

Corollary 1. Every element σ_{0} of $\mathscr{R}\left(\mathbf{A}^{g}\right)$ can be uniquely extended to an element σ of $\mathscr{R}(\mathbf{A}, \mathscr{G})$.

Proof. For any $T \in \mathbf{A}$, put

$$
\sigma(T)=\sigma_{0}\left(T^{g}\right)
$$

Then σ evidently belongs to $\mathscr{R}(\mathbf{A}, \mathscr{G})$ (cf. Theorem 2). The uniqueness of the extension follows now from Proposition 3.

Without making any restriction on \mathbf{A} and \mathscr{G} we can conclude from Proposition 3 also the following

Corollary 2. If $\sigma_{1}, \sigma_{2} \in \mathscr{R}^{+}(\mathbf{A}, \mathscr{G})$ with $\sigma_{1}(T)=\sigma_{2}(T)$ for every $T \in \mathbf{A}^{\mathscr{G}}$, then $\sigma_{1}=\sigma_{2}$.

Proof. Consider the projection $E=\sup \left(E_{\sigma_{1}}, E_{\sigma_{2}}\right)$. It is evident that $E \in \mathbf{A}^{\pi /}$. Consider the von Neumann algebra \mathbf{A}_{E} ([3], chap. I, § 1, no. 2). Then \mathscr{G} canonically induces a group of automorphisms \mathscr{G}_{E} of \mathbf{A}_{E}, and the restrictions $\sigma_{1_{E}}$ and $\sigma_{2_{E}}$ of σ_{1} and σ_{2} to \mathbf{A}_{E}, respectively, belong to $\mathscr{R}^{+}\left(\mathbf{A}_{E}, \mathscr{G}_{E}\right)$. Hence \mathbf{A}_{E} is \mathscr{G}_{E}-finite. Further-
more, for every $T_{E} \in\left(\mathbf{A}_{E}\right)^{\mathscr{S}_{E}}$ we have $\sigma_{1_{E}}\left(T_{E}\right)=\sigma_{2_{E}}\left(T_{E}\right)$. So, in virtue of Proposition 3, $\sigma_{1_{E}}=\sigma_{2_{E}}$. Therefore, if $T \in \mathbf{A}$; then $\sigma_{1}(E T E)=\sigma_{1_{E}}\left(T_{E}\right)=\sigma_{2_{E}}\left(T_{E}\right)=\sigma_{2}(E T E)$. On the other hand, since $\sigma_{i}(T)=\sigma_{i}(E T E)(i=1,2)$ for every $T \in \mathbf{A}$, we can conclude that $\sigma_{1}=\sigma_{2}$, which proves Corollary 2.

Proposition 4. Let \mathbf{A} be a von Neumann algebra in a Hilbert space $\mathfrak{5}$, and let \mathscr{G}_{1} and \mathscr{G}_{2} be two groups of automorphisms of \mathbf{A}. Suppose that \mathbf{A} is $\mathscr{G}_{1}-$ finite, and suppose that for every $\theta_{2} \in \mathscr{G}_{2}$ and $T \in \mathbf{A}$ we have

$$
\begin{equation*}
\theta_{2}\left(T^{\mathscr{G}_{1}}\right)=\left(\theta_{2}(T)\right)^{\mathscr{G}_{1}} \tag{3.2}
\end{equation*}
$$

where $T \rightarrow T^{\mathscr{S}_{1}}$ is the \mathscr{G}_{1}-canonical mapping of $\mathbf{A} .^{15}$). Denote by $\mathscr{G}_{2,1}$ the group of automorphisms of $\mathbf{A}^{\mathscr{G}_{1}}$ defined by \mathscr{G}_{2} via (3.2). Now if $A^{\mathscr{G}_{1}}$ is $\mathscr{G}_{2,1}$-finite then \mathbf{A} is finite with respect to the group $\mathscr{G}=\left\{\mathscr{G}_{1}, \mathscr{G}_{2}\right\}$ generated by \mathscr{G}_{1} and \mathscr{G}_{2}. Hence in this case \mathbf{A} is \mathscr{G}_{2}-finite, too, and we have

$$
\begin{equation*}
T^{\mathscr{G}}=\left(T^{\mathscr{C}_{1}}\right)^{\mathscr{G}_{2}}=\left(T^{\mathscr{C}_{2}}\right)^{\mathscr{G}_{1}} \quad(T \in \mathbf{A}) \tag{3.3}
\end{equation*}
$$

where $T \rightarrow T^{\mathscr{G}}$ and $T \rightarrow T^{\mathscr{G}_{2}}$ are the corresponding \mathscr{G} - and \mathscr{G}_{2}-canonical mappings of \mathbf{A}, respectively.

Proof. It is not hard to prove that $\mathbf{A}^{\mathscr{G}}=\left(\mathbf{A}^{\mathscr{G}_{1}}\right)^{\mathscr{G}_{2,1}}$. Let now $\sigma \in \mathscr{R}+\left(\mathbf{A}^{\mathscr{G}}\right)$ be arbitrary. Since $\mathbf{A}^{\mathscr{G}_{1}}$ is $\mathscr{G}_{2,1}$-finite, in virtue of Corollary 1 of Proposition 3, σ can be extended to an element σ^{\prime} of $\mathscr{R}^{+}\left(\mathbf{A}^{\mathscr{G}_{1}}, \mathscr{G}_{2,1}\right)$. Since \mathbf{A} is \mathscr{G}_{1}-finite, in virtue of the same corollary, σ^{\prime} can be extended to an element $\sigma^{\prime \prime}$ of $\mathscr{R}^{+}\left(\mathbf{A}, \mathscr{G}_{1}\right)$. Now if $T \in \mathbf{A}$ and $\theta_{2} \in \mathscr{G}_{2}$, then we have

$$
\begin{aligned}
& \sigma^{\prime \prime}\left(\dot{\theta}_{2}(T)\right)= \sigma^{\prime \prime}\left(\left(\theta_{2}(T)\right)^{\mathscr{G}_{1}}\right)=\sigma^{\prime \prime}\left(\theta_{2}\left(T^{\mathscr{G}_{1}}\right)\right)=\sigma^{\prime}\left(\theta_{2}\left(T^{\mathscr{S}_{1}}\right)\right)= \\
&=\sigma^{\prime}\left(T^{\mathscr{G}_{1}}\right)=\sigma^{\prime \prime}\left(T^{\mathscr{G}_{1}}\right)=\sigma^{\prime \prime}(T)
\end{aligned}
$$

that is $\sigma^{\prime \prime} \in \mathscr{R}^{+}(\mathbf{A}, \mathscr{G})$. Hence, for every $T \in\left(\mathbf{A}^{\mathscr{G}}\right)^{+}, T \neq O$ there exists an element σ of $\mathscr{R}^{+}(\mathbf{A}, \mathscr{G})$ such that $\sigma(T) \neq 0$, and this means that \mathbf{A} is \mathscr{G}-finite. In particular, \mathbf{A} is \mathscr{G}_{2}-finite, too. Now we are going to show that for every $T \in \mathbf{A}$

$$
\begin{equation*}
\left(T^{\mathscr{S}_{1}}\right)^{\mathscr{G}_{2}}=\left(T^{\mathscr{G}_{2}}\right)^{\mathscr{S}_{1}} \tag{3.4}
\end{equation*}
$$

holds. Now let $T \in \mathbf{A}$ be arbitrary but fixed, and let $\left\{K_{i}(T)\right\}_{\iota \in I}$ be a net of elements of $\mathscr{K}_{0}\left(T, \mathscr{G}_{2}\right)$ such that

$$
\begin{equation*}
\lim _{\imath i \in I} \text { strong } K_{\imath}(T)=T^{g_{2}} \tag{3.5}
\end{equation*}
$$

Then

$$
\begin{equation*}
\lim _{\imath \in I} \text { strong }\left[K_{l}(T)\right]^{\mathscr{1}_{1}}=\left(T^{\mathscr{S}_{2}}\right)^{\mathscr{S}_{1}} \tag{3.6}
\end{equation*}
$$

(cf. Theorem 2, (iv)). On the other hand, in virtue of (3.2) we get that

$$
\begin{equation*}
\left[K_{\imath}(T)\right]^{\mathscr{G}_{1}}=K_{t}\left(T^{\mathscr{C}_{1}}\right) \tag{3.7}
\end{equation*}
$$

Thus, in virtue of (3.6) we have

$$
\begin{equation*}
\lim _{\imath \in I} \text { strong } K_{l}\left(T^{\mathscr{G}_{1}}\right)=\left(T^{\mathscr{G}_{2}}\right)^{\mathscr{G}_{1}} \tag{3.8}
\end{equation*}
$$

[^6]This means that $\left(T^{\mathscr{G}_{2}}\right)^{\mathscr{G}_{1}}$ belongs to $\mathscr{K}\left(T^{\mathscr{G}_{1}}, \mathscr{G}_{2}\right)$, and for every $\theta_{2} \in \mathscr{G}_{2}$, we have $\theta_{2}\left(\left(T^{g_{2}}\right)^{g_{1}}\right)=\left(\theta_{2}\left(T^{g_{2}}\right)\right)^{\mathscr{g}_{1}}=\left(T^{g_{2}}\right)^{\mathscr{g}_{1}}$ (cf. (3.2)) and this means that $\left(T^{\mathscr{G}_{2}}\right)^{\mathscr{G}_{1}} \in \mathbf{A}^{\mathscr{g}_{2}} \cap$ $\cap \mathscr{K}\left(T^{\mathscr{S}_{1}}, \mathscr{G}_{2}\right)$, that is

$$
\left(T^{g_{2}}\right)^{g_{1}}=\left(T^{g_{1}}\right)^{\mathscr{G}_{2}}
$$

Hence (3.4) is proved. Now it is not hard to see that the mapping

$$
T \rightarrow\left(T^{\mathscr{I}_{1}}\right)^{g_{2}}=\left(T^{\mathscr{G}_{2}}\right)^{\mathscr{G}_{1}}
$$

possesses all the properties of the mapping $T \rightarrow T^{\mathscr{G}}$. Thus, by the uniqueness part of Theorem 2, we get that

$$
T^{\mathscr{G}}=\left(T^{\mathscr{G}_{1}}\right)^{\mathscr{G}_{2}}=\left(T^{\mathscr{G}_{2}}\right)^{\mathscr{G}_{1}}
$$

which proves Proposition. 4.
We think it is worth formulating Theorem 1 and Theorem 2 in the following well-known particular case (cf. [3], chap. III, § 4, Th. 3; § 5, Ex. 1).

Corollary to Theorems 1 and 2. Let \mathbf{A} be a finite von Neumann algebra, and denote by \mathbf{A}^{b} its center. Then for every. $T \in \mathbf{A}$, the set $\mathbf{A}^{4} \cap \mathscr{K}(T, \mathscr{F}(\mathbf{A}))$ consists of one element alone. Denote it by T^{4}. The mapping $T \rightarrow T^{L_{1}}$ has the following properties:
(i) for every $T \in \mathbf{A}$ and for every finite normal trace ([3], chap. I, § 6, Def. 1) φ on \mathbf{A} we have $\varphi\left(T^{h}\right)=\varphi(T)$,
(ii) $T \rightarrow T^{4}$ is strictly positive and linear;
(iii) $T \rightarrow T^{\text {L }}$ is ultra-strongly and ultra-weakly continuous;
(iv) if $T \in \mathbf{A}$ and U is unitary in \mathbf{A} then $\left(U^{*} T U\right)^{\boldsymbol{L}}=T^{\boldsymbol{r}}$ holds;
(v) if $S \in \mathbf{A}^{4}$ then $S^{4}=S$;
(vi) if $S \in \mathbf{A}^{4}$ and $T \in \mathbf{A}$ then $(S T)^{4}=S T^{4}$.

Conversely, if there exists a positive normal linear mapping $T \rightarrow T^{\prime}$ of \mathbf{A} onto $\mathbf{A}^{\mathbf{L}^{\prime}}$ having properties analogous to (iv) and (v), then \mathbf{A} is finite and $T^{\prime}=T^{\text {b }}$ for every $\boldsymbol{T} \in \mathbf{A}$.

Proof. In Theorems 1 and 2 take $\mathscr{I}(\mathbf{A})$ for \mathscr{G}.
2. Let \mathbf{A} be a von Neumann algebra in a Hilbert space \mathfrak{j}. Denote by \mathbf{A}_{U} the group of all unitary elements of \mathbf{A}. Let $U \in \mathbf{A}_{U}$ be an arbitrary but fixed element of \mathbf{A}_{U}. For every $T \in \mathbf{L}(\mathfrak{H})^{16}$) put

$$
T \rightarrow \theta_{U}(T)=U^{*} T U
$$

The set $\mathscr{G}\left(\mathbf{A}_{U}\right)$ of all possible θ_{U} is a group of automorphisms of $\mathbf{L}(\mathfrak{H})$. In the following we are going to characterize the von Neumann algebras \mathbf{A} such that $\mathbf{L}(\mathfrak{H})$ is finite with respect to $\mathscr{G}\left(\mathbf{A}_{v}\right)$.

Proposition 5. Let A be a von Neumann algebra in a Hilbert space $\mathfrak{5}$. Then $\mathbf{L}(\mathfrak{H})$ is $\mathscr{G}\left(\mathbf{A}_{U}\right)$-finite if and only if \mathbf{A} is a product ${ }^{17}$) of finite discrete factors. ${ }^{18}$)

[^7]Proof. Suppose that \mathbf{A} is the product of the finite discrete factors $\mathbf{M}_{\boldsymbol{t}}(\iota \in I)$ that is

$$
\mathbf{A}=\prod_{i \in \mathrm{I}} \mathbf{M}_{t}
$$

It is evident that $\left(U_{\imath}\right)_{\iota \in I} \in \mathbf{A}_{U}$ if and only if $\left.U_{\imath} \in\left(\mathbf{M}_{i}\right)_{U}{ }^{19}\right)$ for every $\iota \in I$. Furthermore, for every $\iota \in I$, the group $\left(\mathbf{M}_{i}\right)_{U}$ is compact in the weak operator topology. Thus, using the Tychonoff theorem on the topological product of compact spaces, it is not hard to see that \mathbf{A}_{U} is compact in the weak topology. Denote by $\lambda(d U)$ the normalized Haar measure of \mathbf{A}_{v}, and let $T \in \mathbf{L}(\mathfrak{H})$ be arbitrary. If x is any element of \mathfrak{H}, the function

$$
U \rightarrow f_{x, T}(U)=\left(U^{*} T U x \mid x\right)
$$

is continuous on \mathbf{A}_{U}, since the weak and the strong topology coincide on $\mathbf{A}_{\boldsymbol{U}}$. So

$$
\int_{A_{U}} f_{x, T}(U) \lambda(d U)
$$

exists. Let $x \in \mathfrak{5}$ be fixed, and for every $T \in \mathbf{L}(\mathfrak{H})$ set

$$
\sigma_{x}(T)=\int_{A_{U}} f_{x, \dot{T}}(U) \lambda(d U)
$$

Using the unimodularity of λ and the properties of the integral, it is easy to show that $\sigma_{x} \in \mathscr{R}^{+}\left(\mathbf{L}(\mathfrak{H}), \mathscr{G}\left(\mathbf{A}_{U}\right)\right)$. Now if $T \in \mathbf{L}^{+}(\mathfrak{G}), T \neq 0$ then there exists an element x_{0} of \mathfrak{G} such that $\left(T x_{0} \mid x_{0}\right)>0$. Then $\sigma_{x_{0}}(T) \neq O$, which proves that $\mathbf{L}(\mathfrak{H})$ is $\mathscr{G}\left(\mathbf{A}_{U}\right)$ finite.

Now suppose that $L(\mathfrak{H})$ is $\mathscr{G}\left(\mathbf{A}_{U}\right)$-finite, and let $T \rightarrow T^{\mathscr{G}\left(\mathbf{A}_{U}\right)}$ be the $\mathscr{G}\left(\mathbf{A}_{U}\right)$ canonical mapping of $\mathbf{L}(\mathfrak{H})$ onto $\mathbf{L}(\mathfrak{H})^{g\left(A_{u}\right)}$ (cf. Theorem 2) which is equal to the commutant \mathbf{A}^{\prime} of \mathbf{A}. Let $\operatorname{Tr}(\cdot)$ be the canonical trace of $\mathbf{L}(\mathfrak{H})$ ([3], chap. I, § 6, no. 6), and let $S \in\left(\mathbf{A}^{\prime}\right)^{+}, S \neq O$ be arbitrary. Then there exists an element S_{1} of $\mathbf{L}(\mathfrak{H})$ such that $O \leqq S_{1} \leqq S, S_{1} \neq O$, and $\operatorname{Tr}\left(S_{1}\right)<+\infty$. By the properties of the mapping $T \rightarrow T^{\mathscr{G}\left(\mathrm{A}_{U}\right)}$ we obtain that $O \leqq S_{1}^{\mathscr{G}\left(\mathrm{A}_{U}\right)} \leqq S^{G\left(\mathrm{~A}_{U}\right)}=S$. Furthermore, as $\operatorname{Tr}(\cdot)$ is lower semicontinuous in the weak topology ([3], chap. I, § 6, Prop. 2, Cor.) and $S_{1}^{\mathscr{G}\left(\mathbf{A}_{U}\right)} \in \mathscr{K}\left(S_{1}, \mathscr{G}\left(\mathbf{A}_{U}\right)\right)$, we get that $\operatorname{Tr}\left(S_{1}^{\mathscr{O}\left(\mathrm{AU}^{\prime}\right)}\right) \leqq \operatorname{Tr}\left(S_{1}\right)$. On the other hand, $S_{1}^{\mathscr{g}(\mathrm{A})} \neq O$ since the mapping $T \rightarrow T^{g(A U)}$ is strictly positive. So we have proved that for every $S \in\left(\mathbf{A}^{\prime}\right)^{+}, S \neq O$ there exists an element $S^{\prime} \in\left(\mathbf{A}^{\prime}\right)^{+}, S^{\prime} \neq O, S^{\prime} \leqq S$ such that $\operatorname{Tr}\left(S^{\prime}\right)<+\infty$. Now let $E \neq O$ be a projection in \mathbf{A}^{\prime}. Then there exists a non-zero element R of $\left(\mathbf{A}^{\prime}\right)^{+}$with $R \leqq E$ and $\operatorname{Tr}(R)<+\infty$. Let $R=\int \lambda d F_{\lambda}$ be the spectral representation of R and set $F=I-F \frac{\|R\|}{2}+0$. Then it is evident that $F \in \mathbf{A}^{\prime}, F \neq O$ and $\frac{\|R\|}{2} F \leqq R$. Therefore, $\operatorname{Tr}(F)<^{2}+\infty$. Furthermore, as F is a projection, we obtain that $F \leqq E$. Let now F_{0} be any of the projections of \mathbf{A}^{\prime} such that $F_{0} \neq O, F_{0} \leqq E$ and $\operatorname{Tr}\left(F_{0}\right)$ is minimal. Then F_{0} is minimal in \mathbf{A}^{\prime}. Indeed, $F_{0}^{\prime} \in \mathbf{A}^{\prime}, F_{0}^{\prime} \neq O, F_{0}^{\prime} \neq F_{0}, F_{0}^{\prime} \leqq F_{0}$ would imply $F_{0}^{\prime} \leqq E, \operatorname{Tr}\left(F_{0}^{\prime}\right)<+\infty$ and $\operatorname{Tr}\left(F_{0}^{\prime}\right)<$ $<\operatorname{Tr}\left(F_{0}\right)$ which contradicts the minimality of $\operatorname{Tr}\left(F_{0}\right)$. Thus, every non-zero projection of \mathbf{A}^{\prime} majorizes a non-zero minimal projection of \mathbf{A}^{\prime}. Hence, in virtue

[^8]of Ex. 4, p. 126 of [3], \mathbf{A}^{\prime} and so \mathbf{A} is a product of discrete factors. Since \mathbf{A} is finite, each factor occuring in the decomposition of \mathbf{A} is finite ([3], chap. I, §8, no. 2). Thus the proof of Proposition 5 is comlete.

Corollary. In order that the group \mathbf{A}_{U} of the unitary elements of a von Neumann algebra \mathbf{A} be compact in the weak topology, it is necessary and sufficient that \mathbf{A} be the product of finite discrete factors.

Proof. The sufficiency of our condition is evident by the Tychonoff theorem (cf. the first step of the proof of Proposition 5). Now, if \mathbf{A}_{U} is weakly compact, then arguing in the same way as in the proof of Proposition 5, we obtain that $\mathbf{L}(\mathfrak{5})$ is $\mathscr{G}\left(\mathbf{A}_{U}\right)$-finite which means, by Proposition 5, that \mathbf{A} is a product of finite discrete factors. Hence the proof of Corollary is complete.

Bibliography

[1] J. Dixmier, Les anneaux d'opérateurs de classe finie, Ann. Ec. Norm. Sup., 66 (1949), 209-261.
[2] J. Dixmier, Formes linéaires sur un anneau d'opérateurs, Bull. Soc. Math. Fr., 81 (1953), 9-39.
[3] J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien (Algèbres de von Neumann) (Paris, 1957).
[4] K. Jacobs, Neuere Methoden und Ergebnisse der Ergodentheorie (Berlin-Göttingen-Heidelberg, 1960).
[5] J. Kovács et J. Szứcs, Théorèmes de type ergodique dans les algèbres de von Neumann, C. R. Acad. Sci. Paris, 262 (1966), 341-344.
[6] S. Sakai, On topological properties of W^{*}-algebras, Proc. Japan Acad., 33 (1957), 439-444.
[7] J. Schwartz, Two finite, non-hyperfinite, non-isomorphic factors, Comm. Pure Appl. Math., 16 (1963), 19-26.

[^0]: *) This author's contribution to the paper was done while he was a Postdoctorate. Fellow at Queen's University in Kingston, of the National Research Council of Canada.
 ${ }^{1}$). For the theory of von Neumann algabras, cf. [3]. The terminology of [3] will be freely used in the following.
 ${ }^{2}$) By an automorphism of a von Neumann algebra, we always mean a * -automorphism.
 ${ }^{3}$) By the orbit of T under \mathscr{G} we mean the set of the elements $\{\theta(T)\}_{\theta \in \mathscr{G}}$.
 ${ }^{4}$) For a given pair $(\mathbf{A}, \mathscr{G})$, the notations $\mathscr{K}_{0}(T, \mathscr{G}), \mathscr{K}(T, \mathscr{G})(T \in \mathbf{A})$ will be permanently used by us, without explaining again what they mean.

[^1]: ${ }^{5}$) For a von Neumann algebra $\mathbf{A}, \mathbf{A}^{+}$denotes the set of all non-negative self-adjoint elements of A.
 ${ }^{6}$) I_{5} denotes the identity operator of the Hilbert space $\mathfrak{5}$.

[^2]: ${ }^{7}$) That is, $\varphi\left(I_{5}\right)=1$.
 ${ }^{8}$) For these notations, cf. [3], chap. 1, § 1, no. 4.
 ${ }^{9}$) For this reasoning, see [3], chap. I, §4, Ex. 6.

[^3]: ${ }^{10}$) That is \mathscr{G} does not consists just of the identical automorphism of \mathbf{A}.
 ${ }^{11}$) For this construction, see [3], chap. I, § 4, no. 1.

[^4]: 13) That means that $\sigma_{1}(T)+\sigma_{2}(T) \geqq \sigma_{i}(T)(i=1,2)$ for every $T \in \mathbf{A}^{+}$.
[^5]: ${ }^{14}$) $T^{\mathscr{G}}$, as above, denotes the unique element of $\mathscr{K}(T, \mathscr{G}) \cap \mathbf{A}^{\mathscr{G}}$ (cf. Th. 1).
 1s) In general, if $T \rightarrow \Phi(T)$ is a mapping of \mathbf{A} into itself, Φ is said to be positive if $T \in \mathrm{~A}^{+}$ implies $\Phi(T) \in \mathbf{A}^{+} . \Phi$ is strictly positive, if $T \in \mathbf{A}^{+}, T \neq O$ imply $\Phi(T) \geqq O, \Phi(T) \neq O$.

[^6]: ${ }^{15}$) Condition (3.2) is fulfilled for instance if every element of \mathscr{G}_{1} commutes with every element of \mathscr{G}_{2}. In fact, to show this it is enough to take into account the construction of $T^{\mathscr{G}_{1}}$ and the continuity properties of the elements of \mathscr{G}_{2}.

[^7]: ${ }^{16)} \mathbf{L}(\mathfrak{H})$ denotes the von Neumann algebra of all bounded linear operators of \mathfrak{H}.
 ${ }^{17)} \mathrm{Cf}$. [3], chap. I, § 2, no: 2.
 ${ }^{18}$) Cf. [3], chap. I, § 8, no. 4.

[^8]: $\left.{ }^{19}\right)\left(\mathbf{M}_{2}\right)_{v}$ denotes the group of the unitary elements of \mathbf{M}_{1}.

