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| Introduction
t
Let 1A be a von Neumann algebra!) in a complex Hilbert space $, and let 4
bea group of automorphisms of A 2). Denote by A? the set of all elements of A
which are invariant with respect to each element of %. Taking into account the:
algebralc and topological properties of the elements of % ([13], chap. I, §4, Th. 2,
Cor. 1),ione can see easily that A¢ is a von Neumann subalgebra of A. For any
T€A, let A o(T, %) denote the smallest convex subset of A which contains the
orbit of Tunder 9 3), Let A (T, %) be the weak closure of o (T, ¥) *). The inves-
trgatrons concerning the center-valued trace theory of von Neumann algebras
and the jresults of some other works (for example [1], [2], [7]) naturally give the
idea of aeekmg conditions on A and % under which the set " (T, ¥) meets A? for
every TE€A.
The. purpose of this paper is to give a sufficient condition in order that
A (T, g)ﬂA‘” -consist of exactly one element for every T€A (Theorem 1.) This.
is the subject of § 2. The next § 3 is devoted to establishing under this condition
a mapping of A onto A¥ which reminds us, from many points of view, of the Dixmier
trace & of a finite von Neumann algebra (Theorem 2). In § 4, some simple con-
sequences of the above results are given. § 1 contains preliminary results and
examples.
The' main results of this-paper were announced in [5], with the proof of Theorem.
lina less deta1led form.
|

! §1

Frrst of all let us set down some notations.
If A is-a von Neumann algebra and ¥ is a group of automorphlsrns of A,
denote by R (A, 9) the set of all ultra-weakly contxnuous linear forms on A whlch

*) ThlS author’s contribution to the paper was done while he was a Postdoctorate. Fellow:
at Queen’s University in Kingston, of the National Research Council of Canada.

‘) For the theory of von Neumann algabras, cf. [3]. The terminology of [3] will be freely
used in the following.

) By an automorphism of a von Neumann algebra, we always mean a_ % -automorphism..

. 3) By the orbit of T under ¥ we mean the set of the elements {0(} 4 cy

D) For a given pair (A, %), the notations # o(T, 9), A (T, %) (T¢ A) will be permanently

used by us without explaining again what they mean.
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‘are invariant with respect to % (that is if 0 € (A, %) then for every T€A and 0€ %
we have o(0(T))=0(T)). Let Z*(A, %) denote the set of all positive elements of
A(A, ¥). For any element ¢ of Z+(A, %), E, will denote the support of ¢ ([3], chap.
1, § 4, Def. 3). It is easy to see that E, € AY. The group of all inner automorphlsms
-of A will be denoted by #(A).

' With these notations we have the following

Proposition 1. Let A be a von Neumann algebra in a complex Hilbert space
$, and let % be.a group of automorphisms of A. The followmg Sour condmons are
equivalent: .

(i) For every TEA* %), T =0 thele exists an element o of 92+ (A, 9) such that
a(T)#0;

(ii) For every Te(A%)*, T#0 fheie exists an element ¢ of 9?+(A b) with
a(T)=0;

(iii) ‘There exists a famzly {6.}er of elemenrs of #+(A,.%9) such that E _,,,‘20
Jor v and Z’E =I5 ©)

@iv) sup E,=1.
TER+(A,9)

Proof. (i)=(i) is evident.

(i)=(ii)). In fact, let {0.},cr be a maximal family of elements of Z+*(A, %)
such that E; E, =0 for ¢>%. Such a family exists by the ZorN’s lemma. Set
E= 5’E¢,l, and prove that E=1Ig. To do this, suppose the contrary that is that

E;élg Put F=1g—E. Sihce FE(AY)*, F50, in virtue of (u) there exists an element
o of Z*(A, 9) such that o(F)=0. Set ¢’(T)=0o(FTF) for every T€A. As FcAY,
‘we obtain that ¢’ € Z+(A, 9). Furthermore, we have ¢’%0 and ¢'(E)=0. This
means that E, 20and E, = F, and this contradicts the maximality of the family {6, },¢;.

(ii)=(iv) is evident. _

(iv)=>(1). Suppose that (i) is not true. Then there exists an element T€ A+, T0
-such that o(T)=0 for every a€Z* (A, %). This means that E,TE,=0 for every
.0 €R*(A, 9). Thus for every x€ 9 we get |T2E, x| =0, i.e. T*E,=0. As, by (iv),

sup E,=1g, we obtain that 7¥=0, that is T=0 which is impossible, and this

oER*(A,9)
-completes the proof of Proposmon 1.

Definition 1. Let A be a von Neumann algebra and let ¢ be a group of
.automorphisms of A. A is said to be finite with respect to % (or %-finite) if A and
G satlsfy any of the equivalent conditions of Proposition 1.

Remarks. 1. To say that A is J(A)-finite is equivalent to say that A is finite
in the usual sense of the global theory of the von Neumann algebras ([3], chap. I,
-§ 6, Def. 5).

2. If A is %-finite then A is finite with respect to any subgroup of 4.

%) Fora von Neumann aigebra A, A+ denotes the set of all non-negative self-adjoint elements
~of A.
¢) I denotes the identity operator of the Hilbert space 9.
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Now let us give examples for pairs (A, 9) such that A is F-finite.

1. A is a finite von Neumann algebra and % is an arbitrary subgroup of F(A):
2. A is a finite factor and 9 is an arbitrary group of automorphzsms of A. In
. fact, if Tr (-) is the canonical trace of A ([3] chap. 111, no. 4) and @ is an drbltrary
element of ¥ then o(T)="Tr (0(T)) (T€A) is also a normalized trace’) on A. There- -
fore, for every T€ A we have Tr (T)=o(T)=Tr (G(T)) ([3], chap. 1.§ 6, Th. 3, Cor.),
and this means that Tr( YER*(A, %). Since Tr (-) is a strictly positive llnear form
on A, we obtain that A is -finite.

3 Let A, and A, be von Neumann algebras in the Hilbert spaces 9, and H,,
respectively. Let ¢, be a group of automorphisms of A; for every i=1,2. Put
H=H,®09, and A=A, ®A,. If §,¢¥%, and 6,€%,, there exists a uniquely de-
fined automorphism @ of A such that 6(T, ® T,)=0,(T1)Q 0,(T,) for every T, €A,
and T, €A, ([3), chap. I, § 4. Prop. 2). Denote by 4, ® ¥, the set of all § obtained
from all possible pairs {0, € 9,, 8, € %,} in this way. Under the usual multiplication,
Y=%,29%, is a group of automorphisms of A. .

Proposition 2. If A, is ¥4,-finite and A, is G ,~finite then A is Y-finite.

Proof. In virtue of Definition 1, it is enough to show that sup E,=/[.

. TERH(A, D)
To do this, consider an arbitrary element o, € Z*(A;, 9,) (i=1, 2). It is known
([3], chap. 1, § 4, Th. 1) that for each i=1, 2, there exists a sequence {x{’};~,’ of

elements of $; with Z‘ | x||* < + o= such that for every T;€A; we have

o:i(T) = Z(T x50 | %),
Now for every T€A, put

o(T) = ZZ(T[x“@x”nx”@xﬂ))

It is easy to see that a(T,®T2) al(T)az(Tz) for every T, €A, T,€A,. By
linearity and continuity, from this we can conclude that o € #2+*(A, ¥). Further-
more, .

. o
51 f{x“’},? E, $H, = %{x(z)}w_ and E,H = %{x'((l)®x;n}:l=l )
([3], chap. I, § 4, no. 6).
On the other hand we have AJ® A, S A’. This 1mphes that
(1. 1) E, ®F,,=E,.

Since A, and A, are %,- and %,-finite, respectively, we have that

sup E, ®E,, =1Ig.

01ERY (AL, 91), 02€E R (A2, ¥2)

ThlS together with (1. 1) gives that sup E,=Is, and so the proof of Proposition
GERY(A, YD)
2 is complete.’)

7) That is, (0(15)-: 1.
8) For these notations, cf. [3], chap. |, § I, no. 4.
2) For this reasoning, see {3], chap. I, § 4, Ex. 6.
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Proposition 2 enables us to give examples, for pairs (A, %) such that A is purely
infinite ([3], chap. I, § 6, Def. 5), ¥ is a non-trivial group of automorphisms'?)
of A, and A is %-finite. For instance, let M, be a finite factor, and let ¢, be an
arbitrary but non-trivial group of automorphisms of M,. Let M, be a purely infinite
von Neumann algebra. Then A =M, ® M, is purely infinite ([6]). Put ¥=9,® .7,
where £ is the trivial group of automorphisms of M, . Then 4 is a non-trivial group
of automorphisms of A and A is ¥-finite (cf. Ex. 2 above and Prop. 2).

§2
Our main result can be ‘stated as follows.

Theorem 1. Let A be a von Neumann algebra and let 4§ be a group of auto-
morphisms of A. Suppose that A is 9-finite. Then for every T¢A, A (T, 4)NAY
consists of exactly one element.

A key-role in the proof of this theorem is played by the ergodic theorem of
AvraocLu and BirkHOFF ([4], Th. 1.1.3.). For convenience, we recall the reader
© just | for a particular part of it we need.

i Lemma 1. Let $ be a complex Hilbert space, and let U be a group of unitar y
operators in 9. For an arbitrary x €%, denote by c(x, U) the smallest convex subset
of © which contains the orbit of x under %. Let ¢(x, %) be the closure of c(x, U)
in . Then there exists a unique element x in &(x, #) such.that Uxy=x, for every
Uc«. The mapping x —~Xx¢ is linear.

"Proof of Theorem 1. Let T be an arbitrary but fixed element of A, and
consider an arbitrary ¢ in Z*(A, %). As ¢ is ultra-weakly continuous,

m, = {S€A: o(5*S)=0}

is an ultra-weakly closed left ideal of 4. Consider the quotient vector space A/m,,
and let S —1,(S) denote the canonical mapping of A onto A/m,. For every R, S€A,
set ‘ ,

@1 (o(B)[1,(S))s = 6(S*R).

Then the vector space A/m, becomes a pre-Hilbert space with respect to the inner
product (2. 1). Let $, be the completion of A/m, in the norm defined by (2. 1).1!)
Now, let 8 be an arbitrary element of 4. For any '70(5) EA/m (S€A) put

2.2 : 90 1,(S) = n,(0(5)).

\ : : () : :
First of all we note that 8, is uniquely defined, that is its definition does not
depend on the special choice of the representatives of the elements of Aj/m,. Indeed,

10) That is 4 does not consists just of the identical automorphism of A.
1) For this construction, sece [3], chap. I, § 4, no. 1.
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since ¢ is invariant with respect to 6, 6 sends' m, onto itself. So, if S, and S, are
two elements of A such that (S, = nﬂ(Sz) then S1 S, €m, and

_90’% (S1)'_90’7a(S2) =-’70(9(S1))“’7v(0(52)) = na(e(SI_SZ)) =0,

' (&) _
‘which m’eans that 90 n,(S) = 00 n,(Sz) It is clear that 6, is linear. Further-
more, 90 (A/m YE A/m, by definition. Now, if 11,,(S) 1s an arbitrary element of

A/m,, then 00 1,(6~1(S)) =1,(S) which means that 00 is surjective.
Consider now two arbitrary elements S, and S, of A. Then we have

© )
{801, (51) 1067, (S2))s = a(0(S)0(S) = o (0(S5S)) =
= 0(5381) = (1,(S)[1:(S2)), -

(@) - (@
Therefore, 0, can be uniquely extended to a unitary operator 6 of §,. Further-

@3

more, it is not hard to prove that [6]*—(9 1)), and that the family {0 Yoce i
a group under the usual multiplication of umtary operators. Denote this group

(o) (a)
by %. Now applying Lemma 1 to &, and g we obtain a unique point, say x,
in &n(7T), g) such that
(@)(a) (o)
(2.4 9 x=x

(@ (o) (o)
for every 6 € 4. We are going to prove that x €A/m,. To do this, consider

a sequence {x, )5z, of elements of ¢(n,(T), fé ) with |x, — x ||,—»0 if n—oo. Let
{T,}), be a sequence of elements of X (T, %) such that n,(T,)=x, for every
n=1,2,.... Then we have

(2' 5) U((Tm - Tn)* (Tm - Tn)) = ||'7a(Tn1) - ’]a(Tn)Hg = "xm _xnng -0

for m, n+. As ||T, T]|<2||T|| 12) in virtue of [3], chap. 1, §4, Prop. 4, we’
-conclude from (2. 5) that (T, —T,)E, -0 strongly for m, n—<. Therefore, there
exists a well- deﬁned element S, of A4 such that

2. 6) ' T,E,—S,

strongly for n- <. Now, as [T:E,— S =2)T| (n=1,2,..), using again the
proposition of [3] which has just been quoted, we obtain that ’

@27 xS = (T —n, (SOIZ = o (T, — ST, —S1))~0
for m, n—os. So,

(o)
(2.8) x=1,(5,) with S,cA,

12) || || denotes the usual norm of bounded linear operators.
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that is
(@)
2.9 : XEA/m,.
As the ultra-weak topology is compatible with the vector space structure of A and

-1 (o)

m, is ultra-weakly closed, the set #,( v) is ultra-weakly closed in A. Set

_lg.

(2.10) AT = UU(X)HA

where t=||T|| and A,={S€A: ||S|=t}. Then A} o(T) is weakly closed as’ the weak
topology coincides w1th the ultra-weak one on norm-bounded parts of A. Further-
more, AY(T) is not empty as it contains at least S; constructed above (see (2. 8)).
As a next step of our proof, let us construct the set AL(T) for every 6 € Z*(A, 9).
Then, if 6, 0, €2+ (A, ¥9), we have

2-11) ara(EALT)  (=1,2).

Since ¢, +0,€ @’f(A 9) and ¢, +0;=0; 13) (i=1,2), to prove (2. 11) we have
to show that if ¢’ a”EQH(A @) with ¢ ’=¢” then A' (T)S AL(T). Well, suppose -
that. we are given ¢’, ¢” from Z*+(A, 4) with ¢’ =0¢", and take an arbitrary element
S of ALA(T). We have to prove that S € A%L(7). First we note that SEA‘ (T) implies

(¢
ISll=t. So to show that ScAL(T), it suffices to prove that 11‘7 (S)= x (where

(¢) (o)
x plays the same role in the case of 6" as x did in the case of ¢). Let {T,}iz:
be a sequence of elements of A O(T {4) such that

g (Ta) — p Ilw’ (n—o0).
By our assumption, S€AL. (T) that is 5,(S)= (;c"). Therefore, we have
W1 (T) = 1o (N2 = o' (T, — ST~ S)) =
= (T ST, —8)) = l|'1,,~(T,.)—'7c,~(S.)|l2 [ (T) xlla -0

if n— . So we obtain that 1, (8)€e(n,(T), {4) and it remains to prove that #,.(S)
(¢) (o)

is invariant with respect to each element of 9 Let 8@ € ¥ be arbitrary. Then
(¢7) .
1167,(S)~ e (Rl = 06 (8(S)) =10 () =
(@) () ()
= 1 (0) = 1 (Sl = 18 % = x [+ = 0.

(@) ©) (¢
So 0 N(S) =15(S) for every 0€% . Using the uniqueness of x in c(ncr (D), g )

@)
we get that #,(S)= x, indeed. Hence (2. 11) is proved. In virtue of (2. 11), the

13) That means that 6.(T)+02(T) = o(T) (i=1, 2) for every T€ A+.



Ergodic type theorems 239-

amily {Af,(T)},m»,(A ¢ Is a filter basis on A;. It is known that A, is weékly
ompact ([3], chap. I, § 3, Th. 2). Thus, as each A (T) is weakly closed, we obtam that.

(2. 12) A= ) AYT) = O.
‘ cER*(A, )
Now put . ’
-1 (o)
2.13) A (T) = n,(x)
for every 6 €Z+(A, ). Then -
(2.14) ATYy= N A
' ‘ TERT(A, V)

" is not empty since A! AD)SA(T) for every 6 €R*(A, %) and (2. 12) holds Now
if S, €A(T) and S; € A(T), then for every c € R+(A, 9) we obtain that

(o)
1:(S1) = 1,(S,) = x,

hence a(('SL — 8% (Sy — 5,))=0. As A is supposed to be ¥-finite, we get that §, = S, ..
This means that A(T)=A*(T), and it consists of exactly one element. Denotc this.
unique element by 7%. We are going to show that

(2. 14) A (T, 9)NA?Y = {17},

where {T’g} denotes the set consisting of the element 7¢ alone. To do this, consider
an arbitrary element 6 of ¥. For every e € Z+(A, 4) we have

o(OT?) =T O(T ) ~T?) = |n,(0(T*)~n, (T2 =
(a)(e) (o)
=0 x—x|Z =0.
Hence (T ’”) T° Wthh gives - :
(2.15). TY¢AY.

Now let x, ..., x, be an arbitrary finite family of elements of §. Then there exists.
an element o, of Z+(A, %) such that E, x;=x, for'every i=1, ..., n. In fact, consider
a family {0,},¢r of €lements of #+(A, g) with olg)=1( EI), E,E, =0 for t#x,

and 2E, =Ig. Then there exists a countable subfamily {o, }:%, of {6:}iexr such.
161

that (ZEa, in:xi (i=1, ..., n). For every T€A put
n=1 " .

) - 1
00 (T) = 2 570, (T).
It is clear that o, € Z+ (A, %) ([3], chap. L, § 3, no. 3). Furthermore, if for a projection.
P of A we have o,(P)=0, then ¢, (P)=0 for every n=1,2, ... . This means that
5'E,,, =E,,. On the other hand,

n=1
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n=1

From this it follows that E, — S'EU' =I—E,,, which gives that E, Z
. n=1 " '

So E, = ;'IE,‘", that is E, x;=x; (i=1,2, ..., n). Now let {T,}»_, be a sequence

of elements of o o(T, %) such that ||, (T,) —#,,(T%)l,, —0 for m —co. This implies
‘that

( m TQ)EJO_"O

strongly for m — oo ([3], chap. I, § 4, Prop 4). Thus, for every e=>0 there exists an
index mg=mg(e) such that

W(Twe— T Esexil <e (=1, ..., n).
As E, x;=x; (i=1, ..., n), we get that -
ITe =T xll<e (=1, ...,m).

‘Hence, TY¢ A (T, %), as the strong closure and the weak closure of A’ oT, 9)
coincide ([3], chap. I, § 3, Th. 1). Thus we have proved that

2.16) {T9) S o (T, 9)NA”.

Now let S -be an arbitrary element of A(T, ¥) N A%. Then using again [3], chap.
I, §4, Prop. 4 1t is not hard to see that for every o€Z#*(A, ¥) we have

(@)
n,(S) € c(n,(T), {4) and 7,(S) is invariant with respect to the elements of % .
(o)

‘Therefore, we have 11,,(S) x for every o €Z*(A, ¥). Hence we obtain that
ScA(T)={T?)}, that is ‘

2.17) H (T, 9 NAY & {T’»”}
Wthh implies, together with (2. 16), that
Q.18) ' (T} = A (T, )N A°.

Since T was arbxtrary in A Theorem 1 1s completely proved

§3
Now we are in the position to prove

Theorem 2. Let A be a von Neumann algebra in a complex Hilbert space $),
and let % be a group of automorphisms of A. Suppose that A is %-finite. Then the
mapping T—T91%) possesses the following properties:

(i) for every 6 € R(A, 9) and TE€A we have o(T)=0(T?);

(i) T—TY is linear and strictly positive;'®)

14) T, as above, denotes the unique element of A (T, g)nAg (cf. Th. 1).
15) In geneml if T—~45(T) is a mapping of A into itself, @ is said to be posmve if TeA+
4implies ®(T)e A+. @ is strictly positive, if T¢ A+, T=0 imply &(T)=0, D(T)=O.
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(iii) if TEA, S¢A?Y we have (ST)? = ST? and (TS)? =T9S;

(iv) T-~T¢ is ultra-weakly and ultra-strongly continuous;

(v) for every T€A? we have T=T7,

(i) ((T))? =T¢ for every TEA and 0¢9.

Conversely, if we do not suppose that A is G-finite but we know that there exists .
an ultra-weakly continuous positive linear mapping T—~T of A onto A? such that

a) T=T' for every TEA?,

b) (6(T)Y =T for every TEA, 0¢ Y, '
then A is necessarily %-finite and for every T€A we have T'=T¥9 (cf:'4)).

Proof. (i) It suffices to take into account the construction of T¢ and to note
that if o € (A, %) then ¢ is weakly continuous on every norm-bounded part of A,
in particular on A (7, 9).

-(ii) Consider two arbitrary elements S and T of A. Then we have S$Y+T9¢cA?,
‘We are going to prove that S¢ +T9 belongs to #(S+7T, 9), too. According to
the notations used in the proof of Theorem 1, for every ccZ*(A, %), na(S ) is

(o)
the fixed point of c(n,(S) % ) and 7,(T?) is the fixed point of &(n,(T), ¢ ), given
by Lemma 1. In virtue of the second assertion of thIS lemma, n,(S’”)—i—n (T9 =

=8¢+ T¥%) is the fixed point of c(na(S) +n,(T), g ) —c(m,(S+ 7), {?) for every
c€ERT(A, 9. This means that S+ TYcAS+T)=A(S+T,¥9)NA?Y. Thus -
SY+T9=(S+T)% It is evident that T—~T9 is homogenous. Now if T€ A+, then
T9=0 as T9¢A (T, 9)SA*. If TcA+ and T+ 0, then TY > 0. Indeed, if T? =0
then, in virtue of (i), we have o(T)=0(T?)=0 for every c € Z+(A, 9). Smce Ais
%-finite, from this it follows T'=0, which completes the proof of (ii).
(iii) follows easily from the construction of the mapping 7T—T.

. (iv) First we prove that the mapping T —~T¥ is normal that is if {T,},c; is an
upward directed family of elements of A* with sup T,=T, then sup Te=T°%

. holds. In fact, since T—~T¥¢ i is positive, {77} is an upward directed farmly of (A9)*
and TY=T7 (tcI). Put S =sup,¢; T¥. Then S€A? ([3], App. II.), and S=T9.
In virtue of (i), for every 0 € 27 (A, %) we obtain that -

a(T?—8)=0(T%—0(S) =o(T)—supa(T? =
} ! . . eI
=0a(T)—supo(T)) = o(T)—0o(T) = 0.
e f
So T¢9=S9 =sup T?. From this it follows that T~ TY is ultra-weakly continuous
([3], chap. I, § 4, Th. 2). Furthermore, for every T¢€ A we obtain
' = (T*T)s~T*T* '
{cf. (i) and (iii)). Thus T*¢T¥¢ =(T*T)¥, and this gives that T—T¥ is ultra-strongly
contin_uous as well ([3]. chap. I, §4, Th. 2).
(v) is evident.

(vi) is a consequence of the fact that & (8(T), ¥)= A (T, ¥) for every T€A.
Hence the first part of Theorem 2 is proved.

3 A
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As far as the second part of Theorem 2 is concerned, we. can proceed as follows.
Let T;, be an arbitrary element of (A?)* such that T, 2 0. Then there exists an element
x of $ such that (Tox|x) >0. For every T€A put '

(3.1 o(T)=(T"x|x).

By our hypotheses on the mapping T'—T", one can easily see that c €2+ (A, ¥)
with o(Ty) 0. Thus, in virtue of Definition 1, A is %-finite. Furthermore, if T€A,
then for every S¢A (T, ) we get that S"=T" (cf. especially hypothesis b) in
Theorem 2). As T—~T" is supposed to be ultra-weakly continuous, the same holds
for every S€A (T, 9). In particular 7" =(T¥) =T9, which completes the proof
of Theorem 2.

Definition 2. If the von Neumann algebra A is finite with respect to a

group ¢ of its automorphisms, then the mappmg T—T9 given in Theorem 2 is
called the %-canonical mapping of A.

§4

1. Let us give some direct consequences of the results of §§2—3.

Propoéition 3. Let A be a von Neumann algebra, and let 9 be a group
of automorphisms of A. Suppose that Ais 9-finite. If 6,6, €R(A, ¥) are such that,
Jor every TCA?, 0,(T)=0,T) holds, then o, =0,.

Proof. If T€¢A then

0,(T) =0(T?) = 0,(T?) = 0,(T)

(cf. Theorem 2, (i)), where T—»T’f is the #-canonical mapping of A, and this proves
Proposition 3.

In the following for a given pair (A, 9), Z(A%) will denote the set of all ultra-
weakly continuous linear forms on A¥. Then under the same condition on A and
% as in Proposition 3, we have

Corollary 1. Every element o, of R(A?) can be uniquely extended to an element
c of A(A, 9).
Proof. For any T€A, put
o(T) = o,(T7%).

Then o evidently belongs to Z(A, 9) (cf. Theorem 2). The uniqueness of the ex-
tension follows now from Proposition 3.

Without making any restriction on A and ¢ we can conclude from Proposition 3
also the following

Corollary 2. If 6,,0,€R*(A, %) with 6 (T)=0,(T) for every T€AY, then
0'!=0'2-

Proof. Consider the projection E=sup (£,,, E, ) It is evident that E€AY.
Consider the von Neumann algebra Ag ([3}, chap. I, § 1 no. 2). Then ¥ canonically -
induces a group of automorphisms %z of Ag, and the restrictions ¢, and &,_ of
o, and o, to A, respectively, belong to Z+ (A, 9;). Hence Ap is Gp-finite. Further-
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more, for every Ty € (Ap)%= we have o, (Tg) =0, (Tg). So, in virtue of Proposition 3,
0,,.=0,,. Therefore, if TCA, then ¢ (ETE)=0,,(T;)=0, (Tg)=0,(ETE). On the
other hand, since o(T)=0,(ETFE) (i=1, 2) for every T€A, we can conclude that
o, =0,, which proves Corollary 2.

Proposition 4. Let A be a von Neumann algebra in a-Hilbert space ©, and
let G, and 4, be two groups of automorphisms of A. Suppose that A is 9 -finite,
and suppose that for every 0,€%, and T€ A we have

- G2 0,(T%1) = (0:(T))",

where T->T% is the %, -canonical mapping of A.'3) Denote by 4, | the group of
automorphisms of A®t defined by 9, via (3. 2). Now if A% is 4, l-ﬁmte then A is
finite with respect to the. group 9={9,, %,} generated by 9, and 9,. Hence in
this case A is 9,-finite, too, and we have

a3 TY = (T%)% = (T*)"  (T€A),

where T —T% and T—»Tg2 are the coriespondmg 9- and {fz—canomcal mappings
of A, respectively.

Proof. 1t is not hard to prove that A‘”—(A%)g2 1. Let now o €Z*(AY) be
arbitrary. Since A%t is 4, l-ﬁnlte in virtue of Corollary 1 of Proposmon 3,0 can be
extended to an element ¢’ of Z*+(A%, 4, (). Since A is ¥,-finite, in virtue of the
~ same corollary, ¢’ can be extended to an element ¢” of (A, 4,). Now if T€A
and 0,€%,, then we have

o’ (0,(T)) = o”((0, (T))@’t) = ¢"(0:(T?1) = ¢’(0,(T)) =
= o/(T?") = ¢"(T%") = ¢"(T), v
that is ¢”€Z£*(A, ). Hence, for every T€(A%)™*, T# O there exists an element

o of #*(A, %) such that o(T) >0, and this means that A is %-finite. In particular,
A is' ,-finite, too. Now we are going to show that for every T€A

(3 4) . . (Tgl)JZ — ng)gl

holds. Now let T€ A be arbitrary but fixed, and let {K(T)},E, be a net of elements
of A o(T,%,) such that

3.5 . limg, .. K, (T) = T%.
: el
Then N ‘
(3.6) limg o0, [K(T)]1 = (T¥2)%.
1€ .
(cf. Theorem 2, (iv)). On the other hand, in virtue of (3. 2) we. get that
(3.7. KD = K(T*).
. Thus, in virtue of (3. 6) we have
(3 8) ’ hmstrongK (Tgl) = (]1(52)g1

15y Condition (3. 2) is fulfilled for mstance if every element of %, commutes with every element

of 9. In fact, to show this it is enough to fake into account the construcuon of 791 and the con-
tinuity propertles of the elements of gz
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This means that (7792)9: belongs to % (79, %,), and for every 6,€%,, we have
0,((T92)?)=(0, (T%))g’1 =(T92)%: (cf. (3 2)) and this means that (792)%: €A%
NA(T%, %,), that is

(ng)gl = (Tgx)gz_

Hence (3. 4) is proved Now it is not hard to see that the mapping
T— (T%)@z (T92)%

possesses all the propertiés of the mapping T—T¥¢. Thus, by the uniqueness part
of Theorem 2, we get that:

TY = (T9)%2 = (T92)%,

which proves Proposition. 4. _
We think it is worth formulating Theorem 1 and Theorem 2 in the following
well-known particular case (cf. [3], chap. 111, § 4, Th. 3; § 5, Ex. 1).

Corollary to Theorems 1 and 2. Let A be a finite von Neumann algebra,
and denote by A" its center. Then for every. T€A, the set A" N\ A" ( T, F(A)) consists
of one element alone. Denoteit by T*. The mapping T — T" has the following properties:

(i) for every T€A and for every finite normal trace ([3], chap. I, § 6, Def. 1) -
@ on A we have ¢ (T")=¢(T),

(i) T—~T" is strictly positive and- lmear,»

(iii) T—~T" is ultra-strongly and ultra-weakly continuous;

(iv) if T€A and U is unitary in A then (U*TU)" =T" holds;

W) if SEA™ then S"=S;

(vi) if S€EA" .and TEA then (ST)*=ST".

Conversely, if there exists a positive normal linear mapping T—~T’ of A onto
A" having propernes analogous to (iv) and (v), then A is finite and T'=T & for every
TcA.

Proof. In Theorems 1 and 2 take #(A) for &. .

2. Let A be a von Neumann algebra in a Hilbert space $. Denote by Ay the
group of all unitary elements of A. Let U€Ay be an arbitrary but fixed element
of Ay. For every T€L(H) 1°) put

T —0,(T) = U*TU.

The set 9(Ay)of all possible 0, is a group of automorphisms of L($). In the following
we are going to characterize the von Neumann algebras A such that L($) is finite
with respect to %(Ay). : "~

Proposition 5. Let A be a von Neumann algebra in a Hilbert space 9. Then
L(9) is 9(Ay)-finite if and only if A is a product'”) of finite discrete factors.'®)

16) L($) denotes the von Neuma_nn algebra of all bounded linear operators of $.
-7y Cf. [3], chap. 1, § 2, no: 2. )
18) Cf. [3], chap. I, § 8, no. 4.
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Proof. Suppose that A is the product of the finite dlscrete factors M, (tel)
that is
' A=]IM,.

el
It is evident that (U),¢;s EAU if and only if U,€(Mi)y 19) for every 1€1. Further-
more, for every t€1, the group (M,)y is compact in the weak operator topology.
Thus, using the Tychonoff theorem on the topological product of compact spaces,
it is not hard to see that Ay is compact in the weak topology. Denote by A(dU)
the normalized Haar measure of A, and let T€L(9) be arbitrary. If x is any element
of 9, the function
U -+ £, 1(U) =(U*TUx]|x)

is continuous on Ay, since. the weak and the strong topology coincide on Ay. So
[ 1., r(UyAdU)
. Ay
exists. Let x€$ be fixed, and for every T¢L($) set
0. (1) = [fo +(U)A@U). =
, 4

Using. the unimodularity of A and the properties of the integral, it is easy to show
that ¢, € 2+(I(9), ¥(Ay)). Now if TEL*(H), T0 then there exists an element
Xo of $ such that (Tx,[xq) >0. Then o, (T) > O, which proves that L($) is ?(AU)-
finite.

Now suppose that L(®) is F(Ay)Afinite, and let T—~T¢Av be the %(Ap)-
‘canonical mapping of L($) onto L($)¢@Av (cf. Theorem 2) which is equal to the
commutant A’ of A. Let Tr(-) be the canonical trace of L($) ([3], chap. 1, §6,
no. 6), and let S€(A)*, S0 be arbitrary. Then there exists an element §; of
L(H) such that 0=S,=S, S, %0, and Tr (§,) < 4. By the properties of the
mapping T—T9Av)  we obtain that O =S40 = §9A0 =S, Furthermore, as
Tr () is lower semicontinuous in the weak topology ([3], chap. 1, § 6, Prop. 2, Cor.)
and SYAD ¢ (S, 9(Ay)), we get that Tr (S7AW)=Tr (S,). On the other hand,
Sg(A”)#O since the mapping T T4 jis strictly positive. So we have proved
that for every S€(A)*, =0 there exists an element S'€(A)*, §'=0, 8 =S
such that Tr (S") < 4. Now let E=O be a projection in A”. Then there exists
a non-zero element R of (A’)* with R=FE and Tr(R)< + . Let R= f,ldF,1 be
the spectral representation of R and set F=1I— FuRu+0 Then it is evident that

FcA', F#0 and —— “R“ F=R. Therefore, Tr(F)< +eco. Furthermore, as F is a

projection, we obtam that F=FE. Let now F, be any of the projections of A’ such
that Fy =0, Fy=E and Tr (F,) is minimal. Then F, is minimal in A’. Indeed,
Fo€A', Fy0, Fy=F,, Fy=F, would imply Fy=E, Tr (Fg) < + < and Tr(Fg) <
<Tr (Fo) which contradicts the minimality of Tr(F,). Thus, every non-zero
projection of A’ majorizes a non-zero minimal projection of A’. Hence, in virtue

19) (M,)v denotes the group of the unitary elements of M, .
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of Ex. 4, p. 126 of [3], A" and sd Aisa product of. discrete factors. Since A is finite,
each factor occuring in the decomposition of A is finite ([3], chap. I, § 8, no. 2).
Thus the proof of Proposition 5 is comlete.

Corollary. Inorder that the group Ay of the unitary elements of a von Neumann
algebra A be compact in the weak topology, it is necessary and sufficient that A be
the product of finite discrete factors.

Proof. The sufficiency of our condition is evident by the Tychonoff theorem
(cf. the first step of the proof of Proposition 5). Now, if Ay is weakly compact,
then arguing in the same way as in the proof of Proposition 5, we obtain that L($)
is %(Ap)-finite which means, by.Proposition 5, that A is a product of finite discrete
factors. Hence the proof of Corollary is complete. '
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