Ergodic type theorems in von Neumann algebras

By I. KOVÁCS*) and J. SZŰCS in Szeged

Introduction

Let A be a von Neumann algebra¹) in a complex Hilbert space \mathfrak{H} , and let \mathscr{G} be a group of automorphisms of A^2). Denote by $A^{\mathscr{G}}$ the set of all elements of A which are invariant with respect to each element of \mathscr{G} . Taking into account the algebraic and topological properties of the elements of \mathscr{G} ([13], chap. I, § 4, Th. 2, Cor. 1), one can see easily that $A^{\mathscr{G}}$ is a von Neumann subalgebra of A. For any $T \in A$, let $\mathscr{K}_0(T, \mathscr{G})$ denote the smallest convex subset of A which contains the orbit of T under \mathscr{G}^3). Let $\mathscr{K}(T, \mathscr{G})$ be the weak closure of $\mathscr{K}_0(T, \mathscr{G})^4$). The investigations concerning the center-valued trace theory of von Neumann algebras and the results of some other works (for example [1], [2], [7]) naturally give the idea of seeking conditions on A and \mathscr{G} under which the set $\mathscr{K}(T, \mathscr{G})$ meets $A^{\mathscr{G}}$ for every $T \in A$.

The purpose of this paper is to give a sufficient condition in order that $\mathcal{K}(T,\mathcal{G}) \cap \mathbf{A}^{\mathcal{G}}$ consist of exactly one element for every $T \in \mathbf{A}$ (Theorem 1.) This is the subject of § 2. The next § 3 is devoted to establishing under this condition a mapping of \mathbf{A} onto $\mathbf{A}^{\mathcal{G}}$ which reminds us, from many points of view, of the Dixmier trace \mathbf{L} of a finite von Neumann algebra (Theorem 2). In § 4, some simple consequences of the above results are given. § 1 contains preliminary results and examples

The main results of this paper were announced in [5], with the proof of Theorem 1 in a less detailed form.

§ 1

First of all let us set down some notations.

If A is a von Neumann algebra and \mathcal{G} is a group of automorphisms of A, denote by $\mathcal{R}(A, \mathcal{G})$ the set of all ultra-weakly continuous linear forms on A which

^{*)} This author's contribution to the paper was done while he was a Postdoctorate Fellow at Queen's University in Kingston, of the National Research Council of Canada.

¹⁾ For the theory of von Neumann algabras, cf. [3]. The terminology of [3] will be freely used in the following.

²⁾ By an automorphism of a von Neumann algebra, we always mean a *-automorphism.

³⁾ By the orbit of T under \mathscr{G} we mean the set of the elements $\{\theta(T)\}_{\theta \in \mathscr{G}}$.

⁴⁾ For a given pair (A, \mathcal{G}) , the notations $\mathcal{K}_0(T, \mathcal{G})$, $\mathcal{K}(T, \mathcal{G})$ $(T \in A)$ will be permanently used by us, without explaining again what they mean.

are invariant with respect to \mathcal{G} (that is if $\sigma \in \mathcal{R}(\mathbf{A}, \mathcal{G})$ then for every $T \in \mathbf{A}$ and $\theta \in \mathcal{G}$ we have $\sigma(\theta(T)) = \sigma(T)$). Let $\mathcal{R}^+(\mathbf{A}, \mathcal{G})$ denote the set of all positive elements of $\mathcal{R}(\mathbf{A}, \mathcal{G})$. For any element σ of $\mathcal{R}^+(\mathbf{A}, \mathcal{G})$, E_{σ} will denote the support of σ ([3], chap. I, § 4, Def. 3). It is easy to see that $E_{\sigma} \in \mathbf{A}^{\mathcal{G}}$. The group of all inner automorphisms of \mathbf{A} will be denoted by $\mathcal{I}(\mathbf{A})$.

With these notations we have the following

Proposition 1. Let A be a von Neumann algebra in a complex Hilbert space \mathfrak{H} , and let \mathcal{G} be a group of automorphisms of A. The following four conditions are equivalent:

- (i) For every $T \in \mathbf{A}^{+-5}$), $T \neq 0$ there exists an element σ of $\mathcal{R}^{+}(\mathbf{A}, \mathcal{G})$ such that $\sigma(T) \neq 0$;
- (ii) For every $T \in (\mathbf{A}^{\mathscr{G}})^+$, $T \neq 0$ there exists an element σ of $\mathcal{R}^+(\mathbf{A}, \mathscr{G})$ with $\sigma(T) \neq 0$;
- (iii) There exists a family $\{\sigma_i\}_{i\in I}$ of elements of $\mathcal{R}^+(\mathbf{A},\mathcal{G})$ such that $E_{\sigma_i}E_{\sigma_\varkappa}=0$ for $\iota\neq\varkappa$ and $\sum_{i\in I}E_{\sigma_i}=I_{\mathfrak{S}}$.
 - (iv) $\sup_{\sigma \in \mathcal{R}^+(A, \mathcal{G})} E_{\sigma} = I_{\mathfrak{H}}.$

Proof. (i)⇒(ii) is evident.

(ii) \Rightarrow (iii). In fact, let $\{\sigma_i\}_{i\in I}$ be a maximal family of elements of $\mathcal{R}^+(A, \mathcal{G})$ such that $E_{\sigma_i}E_{\sigma_k}=0$ for $\iota\neq\varkappa$. Such a family exists by the Zorn's lemma. Set $E=\sum_{i\in I}E_{\sigma_i}$, and prove that $E=I_{\mathfrak{H}}$. To do this, suppose the contrary that is that $E\neq I_{\mathfrak{H}}$. Put $F=I_{\mathfrak{H}}-E$. Since $F\in (A^{\mathcal{G}})^+$, $F\neq 0$, in virtue of (ii), there exists an element σ of $\mathcal{R}^+(A,\mathcal{G})$ such that $\sigma(F)\neq 0$. Set $\sigma'(T)=\sigma(FTF)$ for every $T\in A$. As $F\in A^{\mathcal{G}}$, we obtain that $\sigma'\in \mathcal{R}^+(A,\mathcal{G})$. Furthermore, we have $\sigma'\neq 0$ and $\sigma'(E)=0$. This means that $E_{\sigma'}\neq 0$ and $E_{\sigma'}\leq F$, and this contradicts the maximality of the family $\{\sigma_i\}_{i\in I}$.

(iii)⇒(iv) is evident.

(iv) \Rightarrow (i). Suppose that (i) is not true. Then there exists an element $T \in \mathbf{A}^+$, $T \neq 0$ such that $\sigma(T) = 0$ for every $\sigma \in \mathcal{R}^+(\mathbf{A}, \mathcal{G})$. This means that $E_\sigma T E_\sigma = 0$ for every $\sigma \in \mathcal{R}^+(\mathbf{A}, \mathcal{G})$. Thus for every $x \in \mathfrak{H}$ we get $\|T^{\frac{1}{2}}E_\sigma x\| = 0$, i.e. $T^{\frac{1}{2}}E_\sigma = 0$. As, by (iv), sup $E_\sigma = I_{\mathfrak{H}}$, we obtain that $T^{\frac{1}{2}} = 0$, that is T = 0 which is impossible, and this $\sigma \in \mathcal{R}^+(\mathbf{A}, \mathcal{G})$ completes the proof of Proposition 1.

Definition 1. Let A be a von Neumann algebra and let $\mathscr G$ be a group of automorphisms of A. A is said to be *finite with respect to* $\mathscr G$ (or $\mathscr G$ -finite) if A and $\mathscr G$ satisfy any of the equivalent conditions of Proposition 1.

Remarks. 1. To say that A is $\mathcal{I}(A)$ -finite is equivalent to say that A is finite in the usual sense of the global theory of the von Neumann algebras ([3], chap. I, § 6, Def. 5).

2. If A is \mathscr{G} -finite then A is finite with respect to any subgroup of \mathscr{G} .

⁵⁾ For a von Neumann algebra A, A+ denotes the set of all non-negative self-adjoint elements of A.

⁶⁾ $I_{\mathfrak{H}}$ denotes the identity operator of the Hilbert space \mathfrak{H} .

Now let us give examples for pairs (A, G) such that A is G-finite.

- 1. A is a finite von Neumann algebra and $\mathcal G$ is an arbitrary subgroup of $\mathcal I(A)$.
- 2. A is a finite factor and \mathcal{G} is an arbitrary group of automorphisms of A. In fact, if $\operatorname{Tr}(\cdot)$ is the canonical trace of A ([3], chap. III, no. 4) and θ is an arbitrary element of \mathcal{G} then $\varphi(T) = \operatorname{Tr}(\theta(T))$ $(T \in A)$ is also a normalized trace⁷) on A. Therefore, for every $T \in A$ we have $\operatorname{Tr}(T) = \varphi(T) = \operatorname{Tr}(\theta(T))$ ([3], chap. I. § 6, Th. 3, Cor.), and this means that $\operatorname{Tr}(\cdot) \in \mathcal{R}^+(A, \mathcal{G})$. Since $\operatorname{Tr}(\cdot)$ is a strictly positive linear form on A, we obtain that A is \mathcal{G} -finite.
- 3. Let A_1 and A_2 be von Neumann algebras in the Hilbert spaces \mathfrak{H}_1 and \mathfrak{H}_2 , respectively. Let \mathscr{G}_i be a group of automorphisms of A_i for every i=1,2. Put $\mathfrak{H}=\mathfrak{H}_1\otimes\mathfrak{H}_2$ and $A=A_1\otimes A_2$. If $\theta_1\in\mathscr{G}_1$ and $\theta_2\in\mathscr{G}_2$, there exists a uniquely defined automorphism θ of A such that $\theta(T_1\otimes T_2)=\theta_1(T_1)\otimes\theta_2(T_2)$ for every $T_1\in A_1$ and $T_2\in A_2$ ([3], chap. I, § 4. Prop. 2). Denote by $\mathscr{G}_1\otimes\mathscr{G}_2$ the set of all θ obtained from all possible pairs $\{\theta_1\in\mathscr{G}_1,\ \theta_2\in\mathscr{G}_2\}$ in this way. Under the usual multiplication, $\mathscr{G}=\mathscr{G}_1\otimes\mathscr{G}_2$ is a group of automorphisms of A.

Proposition 2. If A_1 is \mathcal{G}_1 -finite and A_2 is \mathcal{G}_2 -finite then A is \mathcal{G} -finite.

Proof. In virtue of Definition 1, it is enough to show that $\sup_{\sigma \in \mathscr{A}^+(\mathbf{A}, \mathscr{G})} E_{\sigma} = I_{\mathfrak{S}}$. To do this, consider an arbitrary element $\sigma_i \in \mathscr{R}^+(\mathbf{A}_i, \mathscr{G}_i)$ (i=1, 2). It is known ([3], chap. I, § 4, Th. 1) that for each i=1, 2, there exists a sequence $\{x_k^{(i)}\}_{k=1}^{\infty}$ of elements of \mathfrak{S}_i with $\sum_{k=1}^{\infty} \|x_k^{(i)}\|^2 < +\infty$ such that for every $T_i \in \mathbf{A}_i$ we have

$$\sigma_i(T_i) = \sum_{k=1}^{\infty} (T_i x_k^{(i)} | x_k^{(i)}).$$

Now for every $T \in \mathbf{A}$, put

$$\sigma(T) = \sum_{k=1}^{\infty} \sum_{l=1}^{\infty} (T[x_k^{(1)} \otimes x_l^{(2)}] | x_k^{(1)} \otimes x_l^{(2)}).$$

It is easy to see that $\sigma(T_1 \otimes T_2) = \sigma_1(T_1)\sigma_2(T_2)$ for every $T_1 \in A_1$, $T_2 \in A_2$. By linearity and continuity, from this we can conclude that $\sigma \in \mathcal{R}^+(A, \mathcal{G})$. Furthermore,

$$E_{\sigma_1}\mathfrak{H}_1=\mathfrak{X}_{\{x_k^{(1)}\}_{k=1}^{\infty}}^{A_1'}, \qquad E_{\sigma_2}\mathfrak{H}_2=\mathfrak{X}_{\{x_k^{(2)}\}_{k=1}^{\infty}}^{\infty} \quad \text{and} \quad E_{\sigma}\mathfrak{H}=\mathfrak{X}_{\{x_k^{(1)}\otimes x_l^{(2)}\}_{k,l=1}^{\infty}}^{\infty}$$

([3], chap. I, § 4, no. 6).

On the other hand, we have $A'_1 \otimes A'_2 \subseteq A'$. This implies that

$$(1.1) E_{\sigma_1} \otimes E_{\sigma_2} \leq E_{\sigma}.$$

Since A_1 and A_2 are \mathcal{G}_1 - and \mathcal{G}_2 -finite, respectively, we have that

$$\sup_{\sigma_1 \in \mathcal{R}^+(\mathbf{A}_1, \, \mathscr{G}_1), \, \sigma_2 \in \mathcal{R}^+(\mathbf{A}_2, \, \mathscr{G}_2)} E_{\sigma_1} \otimes E_{\sigma_2} = I_{\mathfrak{H}}.$$

This together with (1. 1) gives that $\sup_{\sigma \in \mathcal{A}^+(A, \mathscr{G})} E_{\sigma} = I_{\mathfrak{H}}$, and so the proof of Proposition 2 is complete.⁹)

⁷⁾ That is, $\varphi(I_5)=1$.

⁸⁾ For these notations, cf. [3], chap. I, § 1, no. 4.

⁹⁾ For this reasoning, see [3], chap. I, § 4, Ex. 6.

Proposition 2 enables us to give examples for pairs (A, \mathcal{G}) such that A is purely infinite ([3], chap. I, § 6, Def. 5), \mathcal{G} is a non-trivial group of automorphisms ¹⁰) of A, and A is \mathcal{G} -finite. For instance, let M_1 be a finite factor, and let \mathcal{G}_1 be an arbitrary but non-trivial group of automorphisms of M_1 . Let M_2 be a purely infinite von Neumann algebra. Then $A = M_1 \otimes M_2$ is purely infinite ([6]). Put $\mathcal{G} = \mathcal{G}_1 \otimes \mathcal{I}$, where \mathcal{I} is the trivial group of automorphisms of M_2 . Then \mathcal{G} is a non-trivial group of automorphisms of A and A is \mathcal{G} -finite (cf. Ex. 2 above and Prop. 2).

8 2

Our main result can be stated as follows.

Theorem 1. Let **A** be a von Neumann algebra and let \mathcal{G} be a group of automorphisms of **A**. Suppose that **A** is \mathcal{G} -finite. Then for every $T \in \mathbf{A}$, $\mathcal{K}(T, \mathcal{G}) \cap \mathbf{A}^{\mathcal{G}}$ consists of exactly one element.

A key-role in the proof of this theorem is played by the ergodic theorem of Alaoglu and Birkhoff ([4], Th. 1.1.3.). For convenience, we recall the reader just for a particular part of it we need.

Lemma 1. Let \mathfrak{H} be a complex Hilbert space, and let \mathfrak{U} be a group of unitar y operators in \mathfrak{H} . For an arbitrary $x \in \mathfrak{H}$, denote by $c(x, \mathfrak{U})$ the smallest convex subset of \mathfrak{H} which contains the orbit of x under \mathfrak{U} . Let $\bar{c}(x, \mathfrak{U})$ be the closure of $c(x, \mathfrak{U})$ in \mathfrak{H} . Then there exists a unique element x_0 in $\bar{c}(x, \mathfrak{U})$ such that $Ux_0 = x_0$ for every $U \in \mathfrak{U}$. The mapping $x \to x_0$ is linear.

Proof of Theorem 1. Let T be an arbitrary but fixed element of A, and consider an arbitrary σ in $\mathcal{R}^+(A, \mathcal{G})$. As σ is ultra-weakly continuous,

$$\mathfrak{m}_{\sigma} = \{ S \in \mathbf{A} : \sigma(S^*S) = 0 \}$$

is an ultra-weakly closed left ideal of A. Consider the quotient vector space $\mathbf{A}/\mathbf{m}_{\sigma}$, and let $S \to \eta_{\sigma}(S)$ denote the canonical mapping of \mathbf{A} onto $\mathbf{A}/\mathbf{m}_{\sigma}$. For every R, $S \in \mathbf{A}$, set

(2. 1)
$$\langle \eta_{\sigma}(R) | \eta_{\sigma}(S) \rangle_{\sigma} = \sigma(S^*R).$$

Then the vector space A/m_{σ} becomes a pre-Hilbert space with respect to the inner product (2. 1). Let \mathfrak{H}_{σ} be the completion of A/m_{σ} in the norm defined by (2. 1).¹¹) Now, let θ be an arbitrary element of \mathscr{G} . For any $\eta_{\sigma}(S) \in A/m_{\sigma}$ ($S \in A$), put

(2.2)
$$\theta_0^{(\sigma)} \eta_{\sigma}(S) = \eta_{\sigma}(\theta(S)).$$

First of all we note that $\theta_0^{(\sigma)}$ is uniquely defined, that is its definition does not depend on the special choice of the representatives of the elements of A/m_σ . Indeed,

11) For this construction, see [3], chap. I, § 4, no. 1.

¹⁰⁾ That is \mathscr{G} does not consists just of the identical automorphism of A.

since σ is invariant with respect to θ , θ sends \mathfrak{m}_{σ} onto itself. So, if S_1 and S_2 are two elements of A such that $\eta_{\sigma}(S_1) = \eta_{\sigma}(S_2)$ then $S_1 - S_2 \in \mathfrak{m}_{\sigma}$ and

$$\theta_0^{(\sigma)} \eta_{\sigma}(S_1) - \theta_0^{(\sigma)} \eta_{\sigma}(S_2) = \eta_{\sigma}(\theta(S_1)) - \eta_{\sigma}(\theta(S_2)) = \eta_{\sigma}(\theta(S_1 - S_2)) = 0,$$

which means that $\theta_0 \eta_\sigma(S_1) = \theta_0 \eta_\sigma(S_2)$. It is clear that θ_0 is linear. Furthermore, $\theta_0 (A/m_\sigma) \subseteq A/m_\sigma$ by definition. Now, if $\eta_\sigma(S)$ is an arbitrary element of A/m_σ , then $\theta_0 \eta_\sigma(\theta^{-1}(S)) = \eta_\sigma(S)$ which means that θ_0 is surjective. Consider now two arbitrary elements S_1 and S_2 of A. Then we have

(2.3)
$$\langle \theta_0 \eta_{\sigma}(S_1) | \theta_0 \eta_{\sigma}(S_2) \rangle_{\sigma} = \sigma(\theta(S_2^*)\theta(S_1)) = \sigma(\theta(S_2^*S_1)) = \\ = \sigma(S_2^*S_1) = \langle \eta_{\sigma}(S_1) | \eta_{\sigma}(S_2) \rangle_{\sigma}.$$

Therefore, $\overset{(\sigma)}{\theta_0}$ can be uniquely extended to a unitary operator $\overset{(\sigma)}{\theta}$ of \mathfrak{H}_{σ} . Furthermore, it is not hard to prove that $[\theta]^* = (\theta^{-1})^{(\sigma)}$, and that the family $\{\theta\}_{\theta \in \mathscr{G}}$ is a group under the usual multiplication of unitary operators. Denote this group by \mathscr{G} . Now, applying Lemma 1 to \mathfrak{H}_{σ} and \mathscr{G} , we obtain a unique point, say x, in $\bar{c}(\eta_{\sigma}(T),\mathscr{G})$ such that

(2.4)
$$\theta x = x$$

for every $\overset{(\sigma)}{\theta} \in \mathscr{G}$. We are going to prove that $\overset{(\sigma)}{x} \in \mathbf{A}/\mathfrak{m}_{\sigma}$. To do this, consider a sequence $\{x_n\}_{n=1}^{\infty}$ of elements of $c(\eta_{\sigma}(T), \mathscr{G})$ with $\|x_n - x\|_{\sigma} \to 0$ if $n \to \infty$. Let $\{T_n\}_{n=1}^{\infty}$ be a sequence of elements of $\mathscr{K}_0(T, \mathscr{G})$ such that $\eta_{\sigma}(T_n) = x_n$ for every $n = 1, 2, \ldots$. Then we have

(2.5)
$$\sigma((T_m - T_n)^* (T_m - T_n)) = \|\eta_\sigma(T_m) - \eta_\sigma(T_n)\|_\sigma^2 = \|x_m - x_n\|_\sigma^2 \to 0$$

for $m, n \to \infty$. As $||T_m - T_n|| \le 2||T||^{12}$), in virtue of [3], chap. I, § 4, Prop. 4, we conclude from (2.5) that $(T_m - T_n)E_{\sigma} \to 0$ strongly for $m, n \to \infty$. Therefore, there exists a well-defined element S_1 of A such that

$$(2.6) T_n E_{\sigma} \to S_1$$

strongly for $n \to \infty$. Now, as $||T_n E_{\sigma} - S_1|| \le 2||T||$ (n = 1, 2, ...), using again the proposition of [3] which has just been quoted, we obtain that

^{12) || ||} denotes the usual norm of bounded linear operators.

that is

$$(2.9) x \in \mathbf{A}/\mathfrak{m}_{\sigma}.$$

As the ultra-weak topology is compatible with the vector space structure of **A** and \mathfrak{m}_{σ} is ultra-weakly closed, the set $\eta_{\sigma}(x)$ is ultra-weakly closed in **A**. Set

(2. 10)
$$\mathbf{A}_{\sigma}^{t}(T) = \eta_{\sigma}^{-1}(x) \cap \mathbf{A}_{t}$$

where t = ||T|| and $\mathbf{A}_t = \{S \in \mathbf{A}: ||S|| \le t\}$. Then $\mathbf{A}_{\sigma}^t(T)$ is weakly closed as the weak topology coincides with the ultra-weak one on norm-bounded parts of \mathbf{A} . Furthermore, $\mathbf{A}_{\sigma}^t(T)$ is not empty as it contains at least S_1 constructed above (see (2. 8)). As a next step of our proof, let us construct the set $\mathbf{A}_{\sigma}^t(T)$ for every $\sigma \in \mathcal{R}^+(\mathbf{A}, \mathcal{G})$. Then, if $\sigma_1, \sigma_2 \in \mathcal{R}^+(\mathbf{A}, \mathcal{G})$, we have

(2.11)
$$\mathbf{A}_{\sigma_1+\sigma_2}^t(T) \subseteq \mathbf{A}_{\sigma_i}^t(T) \qquad (i=1,2).$$

Since $\sigma_1 + \sigma_2 \in \mathcal{R}^+(A, \mathcal{G})$ and $\sigma_1 + \sigma_2 \ge \sigma_i^{-13}$ (i=1,2), to prove (2.11) we have to show that if σ' , $\sigma'' \in \mathcal{R}^+(A, \mathcal{G})$ with $\sigma' \le \sigma''$ then $A^t_{\sigma''}(T) \subseteq A^t_{\sigma'}(T)$. Well, suppose that we are given σ' , σ'' from $\mathcal{R}^+(A, \mathcal{G})$ with $\sigma' \le \sigma''$, and take an arbitrary element S of $A^t_{\sigma''}(T)$. We have to prove that $S \in A^t_{\sigma'}(T)$. First we note that $S \in A^t_{\sigma''}(T)$ implies $\|S\| \le t$. So to show that $S \in A^t_{\sigma'}(T)$, it suffices to prove that $\eta_{\sigma'}(S) = x$ (where x plays the same role in the case of x did in the case of x. Let $\{T_n\}_{n=1}^\infty$ be a sequence of elements of $\mathcal{K}_0(T, \mathcal{G})$ such that

$$\|\eta_{\sigma''}(T_n) - x\|_{\sigma''} \to 0 \qquad (n \to \infty).$$

By our assumption, $S \in \mathbf{A}_{\sigma''}^t(T)$ that is $\eta_{\sigma''}(S) = x$. Therefore, we have

$$\|\eta_{\sigma'}(T_n) - \eta_{\sigma'}(S)\|_{\sigma'}^2 = \sigma'((T_n - S)^*(T_n - S)) \le$$

$$\le \sigma''((T_n - S)^*(T_n - S)) = \|\eta_{\sigma''}(T_n) - \eta_{\sigma''}(S)\|_{\sigma''}^2 = \|\eta_{\sigma''}(T_n) - x\|_{\sigma''}^{(\sigma'')} \to 0$$

if $n \to \infty$. So we obtain that $\eta_{\sigma'}(S) \in \bar{c}(\eta_{\sigma'}(T), \mathcal{G})$, and it remains to prove that $\eta_{\sigma'}(S)$ is invariant with respect to each element of \mathcal{G} . Let $\theta \in \mathcal{G}$ be arbitrary. Then

$$\|\theta \eta_{\sigma'}(S) - \eta_{\sigma'}(R)\|_{\sigma'} = \|\eta_{\sigma'}(\theta(S)) - \eta_{\sigma'}(S)\|_{\sigma'} \le \|\eta_{\sigma''}(\theta(S)) - \eta_{\sigma''}(S)\|_{\sigma''} = \|\theta \chi - \chi\|_{\sigma''} = 0.$$

So $\theta \eta_{\sigma'}(S) = \eta_{\sigma'}(S)$ for every $\theta \in \mathcal{G}$. Using the uniqueness of x in $\bar{c}(\eta_{\sigma'}(T), \mathcal{G})$ we get that $\eta_{\sigma'}(S) = x$, indeed. Hence (2.11) is proved. In virtue of (2.11), the

¹³⁾ That means that $\sigma_1(T) + \sigma_2(T) \ge \sigma_i(T)$ (i=1, 2) for every $T \in A^+$.

amily $\{A_{\sigma}^{t}(T)\}_{\sigma \in \mathcal{R}^{+}(A, \mathcal{G})}$ is a filter basis on A_{t} . It is known that A_{t} is weakly ompact ([3], chap. I, § 3, Th. 2). Thus, as each $A_{\sigma}^{t}(T)$ is weakly closed, we obtain that

(2. 12)
$$\mathbf{A}^{t}(T) = \bigcap_{\sigma \in \mathscr{R}^{+}(\mathbf{A}, \mathscr{G})} \mathbf{A}^{t}_{\sigma}(T) \neq \emptyset.$$

Now put

(2.13)
$$\mathbf{A}_{\sigma}(T) = \overset{-1}{\eta_{\sigma}}(x)$$

for every $\sigma \in \mathcal{R}^+(\mathbf{A}, \mathcal{G})$. Then

(2. 14)
$$\mathbf{A}(T) = \bigcap_{\sigma \in \mathcal{R}^+(\mathbf{A}, \mathcal{G})} \mathbf{A}_{\sigma}(T)$$

is not empty since $\mathbf{A}_{\sigma}^{t}(T) \subseteq \mathbf{A}_{\sigma}(T)$ for every $\sigma \in \mathcal{R}^{+}(\mathbf{A}, \mathcal{G})$ and (2.12) holds. Now if $S_1 \in \mathbf{A}(T)$ and $S_2 \in \mathbf{A}(T)$, then for every $\sigma \in \mathcal{R}^+(\mathbf{A}, \mathcal{G})$ we obtain that

$$\eta_{\sigma}(S_1) = \eta_{\sigma}(S_2) = \overset{(\sigma)}{x},$$

hence $\sigma((S_1 - S_2)^*(S_1 - S_2)) = 0$. As **A** is supposed to be \mathscr{G} -finite, we get that $S_1 = S_2$. This means that $\mathbf{A}(T) = \mathbf{A}^{\mathsf{T}}(T)$, and it consists of exactly one element. Denote this unique element by T^g . We are going to show that

$$\mathcal{K}(T,\mathcal{G}) \cap \mathbf{A}^{\mathcal{G}} = \{T^{\mathcal{G}}\},\$$

where $\{T^{\mathscr{G}}\}\$ denotes the set consisting of the element $T^{\mathscr{G}}$ alone. To do this, consider an arbitrary element θ of \mathcal{G} . For every $\sigma \in \mathcal{R}^+(\mathbf{A}, \mathcal{G})$ we have

$$\sigma\big((\theta(T^{\mathscr{G}})-T^{\mathscr{G}})^*(\theta(T^{\mathscr{G}})-T^{\mathscr{G}})\big)=\|\eta_\sigma\big(\theta(T^{\mathscr{G}})\big)-\eta_\sigma(T^{\mathscr{G}})\|_\sigma^2=$$

$$= \|\theta\| x - x\|_{\sigma}^{2} = 0.$$

Hence $\theta(T^g) = T^g$ which gives $T^g \in \mathbf{A}^g.$ $T^g \in \mathbf{A}^g.$

$$T^{\mathscr{G}} \in \mathbf{A}^{\mathscr{G}}$$
.

Now let $x_1, ..., x_n$ be an arbitrary finite family of elements of \mathfrak{H} . Then there exists an element σ_0 of $\mathscr{R}^+(\mathbf{A}, \mathscr{G})$ such that $E_{\sigma_0}x_i=x_i$ for every i=1, ..., n. In fact, consider a family $\{\sigma_i\}_{i\in I}$ of elements of $\mathscr{R}^+(\mathbf{A}, \mathscr{G})$ with $\sigma_i(I_{\mathfrak{H}})=1$ $(\iota\in I)$, $E_{\sigma_i}E_{\sigma_k}=0$ for $\iota\neq\varkappa$, and $\sum_{i\in I}E_{\sigma_i}=I_{\mathfrak{H}}$. Then there exists a countable subfamily $\{\sigma_{\iota_n}\}_{n=1}^{\infty}$ of $\{\sigma_{\iota}\}_{\iota\in I}$ such

that $\left(\sum_{i=1}^{\infty} E_{\sigma_{i_n}}\right) x_i = x_i \ (i=1, ..., n)$. For every $T \in \mathbf{A}$ put

$$\sigma_0(T) = \sum_{n=1}^{\infty} \frac{1}{2^n} \, \sigma_{i_n}(T).$$

It is clear that $\sigma_0 \in \mathcal{R}^+(A, \mathcal{G})$ ([3], chap. I, § 3, no. 3). Furthermore, if for a projection P of A we have $\sigma_0(P) = 0$, then $\sigma_{i_n}(P) = 0$ for every n = 1, 2, ... This means that

 $\sum E_{\sigma_{i,n}} \leq E_{\sigma_0}$. On the other hand,

$$\sigma_0 \left(E_{\sigma_0} - \sum_{n=1}^{\infty} E_{\sigma_{i_n}} \right) = \sum_{n=1}^{\infty} \frac{1}{2^n} \left[\sigma_{i_n}(E_{\sigma_0}) - \sigma_{i_n}(E_{\sigma_{i_n}}) \right] =$$

$$= \sum_{n=1}^{\infty} \frac{1}{2^n} \left[\sigma_{i_n}(E_{\sigma_{i_n}}) - \sigma_{i_n}(E_{\sigma_{i_n}}) \right] = 0.$$

From this it follows that $E_{\sigma_0} - \sum_{n=1}^{\infty} E_{\sigma_{i_n}} \leq I - E_{\sigma_0}$, which gives that $E_{\sigma_0} - \sum_{n=1}^{\infty} E_{\sigma_{i_n}} = 0$.

So $E_{\sigma_0} = \sum_{n=1}^{\infty} E_{\sigma_{i_n}}$, that is $E_{\sigma_0} x_i = x_i$ (i = 1, 2, ..., n). Now let $\{T_m\}_{m=1}^{\infty}$ be a sequence of elements of $\mathcal{K}_0(T, \mathcal{G})$ such that $\|\eta_{\sigma_0}(T_m) - \eta_{\sigma_0}(T^{\mathcal{G}})\|_{\sigma_0} \to 0$ for $m \to \infty$. This implies that

$$(T_m - T^{\mathcal{G}}) E_{\sigma_0} \rightarrow 0$$

strongly for $m \to \infty$ ([3], chap. I, § 4, Prop 4). Thus, for every $\varepsilon > 0$ there exists an index $m_0 = m_0(\varepsilon)$ such that

$$||(T_{m_0} - T^{\mathcal{G}}) E_{\sigma_0} x_i|| < \varepsilon$$
 $(i = 1, ..., n).$

As $E_{\sigma_0}x_i = x_i$ (i = 1, ..., n), we get that

$$||(T_{m_0}-T^{\mathcal{G}})x_i||<\varepsilon \qquad (i=1,\ldots,n).$$

Hence, $T^{\mathscr{G}} \in \mathscr{K}(T, \mathscr{G})$, as the strong closure and the weak closure of $\mathscr{K}_0(T, \mathscr{G})$ coincide ([3], chap. I, § 3, Th. 1). Thus we have proved that

$$\{T^{g}\} \subseteq \mathcal{K}(T, \mathcal{G}) \cap \mathbf{A}^{g}.$$

Now let S be an arbitrary element of $\mathcal{K}(T, \mathcal{G}) \cap A^{\mathcal{G}}$. Then using again [3], chap. I, § 4, Prop. 4, it is not hard to see that for every $\sigma \in \mathcal{R}^+(A, \mathcal{G})$ we have $\eta_{\sigma}(S) \in \bar{c}(\eta_{\sigma}(T), \mathcal{G})$ and $\eta_{\sigma}(S)$ is invariant with respect to the elements of \mathcal{G} .

Therefore, we have $\eta_{\sigma}(S) = x$ for every $\sigma \in \mathcal{R}^+(A, \mathcal{G})$. Hence we obtain that $S \in A(T) = \{T^g\}$, that is

$$\mathscr{K}(T,\mathscr{G})\cap \mathbf{A}^{\mathscr{G}}\subseteq \{T^{\mathscr{G}}\},$$

which implies, together with (2.16), that

(2.18)
$$\{T^{\mathscr{G}}\} = \mathscr{K}(T,\mathscr{G}) \cap \mathbf{A}^{\mathscr{G}}.$$

Since T was arbitrary in A, Theorem 1 is completely proved.

§ 3

Now we are in the position to prove

Theorem 2. Let A be a von Neumann algebra in a complex Hilbert space \mathfrak{H} , and let \mathcal{G} be a group of automorphisms of A. Suppose that A is \mathcal{G} -finite. Then the mapping $T \rightarrow T^{\mathcal{G}^{14}}$) possesses the following properties:

(i) for every $\sigma \in \mathcal{R}(\mathbf{A}, \mathcal{G})$ and $T \in \mathbf{A}$ we have $\sigma(T) = \sigma(T^{\mathcal{G}})$;

(ii) $T \rightarrow T^g$ is linear and strictly positive; 15)

¹⁴⁾ $T^{\mathcal{G}}$, as above, denotes the unique element of $\mathcal{K}(T,\mathcal{G}) \cap A^{\mathcal{G}}$ (cf. Th. 1). 15) In general, if $T \to \Phi(T)$ is a mapping of A into itself, Φ is said to be positive if $T \in A^+$ implies $\Phi(T) \in A^+$. Φ is strictly positive, if $T \in A^+$, $T \neq O$ imply $\Phi(T) \geq O$, $\Phi(T) \neq O$.

- (iii) if $T \in A$, $S \in A^g$ we have $(ST)^g = ST^g$ and $(TS)^g = T^gS$;
- (iv) $T \rightarrow T^{\mathcal{G}}$ is ultra-weakly and ultra-strongly continuous;
- (v) for every $T \in \mathbf{A}^g$ we have $T = T^g$;
- (vi) $(\theta(T))^g = T^g$ for every $T \in \mathbf{A}$ and $\theta \in \mathcal{G}$.

Conversely, if we do not suppose that A is G-finite but we know that there exists an ultra-weakly continuous positive linear mapping $T \to T'$ of A onto A^g such that

- a) T = T' for every $T \in \mathbf{A}^g$,
- b) $(\theta(T))' = T$ for every $T \in A$, $\theta \in \mathcal{G}$,

then A is necessarily G-finite and for every $T \in A$ we have $T' = T^g$ (cf. 14).

Proof. (i) It suffices to take into account the construction of $T^{\mathscr{G}}$ and to note that if $\sigma \in \mathscr{B}(A, \mathscr{G})$ then σ is weakly continuous on every norm-bounded part of A, in particular on $\mathscr{K}(T, \mathscr{G})$.

(ii) Consider two arbitrary elements S and T of A. Then we have $S^g + T^g \in A^g$. We are going to prove that $S^g + T^g$ belongs to $\mathcal{K}(S+T,\mathcal{G})$, too. According to the notations used in the proof of Theorem 1, for every $\sigma \in \mathcal{R}^+(A,\mathcal{G}), \eta_\sigma(S^g)$ is the fixed point of $\bar{c}(\eta_\sigma(S),\mathcal{G})$ and $\eta_\sigma(T^g)$ is the fixed point of $\bar{c}(\eta_\sigma(T),\mathcal{G})$, given by Lemma 1. In virtue of the second assertion of this lemma, $\eta_\sigma(S^g) + \eta_\sigma(T^g) = \eta_\sigma(S^g + T^g)$ is the fixed point of $\bar{c}(\eta_\sigma(S) + \eta_\sigma(T), \mathcal{G}) = \bar{c}(\eta_\sigma(S+T), \mathcal{G})$ for every $\sigma \in \mathcal{R}^+(A,\mathcal{G})$. This means that $S^g + T^g \in A(S+T) = \mathcal{K}(S+T,\mathcal{G}) \cap A^g$. Thus $S^g + T^g = (S+T)^g$. It is evident that $T \to T^g$ is homogenous. Now if $T \in A^+$, then $T^g \ge 0$ as $T^g \in \mathcal{K}(T,\mathcal{G}) \subseteq A^+$. If $T \in A^+$ and $T \ne 0$, then $T^g \ne 0$. Indeed, if $T^g = 0$ then, in virtue of (i), we have $\sigma(T) = \sigma(T^g) = 0$ for every $\sigma \in \mathcal{R}^+(A,\mathcal{G})$. Since A is \mathcal{G} -finite, from this it follows T = O, which completes the proof of (ii).

(iii) follows easily from the construction of the mapping $T \rightarrow T^{\mathscr{G}}$.

(iv) First we prove that the mapping $T \to T^g$ is normal that is if $\{T_i\}_{i \in I}$ is an upward directed family of elements of A^+ with $\sup_{i \in I} T_i = T$, then $\sup_{i \in I} T_i^g = T^g$ holds. In fact, since $T \to T^g$ is positive, $\{T_i^g\}$ is an upward directed family of $(A^g)^+$ and $T_i^g \cong T^g$ ($i \in I$). Put $S = \sup_{i \in I} T_i^g$. Then $S \in A^g$ ([3], App. II.), and $S \cong T^g$. In virtue of (i), for every $\sigma \in \mathcal{R}^+(A, \mathcal{G})$ we obtain that

$$\sigma(T^{\mathscr{G}} - S) = \sigma(T^{\mathscr{G}}) - \sigma(S) = \sigma(T) - \sup_{i \in I} \sigma(T_i^{\mathscr{G}}) =$$

$$= \sigma(T) - \sup_{i \in I} \sigma(T_i) = \sigma(T) - \sigma(T) = 0.$$

So $T^g = S = \sup T_i^g$. From this it follows that $T \to T^g$ is ultra-weakly continuous ([3], chap. I, § 4, Th. 2). Furthermore, for every $T \in A$ we obtain

$$O \le [(T - T^g)^* (T - T^g)]^g = (T^* T)^g - T^{*g} T^g - T^{*g} T^g + T^{*g} T^g = (T^* T)^g - T^{*g} T^g$$

(cf. (ii) and (iii)). Thus $T^{*g}T^g \leq (T^*T)^g$, and this gives that $T \rightarrow T^g$ is ultra-strongly continuous as well ([3], chap. I, § 4, Th. 2).

(v) is evident.

(vi) is a consequence of the fact that $\mathscr{K}(\theta(T), \mathscr{G}) = \mathscr{K}(T, \mathscr{G})$ for every $T \in A$. Hence the first part of Theorem 2 is proved.

As far as the second part of Theorem 2 is concerned, we can proceed as follows. Let T_0 be an arbitrary element of $(\mathbf{A}^{\mathcal{G}})^+$ such that $T_0 \neq 0$. Then there exists an element x of \mathfrak{H} such that $(T_0 x | x) > 0$. For every $T \in \mathbf{A}$ put

$$\sigma(T) = (T'x|x).$$

By our hypotheses on the mapping $T \to T'$, one can easily see that $\sigma \in \mathcal{R}^+(A, \mathcal{G})$ with $\sigma(T_0) \neq 0$. Thus, in virtue of Definition 1, A is \mathcal{G} -finite. Furthermore, if $T \in A$, then for every $S \in \mathcal{K}_0(T, \mathcal{G})$ we get that S' = T' (cf. especially hypothesis b) in Theorem 2). As $T \to T'$ is supposed to be ultra-weakly continuous, the same holds for every $S \in \mathcal{K}(T, \mathcal{G})$. In particular $T' = (T^{\mathcal{G}})' = T^{\mathcal{G}}$, which completes the proof of Theorem 2.

Definition 2. If the von Neumann algebra A is finite with respect to a group \mathscr{G} of its automorphisms, then the mapping $T \to T^{\mathscr{G}}$ given in Theorem 2 is called the \mathscr{G} -canonical mapping of A.

84

1. Let us give some direct consequences of the results of §§ 2-3.

Proposition 3. Let A be a von Neumann algebra, and let \mathcal{G} be a group of automorphisms of A. Suppose that A is \mathcal{G} -finite. If σ_1 , $\sigma_2 \in \mathcal{R}(A, \mathcal{G})$ are such that, for every $T \in A^{\mathcal{G}}$, $\sigma_1(T) = \sigma_2(T)$ holds, then $\sigma_1 = \sigma_2$.

Proof. If $T \in A$ then

$$\sigma_1(T) = \sigma_1(T^{\mathcal{G}}) = \sigma_2(T^{\mathcal{G}}) = \sigma_2(T)$$

(cf. Theorem 2, (i)), where $T \to T^{\mathscr{G}}$ is the \mathscr{G} -canonical mapping of A, and this proves Proposition 3.

In the following for a given pair (A, \mathcal{G}) , $\mathcal{R}(A^{\mathcal{G}})$ will denote the set of all ultraweakly continuous linear forms on $A^{\mathcal{G}}$. Then under the same condition on A and \mathcal{G} as in Proposition 3, we have

Corollary 1. Every element σ_0 of $\mathcal{R}(\mathbf{A}^g)$ can be uniquely extended to an element σ of $\mathcal{R}(\mathbf{A}, \mathcal{G})$.

Proof. For any $T \in A$, put

$$\sigma(T) = \sigma_0(T^{\mathcal{G}}).$$

Then σ evidently belongs to $\mathcal{R}(\mathbf{A}, \mathcal{G})$ (cf. Theorem 2). The uniqueness of the extension follows now from Proposition 3.

Without making any restriction on A and \mathcal{G} we can conclude from Proposition 3 also the following

Corollary 2. If $\sigma_1, \sigma_2 \in \mathcal{R}^+(\mathbf{A}, \mathcal{G})$ with $\sigma_1(T) = \sigma_2(T)$ for every $T \in \mathbf{A}^{\mathcal{G}}$, then $\sigma_1 = \sigma_2$.

Proof. Consider the projection $E = \sup (E_{\sigma_1}, E_{\sigma_2})$. It is evident that $E \in \mathbf{A}^{\mathscr{G}}$. Consider the von Neumann algebra \mathbf{A}_E ([3], chap. I, § 1, no. 2). Then \mathscr{G} canonically induces a group of automorphisms \mathscr{G}_E of \mathbf{A}_E , and the restrictions σ_{1_E} and σ_{2_E} of σ_1 and σ_2 to \mathbf{A}_E , respectively, belong to $\mathscr{R}^+(\mathbf{A}_E, \mathscr{G}_E)$. Hence \mathbf{A}_E is \mathscr{G}_E -finite. Further-

more, for every $T_E \in (\mathbf{A}_E)^{\mathscr{G}_E}$ we have $\sigma_{1_E}(T_E) = \sigma_{2_E}(T_E)$. So, in virtue of Proposition 3, $\sigma_{1_E} = \sigma_{2_E}$. Therefore, if $T \in \mathbf{A}$, then $\sigma_1(ETE) = \sigma_{1_E}(T_E) = \sigma_{2_E}(T_E) = \sigma_2(ETE)$. On the other hand, since $\sigma_i(T) = \sigma_i(ETE)$ (i=1,2) for every $T \in \mathbf{A}$, we can conclude that $\sigma_1 = \sigma_2$, which proves Corollary 2.

Proposition 4. Let **A** be a von Neumann algebra in a Hilbert space \mathfrak{H} , and let \mathscr{G}_1 and \mathscr{G}_2 be two groups of automorphisms of **A**. Suppose that **A** is \mathscr{G}_1 -finite, and suppose that for every $\theta_2 \in \mathscr{G}_2$ and $T \in \mathbf{A}$ we have

(3.2)
$$\theta_2(T^{g_1}) = (\theta_2(T))^{g_1},$$

where $T \to T^{\mathcal{G}_1}$ is the \mathcal{G}_1 -canonical mapping of $\mathbf{A}^{.15}$) Denote by $\mathcal{G}_{2,1}$ the group of automorphisms of $\mathbf{A}^{\mathcal{G}_1}$ defined by \mathcal{G}_2 via (3.2). Now if $A^{\mathcal{G}_1}$ is $\mathcal{G}_{2,1}$ -finite then \mathbf{A} is finite with respect to the group $\mathcal{G} = \{\mathcal{G}_1, \mathcal{G}_2\}$ generated by \mathcal{G}_1 and \mathcal{G}_2 . Hence in this case \mathbf{A} is \mathcal{G}_2 -finite, too, and we have

$$(3.3) T^{g} = (T^{g_1})^{g_2} = (T^{g_2})^{g_1} (T \in \mathbf{A}),$$

where $T \to T^{\mathcal{G}}$ and $T \to T^{\mathcal{G}_2}$ are the corresponding \mathcal{G} - and \mathcal{G}_2 -canonical mappings of A, respectively.

Proof. It is not hard to prove that $\mathbf{A}^g = (\mathbf{A}^{g_1})^{g_2,1}$. Let now $\sigma \in \mathcal{R}^+(\mathbf{A}^g)$ be arbitrary. Since \mathbf{A}^{g_1} is $\mathcal{G}_{2,1}$ -finite, in virtue of Corollary 1 of Proposition 3, σ can be extended to an element σ' of $\mathcal{R}^+(\mathbf{A}^{g_1}, \mathcal{G}_{2,1})$. Since \mathbf{A} is \mathcal{G}_1 -finite, in virtue of the same corollary, σ' can be extended to an element σ'' of $\mathcal{R}^+(\mathbf{A}, \mathcal{G}_1)$. Now if $T \in \mathbf{A}$ and $\theta_2 \in \mathcal{G}_2$, then we have

$$\begin{split} \sigma''\big(\theta_2(T)\big) &= \sigma''\big(\big(\theta_2(T)\big)^{g_1}\big) = \sigma''\big(\theta_2(T^{g_1})\big) = \sigma'\big(\theta_2(T^{g_1})\big) = \\ &= \sigma'(T^{g_1}) = \sigma''(T^{g_1}) = \sigma''(T), \end{split}$$

that is $\sigma'' \in \mathcal{R}^+(\mathbf{A}, \mathcal{G})$. Hence, for every $T \in (\mathbf{A}^{\mathcal{G}})^+$, $T \neq 0$ there exists an element σ of $\mathcal{R}^+(\mathbf{A}, \mathcal{G})$ such that $\sigma(T) \neq 0$, and this means that \mathbf{A} is \mathcal{G} -finite. In particular, \mathbf{A} is \mathcal{G}_2 -finite, too. Now we are going to show that for every $T \in \mathbf{A}$

$$(3.4) (T^{g_1})^{g_2} = (T^{g_2})^{g_1}$$

holds. Now let $T \in \mathbf{A}$ be arbitrary but fixed, and let $\{K_i(T)\}_{i \in I}$ be a net of elements of $\mathcal{K}_0(T, \mathcal{G}_2)$ such that

$$\lim_{t \in I \text{ strong}} K_t(T) = T^{\mathscr{G}_2}.$$

Then

(3.6)
$$\lim_{\substack{i \in I \\ i \in I}} [K_i(T)]^{g_1} = (T^{g_2})^{g_1}.$$

(cf. Theorem 2, (iv)). On the other hand, in virtue of (3.2) we get that

$$[K_{i}(T)]^{\mathscr{G}_{1}} = K_{i}(T^{\mathscr{G}_{1}}).$$

Thus, in virtue of (3.6) we have

(3.8)
$$\lim_{\iota \in I} \operatorname{strong} K_{\iota}(T^{\mathscr{G}_{\iota}}) = (T^{\mathscr{G}_{2}})^{\mathscr{G}_{1}}$$

¹⁵) Condition (3. 2) is fulfilled for instance if every element of \mathcal{G}_1 commutes with every element of \mathcal{G}_2 . In fact, to show this it is enough to take into account the construction of $T^{\mathcal{G}_1}$ and the continuity properties of the elements of \mathcal{G}_2 .

This means that $(T^{g_2})^{g_1}$ belongs to $\mathcal{K}(T^{g_1}, \mathcal{G}_2)$, and for every $\theta_2 \in \mathcal{G}_2$, we have $\theta_2((T^{g_2})^{g_1}) = (\theta_2(T^{g_2}))^{g_1} = (T^{g_2})^{g_1}$ (cf. (3.2)) and this means that $(T^{g_2})^{g_1} \in \mathbf{A}^{g_2} \cap \mathcal{K}(T^{g_1}, \mathcal{G}_2)$, that is

 $(T^{g_2})^{g_1} = (T^{g_1})^{g_2}.$

Hence (3. 4) is proved. Now it is not hard to see that the mapping

$$T \rightarrow (T^{\mathscr{G}_1})^{\mathscr{G}_2} = (T^{\mathscr{G}_2})^{\mathscr{G}_1}$$

possesses all the properties of the mapping $T \rightarrow T^{\mathscr{G}}$. Thus, by the uniqueness part of Theorem 2, we get that

$$T^{\mathscr{G}} = (T^{\mathscr{G}_1})^{\mathscr{G}_2} = (T^{\mathscr{G}_2})^{\mathscr{G}_1},$$

which proves Proposition 4.

We think it is worth formulating Theorem 1 and Theorem 2 in the following well-known particular case (cf. [3], chap. III, § 4, Th. 3; § 5, Ex. 1).

Corollary to Theorems 1 and 2. Let A be a finite von Neumann algebra, and denote by A^{i_1} its center. Then for every $T \in A$, the set $A^{i_1} \cap \mathcal{K}(T, \mathcal{I}(A))$ consists of one element alone. Denote it by T^{i_1} . The mapping $T \to T^{i_2}$ has the following properties:

(i) for every $T \in \mathbf{A}$ and for every finite normal trace ([3], chap. I, § 6, Def. 1) φ on \mathbf{A} we have $\varphi(T^h) = \varphi(T)$,

(ii) $T \rightarrow T^{r_1}$ is strictly positive and linear;

- (iii) $T \rightarrow T^{r_1}$ is ultra-strongly and ultra-weakly continuous;
- (iv) if $T \in A$ and U is unitary in A then $(U^*TU)^{i_1} = T^{i_1}$ holds;
- (v) if $S \in \mathbf{A}^{i_1}$ then $S^{i_2} = S$;
- (vi) if $S \in \mathbf{A}^{L_1}$ and $T \in \mathbf{A}$ then $(ST)^{L_2} = ST^{L_2}$.

Conversely, if there exists a positive normal linear mapping $T \to T'$ of A onto A^{t_1} having properties analogous to (iv) and (v), then A is finite and $T' = T^{t_2}$ for every $T \in A$.

Proof. In Theorems 1 and 2 take $\mathcal{I}(\mathbf{A})$ for \mathcal{G} .

2. Let **A** be a von Neumann algebra in a Hilbert space \mathfrak{H} . Denote by \mathbf{A}_U the group of all unitary elements of **A**. Let $U \in \mathbf{A}_U$ be an arbitrary but fixed element of \mathbf{A}_U . For every $T \in \mathbf{L}(\mathfrak{H})^{-16}$) put

$$T \to \theta_U(T) = U * TU$$
.

The set $\mathscr{G}(\mathbf{A}_U)$ of all possible θ_U is a group of automorphisms of $\mathbf{L}(\mathfrak{H})$. In the following we are going to characterize the von Neumann algebras \mathbf{A} such that $\mathbf{L}(\mathfrak{H})$ is finite with respect to $\mathscr{G}(\mathbf{A}_U)$.

Proposition 5. Let **A** be a von Neumann algebra in a Hilbert space \mathfrak{H} . Then $\mathbf{L}(\mathfrak{H})$ is $\mathcal{G}(\mathbf{A}_U)$ -finite if and only if **A** is a product 17) of finite discrete factors. 18)

¹⁶) L(\mathfrak{H}) denotes the von Neumann algebra of all bounded linear operators of \mathfrak{H} .

¹⁷) Cf. [3], chap. I, § 2, no. 2. ¹⁸) Cf. [3], chap. I, § 8, no. 4.

Proof. Suppose that A is the product of the finite discrete factors M_{ι} ($\iota \in I$) that is

$$\mathbf{A} = \prod_{\iota \in I} \mathbf{M}_{\iota} .$$

It is evident that $(U_i)_{i\in I}\in A_U$ if and only if $U_i\in (M_i)_U$ ¹⁹) for every $i\in I$. Furthermore, for every $i\in I$, the group $(M_i)_U$ is compact in the weak operator topology. Thus, using the Tychonoff theorem on the topological product of compact spaces, it is not hard to see that A_U is compact in the weak topology. Denote by $\lambda(dU)$ the normalized Haar measure of A_U , and let $T\in L(\mathfrak{H})$ be arbitrary. If x is any element of \mathfrak{H} , the function

$$U \rightarrow f_{x,T}(U) = (U * TUx | x)$$

is continuous on A_{U} , since the weak and the strong topology coincide on A_{U} . So

$$\int_{A_U} f_{x,T}(U) \lambda(dU)$$

exists. Let $x \in \mathfrak{H}$ be fixed, and for every $T \in \mathbf{L}(\mathfrak{H})$ set

$$\sigma_{x}(T) = \int_{\mathbf{A}_{U}} f_{x, T}(U) \lambda(dU). \quad ^{\circ}$$

Using the unimodularity of λ and the properties of the integral, it is easy to show that $\sigma_x \in \mathcal{R}^+(\mathbf{L}(\mathfrak{H}), \mathcal{G}(\mathbf{A}_U))$. Now if $T \in \mathbf{L}^+(\mathfrak{H})$, $T \neq 0$ then there exists an element x_0 of \mathfrak{H} such that $(Tx_0|x_0) > 0$. Then $\sigma_{x_0}(T) \neq O$, which proves that $\mathbf{L}(\mathfrak{H})$ is $\mathcal{G}(\mathbf{A}_U)$ -finite.

Now suppose that $L(\mathfrak{H})$ is $\mathscr{G}(A_U)$ -finite, and let $T \to T^{\mathscr{G}(A_U)}$ be the $\mathscr{G}(A_U)$ canonical mapping of $L(\mathfrak{H})$ onto $L(\mathfrak{H})^{\mathscr{G}(A_U)}$ (cf. Theorem 2) which is equal to the commutant A' of A. Let $Tr(\cdot)$ be the canonical trace of $L(\mathfrak{H})$ ([3], chap. I, § 6, no. 6), and let $S \in (A')^+$, $S \neq O$ be arbitrary. Then there exists an element S_1 of $L(\mathfrak{H})$ such that $0 \le S_1 \le S$, $S_1 \ne O$, and $Tr(S_1) < +\infty$. By the properties of the mapping $T \to T^{\mathcal{G}(A_U)}$ we obtain that $O \leq S_1^{\mathcal{G}(A_U)} \leq S^{\mathcal{G}(A_U)} = S$. Furthermore, as Tr (•) is lower semicontinuous in the weak topology ([3], chap. I, § 6, Prop. 2, Cor.) and $S_1^{\mathcal{G}(A_U)} \in \mathcal{K}(S_1, \mathcal{G}(A_U))$, we get that $\operatorname{Tr}(S_1^{\mathcal{G}(A_U)}) \leq \operatorname{Tr}(S_1)$. On the other hand, $S_1^{\mathcal{G}(A_U)} \neq O$ since the mapping $T \to T^{\mathcal{G}(A_U)}$ is strictly positive. So we have proved that for every $S \in (A')^+$, $S \neq O$ there exists an element $S' \in (A')^+$, $S' \neq O$, $S' \leq S'$ such that $Tr(S') < +\infty$. Now let $E \neq O$ be a projection in A'. Then there exists a non-zero element R of $(A')^+$ with $R \le E$ and $\operatorname{Tr}(R) < +\infty$. Let $R = \int \lambda dF_{\lambda}$ be the spectral representation of R and set $F = I - F \frac{\|R\|}{2} + 0$. Then it is evident that $F \in \mathbf{A}', F \neq 0$ and $\frac{\|R\|}{2} F \leq R$. Therefore, $\operatorname{Tr}(F) < +\infty$. Furthermore, as F is a projection, we obtain that $F \leq E$. Let now F_0 be any of the projections of A' such that $F_0 \neq 0$, $F_0 \leq E$ and $Tr(F_0)$ is minimal. Then F_0 is minimal in A'. Indeed, $F_0 \in A'$, $F_0 \neq O$, $F_0 \neq F_0$, $F_0 \leq F_0$ would imply $F_0 \leq E$, $\text{Tr}(F_0) < +\infty$ and $\text{Tr}(F_0) < < \text{Tr}(F_0)$ which contradicts the minimality of $\text{Tr}(F_0)$. Thus, every non-zero projection of A' majorizes a non-zero minimal projection of A'. Hence, in virtue

¹⁹) $(M_i)_{ij}$ denotes the group of the unitary elements of M_i .

of Ex. 4, p. 126 of [3], A' and so A is a product of discrete factors. Since A is finite, each factor occurring in the decomposition of A is finite ([3], chap. I, § 8, no. 2). Thus the proof of Proposition 5 is comlete.

Corollary. In order that the group A_U of the unitary elements of a von Neumann algebra A be compact in the weak topology, it is necessary and sufficient that A be the product of finite discrete factors.

Proof. The sufficiency of our condition is evident by the Tychonoff theorem (cf. the first step of the proof of Proposition 5). Now, if A_U is weakly compact, then arguing in the same way as in the proof of Proposition 5, we obtain that $L(\mathfrak{H})$ is $\mathscr{G}(A_U)$ -finite which means, by Proposition 5, that A is a product of finite discrete factors. Hence the proof of Corollary is complete.

Bibliography

- [1] J. DIXMIER, Les anneaux d'opérateurs de classe finie, Ann. Ec. Norm. Sup., 66 (1949), 209-261.
- [2] J. DIXMIER, Formes linéaires sur un anneau d'opérateurs, Bull. Soc. Math. Fr., 81 (1953), 9-39.
- [3] J. DIXMIER, Les algèbres d'opérateurs dans l'espace hilbertien (Algèbres de von Neumann) (Paris, 1957).
- [4] K. Jacobs, Neuere Methoden und Ergebnisse der Ergodentheorie (Berlin-Göttingen-Heidelberg, 1960).
- [5] I. Kovács et J. Szűcs, Théorèmes de type ergodique dans les algèbres de von Neumann, C. R. Acad. Sci. Paris, 262 (1966), 341—344.
- [6] S. SAKAI, On topological properties of W*-algebras, Proc. Japan Acad., 33 (1957), 439-444.
- [7] J. Schwartz, Two finite, non-hyperfinite, non-isomorphic factors, Comm. Pure Appl. Math., 16 (1963), 19-26.

(Received June 16, 1966)