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| Introduction 
i 

Let ¡A be a von Neumann algebra1) in a complex Hilbert space and let ^ 
be a group of automorphisms of A 2). Denote by A® the set of all elements of A 
which are invariant with respect to each element of Taking into account the 
algebraic and topological properties of the elements of rS ([13], chap. I", §4, Th. 2,. 
Cor. 1), ¡one can see easily that A® is a von Neumann subalgebra of A. For any 
T£A, let yf0(T, -3) denote the smallest convex subset of A which contains the 
orbit of T under <3 3). Let J f ( T , ?/) be the weak closure of :/f0(T, V) 4). The inves-
tigations concerning the center-valued trace theory of von Neumann algebras 
and the ¡results of some other works (for example [1], [2], [7]) naturally give the 
idea of seeking conditions on A and (3 under which the set (T, (3) meets A® for 
every T(i A. 

The: purpose of this paper is to give a sufficient condition in order that 
J f (T, <&) H A® consist of exactly one element for every Tg A (Theorem 1.) This 
is the subject of §2. The next § 3 is devoted to establishing under this condition 
a mapping of A onto A® which reminds us, from many points of view, of the Dixmier 
trace h of a finite von Neumann algebra (Theorem 2). In § 4, some simple con-
sequences of the above results are given. § 1 contains preliminary results and. 
examples. 

The1 main results of this paper were announced in [5], with the proof of Theorem 
1 in a less detailed form. 

i 
j §1 

First of all let us set down some notations. 
If A is a von Neumann algebra and ^ is a group of automorphisms of A, 

denote by ¿%(A, r3) the set of all ultra-weakly continuous linear forms on A which 

*) This author's contribution to the paper was done while he was a Postdoctorate Fellow 
at Queen's University in Kingston, of the National Research Council of Canada. 

J) For the theory of von Neumann algabras, cf. [3]. The terminology of [3] will be freely 
used in the following. 

2) By an automorphism of a von Neumann algebra, we always mean a »-automorphism. 
3) By the orbit of T under r3 we mean the set of the elements {0{T})gf,s. 
4) For a given pair (A, the notations .?fa(T, C/C(T, f3) (Ti A) will be permanently-

used by us, without explaining again what they mean. 
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.are invariant with respect to (S (that is if a £ 8i(A, (S) then for every T£ A and Od'S 
we have a(Q(T)) = o(T)). Let J?+(A, (S) denote the set of all positive elements of 
M{A, For any element a of 3t+(A, <$), Ea will denote the support of a ([3], chap. 
I, §4, Def. 3). It is easy to see that A®. The group of all inner automorphisms 
•of A will be denoted by ./(A). 

With these notations we have the following 

P r o p o s i t i o n 1. Let A be a von Neumann algebra in a complex Hilbert space 
and let $ be a group of automorphisms of A. The following four conditions are 

equivalent: 
(i) For every T£ A+ 5), 7 V 0 there exists an element cr of (S) such that 

(ii) For every T£(A9)+, 7 V 0 there exists an element a of <%+(A, <$) with 

(iii) There exists a family {<7,},€f of elements of (A,fS) such that E„l E„x = 0 
for x and = 6) 

1 £/ 
(iv) sup Ea = lh. 

P r o o f . (i)=>(ii) is evident. 

(ii)=>(iii). In fact, let {o",},ef be a maximal family of elements of !%+(A, 
such that EaiE„x = 0 for T Such a family exists by the Z O R N ' S lemma. Set 
E— y,E<<i> a n ( i prove that E = To do this, suppose the contrary that is that 

i ii 
.£¿¿1%. Put F=l% — E. Since F£(Ay)+, F^ 0, in virtue of (ii), there exists an element 
a of £%+(A, <$) such that.<r(F)5*0. Set o'(T) = o(FTF) for every T£A. As F£A9, 
we obtain that a' £^+(A, <§). Furthermore, we have <rV0 and a'(E) = 0. This 
means that Ea- ^ 0 and Ea- s F, and this contradicts the maximality of the family {ff,}lg/. 

(iii)=>(iv) is evident. 
(iv)=>(i). Suppose that (i) is not true. Then there exists an element A + , 7 V 0 

-such that a(T) = 0 for every >3): This means that EaTE„ = 0 for every 
•a (S). Thus for every x € § we get \\T±Eax\\ = 0 , i.e. T±Ea = 0. As, by (iv), 

sup we obtain that T*=0, that is T = 0 which is impossible, and this 

•completes the proof of Proposition 1. 

D e f i n i t i o n 1. Let A be a von Neumann algebra and let ^ be a group of 
automorphisms of A. A is said to be finite with respect to (S (or eS-finite) if A and 
<8 satisfy any of the equivalent conditions of Proposition 1. 

R e m a r k s . 1. To say that A is ./(A)-finite is equivalent to say that A is finite 
in the usual sense of the global theory of the von Neumann algebras ([3], chap. I, 
-§ 6, Def. 5). 

2. If A is ^-finite then A is finite with respect to any subgroup of 

5) For a von Neumann algebra A, A + denotes the set of all non-negative self-adjoint elements 
•of A. 

6) 7g denotes the identity operator of the Hilbert space § . 
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Now let us give examples for pairs (A, eg) such that A is ^-finite. 
1. A is a finite von Neumann algebra and H is an arbitrary subgroup of . /(A). 
2. A is a finite factor and (S is an arbitrary group of automorphisms of A. In 

fact, if Tr (•) is the canonical trace of A ([3], chap. I l l , no. 4) and 6 is an arbitrary 
element of <$ then <p(T) = Tr (0(Tj) (T£ A) is also a normalized trace7) on A. There-
fore, for every T£ A we have Tr (T) = (p(T)= Tr (0(T)) ([3], chap. I. § 6, Th. 3, Cor.), 
and this means that Tr ( - ) € ^ + ( A , Since Tr (•) is a strictly positive linear form 
on A, we obtain that A is ^-finite. 

3. Let Aj and A2 be von Neumann algebras in the Hilbert spaces <5, and § 2 , 
respectively. Let (S-L be a group of automorphisms of A ; for every ¿ = 1 , 2 . Put 
S— §i<8>§2 and A = A1<g)A2. If 0, £ ^ and 0 2 £ ^ 2 , there exists a uniquely de-
fined automorphism 0 of A such that 6(Tl®T2) = Bl(T1)®d2(T2) for every Tt £A, 
and T2 6A2 ([3], chap. I, § 4. Prop. 2). Denote by <g> the set of all 0 obtained 
from all possible pairs {0t £ % \ , 02 £ in this way. Under the usual multiplication, 

— ^ is a group of automorphisms of A. 
P r o p o s i t i o n 2. If A, is finite and A2 is ^-¿-finite then A is -finite. 
P r o o f . In virtue of Definition 1, it is enough to show that sup Ea — 1g. (Te» + (A, 8?) 

To do this, consider an arbitrary element (/ = 1,2). It is known 
([3], chap. I, §4, Th. 1) that for each / = 1 , 2, there exists a sequence { „ Y [ " i ' of 

elements of with 2 IW^II2 < + 00 such that for every A ; we have 
k= 1 

°i(Ti)=.Z(Tixp\xP). 
k= 1 

Now for every T£A, put 

Jt = 1 i= 1 
It is easy to see that <7(J, ® T2) ^cXtiT^o^T^ for every r , € A t , r 2 £ A 2 . By 
linearity and continuity, from this we can conclude that ff£^2+(A, Further-
more, 

A' A ' A' 8 V 

([3], chap. I, § 4, no. 6). 
On the other hand, we have Ai<g)A2QA'. This implies that 

0 - 1 ) Eai<8)£ai^Ea. 

Since Ax and A2 are and 3?2-finite, respectively, we have that 

sup Eas®Ea2 = 7S . 
<Ti€a + (A,, »0, <j2ea + (A2, «2) 

This together with (1. 1) gives that sup Ec = / s , and so the proof of Proposition 
uea + (A, 9) • 

2 is complete.9) 

7) That is, ?>(/§)= 1. 
8) For these notations, cf. [3], chap. I, § 1, no. 4. 
9) For this reasoning, see [3], chap. I, § 4, Ex. 6. 
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Proposition 2 enables us to give examples, for pairs (A, 2?) such that A is purely 
infinite ([3], chap. I, §6, Def. 5), ^ is a non-trivial group of automorphisms10) 
of A, and A is ^-finite. For instance, let M[ be a finite factor, and let be an 
arbitrary but non-trivial group of automorphisms of Mi . L e t M 2 b e a purely infinite 
von Neumann algebra. Then A = M1<g>M2 is purely infinite ([6]). P u t ' S = , 
where J is the trivial group of automorphisms of M 2 . Then is a non-trivial group 
of automorphisms of A and A is i?-finite (cf. Ex. 2 above and Prop. 2). 

§2 

Our main result can be stated as follows. 

T h e o r e m 1. Let A. be a von Neumann algebra and let (S be a group of auto-
morphisms of A. Suppose that A is «¡-finite. Then for every T£ A, J f (T, 5?) fl Ay 

consists of exactly one element. 
A key-role in the proof of this theorem is played by the ergodic theorem of 

ALAOGLU and BIRKHOFF ([4], Th. 1 . 1 . 3 . ) . For convenience, we recall the reader 
just for a particular part of it we need. 

' L e m m a 1. Let § be a complex Hilbert space, and let % be a group of unitary 
operators in For an arbitrary denote by c(x, the smallest convex subset 
of § which contains the orbit of x under °U. Let c(x, 6U) be the closure of c(x, °ll) 
in Then there exists a unique element x0 in c(x, aU) such, that Ux0=x0 for every 
V T h e mapping x —x0 is linear. 

P r o o f of T h e o r e m 1. Let T be an arbitrary but fixed element of A, and 
consider an arbitrary a in + As a is ultra-weakly continuous, 

m„ = {SiA:a(S*S)=0} 

is an ultra-weakly closed left ideal of A. Consider the quotient vector space A/m„, 
and let S-~r]a(S) denote the canonical mapping of A onto A/ma. For every R, S£ A, 
set 

(2.1) < ^ ) M S ) > . = 

Then the vector space A/m^ becomes a pre-Hilbert space with respect to the inner 
product (2. 1). Let be the completion of Alm„ in the norm defined by (2. I).11) 
Now, let 6 be an arbitrary element of (S. For any t]a(S)(:A/mff (S£A), put 

to 
(2.2) 0 0 ^ ( ^ = ^ (0 (5 ) ) . 

First of all we note that 90 is uniquely defined, that is its definition does not 
depend on the special choice of the representatives of the elements of A/m„. Indeed, 

10) That is does not consists just of the identical automorphism of A. 
" ) For this construction, see [3], chap. I, § 4, no. 1. 
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since a is invariant with respect to 6, 9 sends m„ onto itself. So, if 5, and S2 are 
two elements of A such that ^„(S^ = ria(S2) then 5", — S2 €nta and 

W Co) 
OolASd-Oot iASi) = ri„(e(s1))-r l l !(e(s2)) = ^ ( s ^ s j ) = o, , 

Co) Co) Co) 
which means that 80 »/„(SO = 0o rja(S2). It is clear that 90 is linear. Further-

Co) 
more, 90 (Alma)Q A/m„ by definition. Now, if t]JS) is an arbitrary element of 

(o) Co) 
A/ma, then 90 rja(9~ (S))=t]a(S) which means that 90 is surjective. 

Consider now two arbitrary elements and S2 of A. Then we have 
Co) Co) 

< M o № ) \ e 0 r i A s 2 ) X = a ^ s m s j ) = ff (9(s^s1)) = 
(2.3) 

= a (St S^ = (^(S'JMSy),,-
(o) • (a) 

Therefore, 60 can be uniquely extended to a unitary operator 9 of Further-
Co) (o) 

more, it is not hard to prove that [0]* = (0_1)W, and that the family {0 is 
a group under the usual multiplication of unitary operators. Denote this group 

Co) Co) (o) 
by ^ . Now, applying Lemma 1 to §>„ and ^ , we obtain a unique point, say x , 

Co) 
in c(r}a(T), <$) such that 

Co) Co) Co) 
(2.4) -0x = x 

Co) Co) (o) 
for every 9 6 & . We are going to prove that x €A/m„. To do this, consider 

. . . Co) Co) 
a sequence {x„}"=i of elements of c(r]„(T), <§) with \\xn - x L - 0 if Let 
{Tn}n-1 be a sequence of elements of Jf0(T, (S) such that na{T„)=x„ for every 
n = 1,2, ... . Then we have 

(2. 5) a{(Tm-Tn)*(Tm-Tn)) = \\na(TJ-n„(Tn)\\l = i | .Ym -xJ 2 -*0 

for /w, °o. As | | r m - r „ | | S2| |T| | 12), in virtue of [3], chap. I, §4, Prop. 4, we 
conclude from (2. 5) that (Tm — T„)Ea^0 strongly for tn, Therefore, there 
exists a well-defined element 5", of A such that 

(2-6) TnEa^Sx 

strongly for «-<*>. Now, as | |r„£' (T-5'1 | | ^2 | |T | | («= 1, 2, ...), using again the 
proposition of [3] which has just been quoted, we obtain that 

(2.7) \\xn-r, „(SOU2 = iMTJ-riASMi = 
for m,n-" oo. So, 

Co) 
(2.8) x = r,a(Sl) with S^ A, 

12) || || denotes the usual norm of bounded linear operators. 
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that is « 
(2.9) * € A / m „ . 

As the ultra-weak topology is compatible with the vector space structure of A and 
- 1 (« 

1U.J is ultra-weakly closed, the set r}„( x ) is ultra-weakly closed in A. Set 

- 1 « -
(2.10) A'a(T) = t1a(x)nAt 

where t = \\T\\ and Af = { 5 6 A : | |S | |S i} . Then A'a(T) is weakly closed as the weak 
topology coincides with the ultra-weak one on norm-bounded parts of A. Further-
more, A'a(T) is not empty as it contains at least Si constructed above (see (2. 8)). 
As a next step of our proof, let us construct the set A'a(T) for every <r£i%+(A, 
Then, if o-j, a 2 <S), we have 

(2.11) K ^ T ^ K X T ) ( / = 1 , 2 ) . 

Since a t +CT 2 £^ + (A, <S) and ( r ^ c ^ i f i 13) ( ¿=1 ,2) , to prove (2. 11) we have 
to show that if a', a" <E^+(A, 3?) with a'^a" then A'a„(T)QA'AT). Well, suppose 
that we are given a', a" f rom M+(A, 5?) with a' s a", and take an arbitrary element 
S of A'a«(T). We have.to prove that S<iA'a,(T). First we note that S£A'a.,(T) implies 

So to show that SeA'a,(T), it suffices to prove that tia.(S) — x (where 
(<0 (") 
x plays the same role in the case of a' as x did in the case of a). Let {T n }~= L 

be a sequence of elements of J f 0(T, (S) such that 

UATJ-xh—o («-<») . 

By our assumption, S£A'a..(T) that is >ia> (S) = x . Therefore, we have 

I I n A T „ ) - r i A S ) \ t i = cj'((T,-Sy(T„-S)) s 

s a"({Tn-sy{Tn~sj) = \\riATn)-nAS)\\l• = hATn)~ 

if « —«>. So we obtain that ^ - ( S K c ^ ^ T ) , ), and it remains to prove that r \AS) 
(»') (»') (<7') 

is invariant with respect to each element of . Let 9 6 ^ be arbitrary. Then 

\\0r,AS)-r,AR)V = \\i.>{e(S))-r,AS)h> ^ 

^ M 0 ( S ) ) - i ? „ . ( S ) | | „ . = ff(x - x L- = 0. 
Co') ("') CO O') ("') 

So 0 tia>(S) = ria.(S) for every Using the uniqueness of x in c.(r]a-(T), ) 

we get that >ja.(S)= x , indeed. Hence (2. 11) is proved. In virtue of (2. 11), the 

13) That means that a,(T) + ai(T) fe o^T) ( /=1, 2) for every 7"6 A + . 
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amily {k'r!{T)}aigt+(x, <?> is a filter basis on A,. It is known that At is weakly 
ompact ([3], chap. I, § 3, Th. 2). Thus, as each A'„(T) is weakly closed, we obtain that 

(2. 12) A'(T) = n K(T) * 0. 

Now put 
- i O) 

(2-13) A a ( T ) = n A x ) 
for every + (A,<$). Then 

(2.14) A ( T ) = n K ( T ) 
oiSl + ( A,®) 

is not empty since A'a(T)^AJT) for every a(-JJI + (A, <3) and (2. 12) holds. N o w 
if eA(T) and S2£A(T), then for every A, <&) we obtain that 

M 
latSJ = r,a(S2) = X, 

hence c((5j — S2)* (S\ — .SV)) = 0. As A is supposed to be ^-finite, we get that S\ = S2. 
This means that A ( T ) = A'(T), and it consists of exactly one element. Denote this-
unique element by T9. We are going to show that 

(2.14) tf{T,<!f)(\A* = {T*), 

where {T9} denotes the set consisting of the element Tw alone. To do this, consider-
an arbitrary element 6 of For every cr£á?+(A, <8) we have 

*{(0(T«) -T«)+(e(T*)-r*)) I In a (e{T*) ) -n a ( r ° )u 2 = 
(T) (T) (<r) 

= II 0 x-x\\* = 0 . 
Hence 0(T*) = T* which gives 
(2.15). T * e A * . 

Now let x t , ..., xn be an arbitrary finite family of elements of Then there exists 
an element <x0 of ¿2+(A, 3?) such that Eaox¡ = x¿ for every i = 1, ..., n. In fact, consider 
afamily {ffJ.gj of elements of M+(A, IS) with <t,(/s) = 1 {iGj), EaEax=0 for 
and 2E a i =Js>- Then there exists a countable subfamily {a, of such. 

. 

that I 2Eat x¡ =x¡ (/.= ] , . . . , n). For every T£A put 
V„=i 

n=i ¿ 

It is clear thato-0£á? + (A, <¡S) ([3], chap. I, § 3, no. 3). Furthermore, if for a projection 
P of A we have <ro(P) = 0, then erln(P) — 0 for every « = 1,2, ... . This means that 

oo 

2 Ea, = E a 0 . On the other hand, 
»=1 " 

L „ - 2 I = 2 i \P .SE a o ) -* ,„ (£„ , )] = \ «=1 n) ft— 1 ¿ " 

= 2 )] = o. •• 
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From this it follows that Ea — m.I—Eaa, which gives that Ea — 2 = 0 . 
n=l " 11 = 1 n 

So Eao = , that is Eaoxi = xl (i= 1,2, ..., n). Now let {rm}~=1 be a sequence 
n = 1 " 

of elements of 3C§(T, &) such that \\riO0(Tm) -r)„0(Ts)L0 - 0 for This implies 
that 

{Tm-T*)Eao- 0 
strongly for m — °° ([3], chap. I, §4, Prop 4). Thus, for every e > 0 there exists an 
index m0 = m0(e) such that 

|\(Tm-T*)Eaoxt\\^B (i= 1, ...,»). 

As E„0x — x, (('= 1, ...,«), we get that 

| | ( r m o - r®)x , | | <e 0 = 1 , .. . ,«). 

Hence, as the strong closure and the weak closure of 
coincide ([3], chap. I, § 3, Th. 1). Thus we have proved that 

<2.i6) {T9} g j f ( T , s o n A®. 

Now let S be an arbitrary element of 3?) fl A's. Then using again [3], chap. 
I, §4, Prop. 4, it is not hard to see that for every (S) we have 

ti„(S)£c(ria(T), &) and t]a(S) is invariant with respect to the elements of 5? . 

Therefore, we have „̂(iS") = x for every t x t ^ + ( A , i?). Hence we obtain that 
5 e ^ ( J ) = {r®}, that is 

<2.17) s o n A® g {r®}, 

which implies, together with (2. 16), that 

•(2.18) {T9} = J f (T , SO HA". 

Since 7" was arbitrary in A, Theorem 1 is completely proved. 

§ 3 

Now we are in the position to prove 

T h e o r e m 2. Let A. be a von Neumann algebra in a complex Hilbert space 
and let (S be a group of automorphisms of A. Suppose that A is H-finite. Then the 

mapping Ty 14) possesses the following properties: 
(i) for every <§) and T£ A we have a(T) = a(Ty)] 

(ii) T-^T'f is linear and strictly positive;15) 

'-) T'", as above, denotes the unique element of J f ( 7 ; 2?) n A9 (cf. Th. 1). 
, s ) In general, if T-- <P(T) is a mapping of A into itself, <I> is said to be positive if TeA* 

implies </>(7)€A+. 0 is strictly positive, if T€ A+, 7 V O imply <t>(T)^0, &(T)^0. 
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(iii) if r e A, se A® we have (STf = ST'S and {TSf = T*>S; 
(iv) T — T 9 is ultra-weakly and ultra-strongly continuous; 
(v) for every T£ A® we have T=T9\ 

(vi) (0(7))® = r® for every 7 6 A and 
Conversely, if we do not suppose that A is V-finite but we know that there exists 

an ultra-weakly continuous positive linear mapping 3"— T' of A onto A® such that 
a) T=T for every T£A*, 
b) ( e ( T ) ) ' = T for every T£ A, 9 <= <S, 

then A is necessarily finite and for every T£A we have T' = T® (c/14)). 

P r o o f , (i) It suffices to take into account the construction of T 9 and to note 
that if A, then a is weakly continuous on every norm-bounded part of A, 
in particular on J f ( r , 0). 

(ii) Consider two arbitrary elements S and T of A. Then we have S® + T9 £ A®. 
We are going to prove that S® + T® belongs to JiT(S + T, <$), too. According to 
the notations used in the proof of Theorem 1, for every <r£^+(A, 1S),rj„(S9) is 

(<0 , ("X 
the fixed point of c(i/1T(5), (S ) and na{Tff) is the fixed point of c(r]a(T), <3 ), given 
by Lemma 1. In virtue of the second assertion of this lemma, ri^(S9) + ria(T9) = 

w • (<r) 
= r]„(S9 + Ts) is the fixed point of + ria{T), <S) = c(rfa(S-\-T), <$) for every 

<r€^+(A, <S). This means that S9 + T°6 A(S+ T) = JiT(S + T, IS) f l A*. Thus 
S* + T* = (S+T)*. It is evident that r—T® is homogenous. Now if T£ A+, then 
r ® £ 0 as ^ ) g A + . IfT<EA+ and T^O, then Indeed, if T» = 0 
then, in virtue of (i), we have o(T) = o{Ti) = 0 for every <§). Since A is 
^-finite, from this it follows T = 0 , which completes the proof of (ii). 

(iii) follows easily from the construction of the mapping 71—T®. 
(iv) First we prove that the mapping T-+T9 is normal that is if {Ti}^/ is an 

upward directed family of elements of A+ with sup T, = T, then sup Tf = T9 

til i €/ 
holds. In fact, since T— T9 is positive, {T'f} is an upward directed family of (A®)+ 
and r f s r (»€/). Put 5 = sup,6 i T f . Then A* ([3], App. II.), and S^T9. 
In virtue of (i), for every (A, we obtain that 

o(T*-S) = a(T9)-tr(S) = a(Tr)-supo(T*) = 

= o(T) — sup a(T^) = a ( T ) - f f ( T ) = 0. . 

So r® = S = sup T f . From this it follows that T-T"! is ultra-weakly continuous 
([3], chap. I, § 4, Th. 2). Furthermore, for every T£ A we obtain 

Q [(7— (T — T9)]9 = (7** T)^ — T*9 T9 — 71*® T9 + T*® T's = 

_ __ T*<3 rprg 

(cf. (ii) and (iii)). Thus T*9T9 ^.(T*T)9, and this gives that T-+T9 is ultra-strongly 
continuous as well ([3]. chap. I, §4, Th. 2). 

(v) is evident. 
(vi) is a consequence of the fact that X(9(T), <3) = j f ( T , (S) for every T£ A. 

Hence the first part of Theorem 2 is proved. 



'242 I. Kovâcs—J. Szûcs 

As far as the second part of Theorem 2 is concerned, we can proceed as follows. 
Let T0 be an arbitrary element of (A®)+ such that T0 ^ O. Then there exists an element 
x of § such that (T0x\x) >0 . For every T f A put 

(3.1) o(T) = {T'x\x). 

By our hypotheses on the mapping T^-T', one can easily see that A, (S) 
with 0. Thus, in virtue of Definition 1, A is ^-finite. Furthermore, if T£ A, 
then for every we get that S' = T' (cf. especially hypothesis b) in 
Theorem 2). As T— T' is supposed to be ultra-weakly continuous, the same holds 
for every <§). In particular 7" = (T9)' = which completes the proof 
of Theorem 2. 

D e f i n i t i o n 2. If the von Neumann algebra A is finite with respect to a 
group of its automorphisms, then the mapping T's given in Theorem 2 is 
Called the 'S-canonical mapping of A. 

§ 4 

1. Let us give some direct consequences of the results of §§2—3. 
P r o p o s i t i o n 3. Let A be a von Neumann algebra, and let $ be a group 

of automorphisms of A. Suppose that A is li-finite. If c , , cr2 £^ (A, <&) are such that. 
for every TG A®, ol(T) = o2(T) holds, then o,=o2. 

P r o o f . If T£A then 
o1(T) = a1(T*) = a2(T*) = o2(T) 

(cf. Theorem 2, (i)), where T-+T9 is the ^-canonical mapping of A, and this proves 
Proposition 3, 

In the following for a given pair (A, CS), 0t{Ks) will denote the set of all ultra-
weakly continuous linear forms on A9. Then under the same condition on A and 
^ as in Proposition 3, we have 

C o r o l l a r y 1. Every element <r0 of can be uniquely extended to an element 
a of 3H(k, <&). 

P r o o f . For any A, put 
o(T) = o0{T*). 

Then a evidently belongs to SH(A, (S) (cf. Theorem 2). The uniqueness of the ex-
tension follows now from Proposition 3. 

Without making any restriction on A and <& we can conclude from Proposition 3 
also the following 

C o r o l l a r y 2. If oi,o2£@+(A, <$) with ol{T) = o2(T) for every then 
a 1 = 02. 

P r o o f . Consider the projection E = sup (Eat, Eni). It is evident that . 
Consider the von Neumann algebra A£ ([3], chap. I, § 1, no. 2). Then eS canonically 
induces a group of automorphisms 0 E of AE, and the restrictions oiE and O2E of 
OX and O2 to AE, respectively, belong t o ^ + ( A B , <$F). Hence AE is ^¡¡-finite. Further-
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more, for every TE € (AE)9E we have G1E{TE) = <R2JTE). SO, in virtue of Proposition 3, 
O1e = O2e. T h e r e f o r e , i f TCA, t h e n AL(ETE) = AIE(TE) = cr2E(TE) = A2(ETE). O n t h e 
other hand, since AI(T) = AI(ETE) (¿ = 1,2) for every A, we can conclude that 
(jj = (T2 , which proves Corollary 2. 

P r o p o s i t i o n 4. Let A be a von Neumann algebra in a Hilbert space and 
let % i and (S2 be two groups of automorphisms of A. Suppose that A is & ^finite, 
and suppose that for every 92<^c§2 and T£A we have 
(3.2) ' e2(T*>) = (o2(T))*>, 

where T T''!< is the ^^-canonical mapping of A.15) Denote by the group of 
automorphisms of A®1 defined by via (3. 2). Now if A91 is <&2X-finite then A is 
finite with respect to the. group rS = {'£ ±, generated by (Sx and eS2. Hence in 
this case A is CS2-finite, too, and we have 

(3.3) t * = (T**)** = ( r e A), 

where T — T',J and T •— T^'2 are the corresponding and 'S-¿-canonical mappings 
of A, respectively. 

P r o o f . It is not hard to prove that A® = (A®')®2-1- Let now be 
arbitrary. Since A®1 is ^2 j l-finite, in virtue of Corollary 1 of Proposition 3, a can be 
extended to an element a' of Ji+(A®', (S1A). Since A is ^- f in i te , in virtue of the 
same corollary, A' can be extended to an element A" of FM+(A, Now if T£ A 
and 92(i(&2, then we have 

o"{e2(T)) = a"{{92(T)Y 0 = a"(92(T* >)) = <r'{e2(T* 0) = 
= = = G"(T), 

that is A,%). Hence, for every TF_(A'*)+, T V 0 there exists an element 
a of fM±(A, CS) such that a(T)^0, and this means that A is ^-finite. In particular, 
A is'^2-finite, too. Now we are going to show that for every T€A 

(3. 4) — 
holds. Now let A be arbitrary but fixed, and let {K,(T)}TIJ be a net of elements 
of X0(T, such that 
(3.5) , l i m s l r o n g ^ ( D = 

Then 
(3.6) l i n w g t ^ . W = ( T ^ Y k 

itr 
(cf. Theorem 2, (iv)). On the other hand, in virtue of (3. 2) we get that 
(3- 7) [K,(T)]*> = Kt(T*>). 
Thus, in virtue of (3. 6) we have 
(3.8) l im s t r o n g t f , (7^) = (7^)®' i €/ 

15) Condition (3. 2) is fulfilled for instance if every element of (&\ commutes with every element 
of CS2. In fact, to show this it is enough to take into account the construction of 7"®1 and the con-
tinuity properties of the elements of . 
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This means that (T®2)®1 belongs to 3 f ( T 9 \ and for every 0 2 e ^ 2 , we have 
02((r®2)®') = (02(r®2))®'=(r®2)®' (cf. (3.2)) and this means that (r®2)®'e A®2 f l 

that is 

Hence (3. 4) is proved. Now it is not hard to see that the mapping 

possesses all the properties of the mapping T—T9. Thus, by the uniqueness part 
of Theorem 2, we get that 

y» _ (J"HiyS2 = ( y ^ ) » ^ . ' 

which proves Proposition 4. 
We think it is worth formulating Theorem 1 and Theorem 2 in the following 

well-known particular case (cf. [3], chap. Ill , § 4, Th. 3; § 5, Ex. 1). 

C o r o l l a r y to T h e o r e m s 1 and 2. Let A be a finite von Neumann algebra, 
and denote by Ah its center. Then for every A, the set Ah DJf(T, ./(A)) consists 
of one element alone. Denote it by Th. The mapping T-*Th has the following properties: 

(i) for every T£ A and for every finite normal trace ([3], chap. I, § 6, Def. 1) 
<p on A we have <p(Th) = (p(T), 

(ii) T-<-TH is strictly positive and linear; 
(iii) T-~Th is ultra-strongly and ultra-weakly continuous; 
(iv) if r e A and U is unitary in A then (U*TU)h = T'' holds; 
(v) if A* then Sh = S\ 

(vi) if S£Ah and r € A then (ST)h = STh. 
Conversely, if there exists a positive normal linear mapping r —r' of A onto 

A'' having properties analogous to (iv) and (v), then A is finite and T' = Th for every 
r e A. 

P r o o f . In Theorems 1 and 2 take J (A) for <3. 

2. Let A be a von Neumann algebra in a Hilbert space Denote by Av the 
group of all unitary elements of A. Let (/ 6 Av be an arbitrary but fixed element 
of Av. For every r e L ( § ) 16) put 

T~9V(T) = U*TU. 

The set ^(A^) of all possible 9V is a group of automorphisms of L(§). In the following 
we are going to characterize the von Neumann algebras A such that L(§) is finite 
with respect to f3(Av). 

P r o p o s i t i o n 5. Let A be a von Neumann algebra in a Hilbert space Then 
L(§) is ^(A^-finite if and only if A is a product11) of finite discrete factors,18) 

16) L (§ ) denotes the von Neumann algebra of all bounded linear operators of 9). 
>7) Cf. [3], chap. I, § 2, no; 2. 
18) Cf. [3], chap. I, § 8, no. 4. 
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P r o o f . Suppose that A is the product of the finite discrete factors M, (t £ / ) 
that is 

A = 77 M, . 

It is evident that (C/ l) [ e;( :Au if and only if U,€(M,) a
 19) for every ¿£7. Further-

more, for every t£7, the group (M,)c is compact in the weak operator topology. 
Thus, using the Tychonoif theorem on the topological product of compact spaces, 
it is not hard to see that Au is compact in the weak topology. Denote by X(dU) 
the normalized Haar measure of Av , and let T<EL(§) be arbitrary. If x is any element 
of §>, the function 

U-+fXiT(U)=(U*TUx\x) 

is continuous on A^, since the weak and the strong topology coincide on A^. So 
Jfx,AU)HdU) 

Av 

exists. Let be fixed, and for every 7"£L(§) set 

ax(T)=jfx,T(U)X{dU).-
A U 

Using the unimodularity of X and the properties of the integral, it is easy to show 
that <rx£gg+(L(£>), &(AV)). Now if 7 £ L + ( § ) , 7 V 0 then there exists an element 
x0 of § such that (Txo|xo)>0. Then c r X o ( T ) ^ 0 , which proves that L(§) is @(Avy 
finite. 

Now suppose that L(§) is ^(AJ-f ini te , and let be the 
canonical mapping of L (§ ) onto L(§) i i ( A u ) (cf. Theorem 2) which is equal to the 
commutant A" of A. Let Tr( - ) be the canonical trace of L(§) ([3], chap. I, §6, 
no. 6), and let S £ (A')+ , ST^O be arbitrary. Then there exists an element 

of 
L(§ ) such that O ^ S ^ S , 5 , ^ 0 , and Tr ( S , ) < + <=*>. By the properties of the 
mapping T-'TWv) we obtain that O ^ S ' f ^ ^ smA"> = S. Furthermore, as 
Tr (•) is lower semicontinuous in the weak topology ([3], chap. I, § 6, Prop. 2', Cor.) 
and V{Av)), we get that Tr ( S f ^ ) S T r (5,) . On the other hand, 
S f ( A u ) O since the mapping 7— 7®<Au) is strictly positive. So we have proved 
that for every S£(A')+, S^O there exists an element S'e(A')+, S'^0, S'sS 
such that Tr (Sr)<+«., Now let E^O be a projection in A'. Then there exists 
a non-zero element R of (A')+ with R^ E and Tr (R) < + °o. Let R = fXdFk be 
the spectral representation of h a n d s e t F= I — F I I«J + 0 . Then it is evident that II Dll 2 F € A ' , F?±0 and F^R. Therefore, T r ( F ) < + ° ° . Furthermore, as F is a 

projection, we obtain that F^E. Let now F0 be any of the projections of A' such 
that FQ^O, F0SE and Tr (F0) is minimal. Then F0 is minimal in A'. Indeed, 
F'0 £ A', F 0 ^¿0, F'Q^F0, F'0^ F0 would imply F'0 =l E, Tr (F'0) < + = » and T r ( f £ ) < 
<Tr ( .F 0 ) which contradicts the minimality of Tr (F0). Thus, every non-zero 
projection of A' majorizes a non-zero minimal projection of A'. Hence, in virtue 

19) ( M , V denotes the group of the unitary elements of M, 
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of Ex. 4, p. 126 of [3], A' and so A is a product of discrete factors. Since A is finite, 
each factor occuring in the decomposition of A is finite ([3], chap. I, § 8, no. 2). 
Thus the proof of Proposition 5 is comlete. 

C o r o l l a r y . In order that, the group Av of the unitary elements of a von Neumann 
algebra A be compact in the weak topology, it is necessary and sufficient that A be 
the product of finite discrete factors. 

P r o o f . The sufficiency of our condition is evident by the Tychonoff theorem 
(cf. the first step of the proof of Proposition 5). Now, if Av is weakly compact, 
then arguing in the same way as in the proof of Proposition 5, we obtain that L(§) 
is ^(A^-finite which means, by Proposition 5, that A is a product of finite discrete 
factors. Hence the proof of Corollary is complete. 
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