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Introduction 

Let (p^x), <p2(x), ... be an orthonormal sequence defined on a measure space 
{X, S,fi}. For the sake of simplicity we assume that /x(Z) = 1. Further let c l 5 c 2 , ... 
be a sequence of real numbers with 

(1) Z cf < 
. ¡=i 

A fundamental problem of the theory of orthogonal series is to find conditions 
implying the almost everywhere convergence of the series 

<2) Z ci <Pi(x). 
¡=1 . ' 

In general the condition (1) does not imply the almost everywhere convergence 
of the series (2). However, the classical Mensov—Rademacher theorem states: 

T h e o r e m A. If 

(3) Z cf lóg2 ' < °° 
¡=i 

then the series (2) is convergent almost everywhere. 

Under certain special restrictions on the sequence {(pk(x)} the condition (3) 
can be replaced by weaker ones. For example the classical Kolmogorov theorem 
states that if the functions <p,(x), cp2(x), ... are independent in the sense of probability 
theory, with expectation 0 and variance 1, then condition (1) implies the almost every-
where convergence of (2). A similar result is due to G. ALEXITS [1]. He introduced 
the following definitions: 

D e f i n i t i o n 1. The sequence (P](x), (p2(x), ... of measurable functions is 
called a multiplicative system if . 

f<ph(ph...<pikdfi = 0 (i i < i2 < k= 1,2,;..). 
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D e f i n i t i o n 2. The sequence <Pi(x), <p2(x), ••• of measurable functions is 
called a strongly multiplicative system if the system {<P,,<P;2 ... <pik} is an orthogonal: 
system, i.e. if 

J (pl lcpt l •••<ptdfi = 0 (* ' i<i 2 < k = \,2,...) 
x 

where a , , a 2 , ..., ctk can be equal to 1 or 2 but at least one element of the sequence 
a , , a 2 , ..., a t is equal to 1. 

D e f i n i t i o n 3. The sequence q>i(x), <p2(x), ... of measurable functions is called, 
an equinormed strongly multiplicative system (ESMS) if 

J (Pi dp = 0, J(pf dp = 1 ( / = 1, 2, ..,), 
x x 

(4) ' 
f (pT, (P™ ... <p% df! = f (pt; dp. f <p1l dp. ... f (p%dp. (/, < ... < 4 ; k = 1, 2, ...)• 

where a , , a 2 , ... ,ctk can be equal to 1 or 2. 
Making use of these definitions, ALEXITS and TANDORI ([2]) proved the following 

T h e o r e m B. If (pt(x), <p2(x), ... is a uniformly bounded ESMS, then condition• 
(1) implies the almost everywhere convergence of the series (2). 

Obviously any independent system with Jcpidp^ 0, j'<pfdp = 1 is an ESMS,. 
x x 

therefore ALEXITS'S theorem would be much stronger the KOLMOGOROV'S if the 
condition of boundedness could be dropped. A previous paper ([3]) of the author 
shows that there are some further theorems (the central limit theorem and the law 
of the iterated logarithm) known to hold for independent random variables which, 
remain valid for ESMS. 

§ 1. The Theorem 

The aim of this paper is to prove the following 

T h e o r e m 1. Let (p t (x), <p2(x), ... be a sequence of measurable functions defined 
on a measure space {X, S, /1} with p (X) = 1. Suppose that 

(5) J(pf dp ^ K - ( i = l , 2 , . . . ) 
x 

f<Pi <Pj <Pk dp = f<pf (pjdp = f(pi <Pj <pk <Pi dp = 
X X X 

= f (piipj^dp = J (pi<pjdp = j <pidp = 0, 

and 

(6) 
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where the indices i, j, k, I are different, and K is a positive constant. Further let cx> c2,... 
be a sequence of real numbers and suppose that there exists an integer r (depending on 
{ck}J such that 

(7) 2 ck lr (k) < °° 
k= 1 

where *) 
f log A if x ? 2 

/ ( « ) = / l W = { 2 . /y. 

and lr(x) is the r-th iterate of l(x) i.e. Ir(x) -= /(/,._ ,(.v))- Then the series 

2 ck<pk(x) 
k= 1 

is convergent almost everywhere. 

R e m a r k 1. If {<pk} is a sequence of fourwise independent random variables-
with expectation 0 and variance 1 and with uniformly bounded fourth moments 
then (5) and (6) hold. 

R e m a r k 2. Condition (7) is not very far from condition (1). This facts suggests 
the conjecture that (7) can be replaced by (1). 

The proof of this theorem is based on three lemmas. 

L e m m a 1. If q>x, <p2, ... is a sequence of measurable functions for which (5) 
and (6) hold, then 

(8) / max | c1(p1+c2<p2+ ...+ ck (pk\A dp ^ 8^/4(«) f £ c j 
J LSTAI = I , x 

where c1} c2, ..., c„ is an arbitrary sequence of real numbers. 

R e m a r k 3. This lemma is not the best possible. In [3] it was proved that in. 
the case c t = c 2 = . . . =c„ = 1, l\n) can be replaced by 0(\)P(n). The same method 
can be applied in this more general case to obtain a stronger inequality. Unfortunately 
using such a stronger inequality instead of (8) we cannot obtain a stronger result-
than Theorem 1, therefore we do not intend to attain the best possible inequality.-

L e m m a 2. If c , , c2, ... is a sequence of real numbers for which 

2 cl l? (k) < co 
k= 1 

jhen there exists a sequence n1} n2, ... of integers for which . 
m ( "k +1 1 

(9) 2 \ 2 cjU^Ak)--, 

00 ( "k+l 
(10) 2 \ 2 cj /4(»i+i 

') log x means the logarithm with the base 2. 
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L e m m a 3. If {<pk} is a sequence of measurable functions for which (5) and (6) 
hold and m1 <m2 <... is a sequence of integers then for the sequence 

.(11) 

where 

we have 

.and (6). 

•At 

| mk+1 
— 2 Cj<Pj i f <*t>0 

ak j = mk+ 1 

0 if afc=:0 

= 

mk+ 1 
2 cj j' = »Uc + 1 

JiPtdn S 

Vl 

AK 

§ 2. The proof 

P r o o f of L e m m a 1. First of all we assume that n = 2 v (v = l , 2 , ...) and 
introduce the following notations 

GJ=Ci(pi +C2<p2 + .,.-+Cj(Pj ( j = 1 , 2 , . . . ) , 

where a = ju2*; P = (n + l)2k; n = 0, 1, 2, ..., 2V-* - 1 ; k = 0, 1, 2, ..., v - 1 . Consider 
the function <Tj as the sum of some ij/ap. Let us put 

i 

where /?! — ax >/?2 —a2 . Clearly the number of the members of the sum 
JJ't/^.p. is less than v. Therefore by the Schwarz inequality we have 
i 

= ( 2 ^ ( 2 r«lPiy * V3 2 K* 
which implies 
(12) f m a x ojdn S v 3 f№pdn 

X 1 3 J S 2 " a , f i x 

where a and j? run over all their possible values. 
We obtain an estimation of the right hand side of (12) as follows 

f Kpd\i = ¿ c j f t f d t i + e £ cf cj J cpf <pj dn + 
X J = a + 1 X n<i<jSP X 

(13) 
+ 4 2 c f c j f t f v j d n s K l 2 C J + 6 2 C ? C J + 4 2 l c ? c 4 -
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Summing the right hand side of (13) for each a, /? we obtain any member of it at 
most v times, so we have 

Z f r t t d n s v K i z c i + e % 2 l ^ l } -

It is easy to see that 

2 \cfcj\ 2 C f c j . 

i * J 
Hence we have 

Zf№pdnS4vKizc]Y. 
<*./» X (Y=I ) 

Thus in the case n = 2V we obtained 

/ sup |c t (Pl + c2 q>2 + ... + ck (pk|4 dn Si 4KI4(«) f y cj\\ 

Our inequality in the case 2 v S / j < 2 v + 1 follows immediately from this fact, setting 

Cn+1 ~C/i + 2 = ••• = C2V + 1 

and using the inequality 
2 log4 n sr(log 2«)4 i=(v + 1 ) 4 

if n is large enough. 
P r o o f of L e m m a 2. Set 

A= 2 4lKk) 

then 

and 

*=i 

A* 2cll?(k)^l?(n) ¡ci 
fc = n k = n 

2 c i * A 

Therefore we have 
iHn) ' 

(14) 2 cl^ A 

* - /,.2-i(v) * 

Now we can find between 2V + 1 and 2V + 1 a sequence of integers 

2V+ 1 = T(ov) g T(JV) s ... S t « ! S T« = 2V 

as follows: Let x(
2
v) be the smallest integer for which 

T ( V ) 

y ? _ A 

9 A 
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and let -r^ = T^v) — 1. Similarly let be the smallest integer for which 

TJV) 

2 c ? -J = r?> + r j -V6lr2-lW 

and let T(
3
V) = 1 ^ - 1. In general, if t ^ is defined, we define 4V/ /+1) as the smallest 

integer for which 
T ( V > '2(1 +1) A 

y ¿1 a 

j=TY,' + l ' v-iOO 

and let 4V,>+1 = 1 : ^ + ^ - 1 . Now let 

be the different elements of the sequence x[v>, ..., T^'. Clearly 

p, S 2v6. 

Define now the sequence {nk} as the union of the sequences l i f , ..., 
i.e. the sequence n1,n2, ... is the same as the sequence 

W, t(
0
2), t[2K ...,t?>, C>tf \ t[*\ ..., .... 

Clearly if 6(2V, 2V+1] then A : S 2 j 6 S2(v +1)7 . We prove that (9) and (10) hold 
j=i • 

for this sequence {nk}. We have 

A = 2 c j i * u ) = 2 2 c 2 j i 2 { j ) ^ \ 2 2 (v+i) = 
J = 1 v = 1 j = 2 V + 1 ^ v = 1 j = 2 V + 1 

1 00 n»c+l 
= \2 2 2 c}i?_t(v+ 

L V=1 nk€(2v, 2v+l) j = nk+l 
< OO FLK+ 1 1 ®® 1 

2 2 c j i u 2 ( v + i ) ' ) 4 2 2 c]irU(k) 

that proves (9). 
If nfce(2v, 2 v + l ] then by the definition of {nk} we have 

nk+l~nk^ 2*+l 

and either 

j c? ^ d . 
j - V«7r

2-l(v) 
or 

«1+1 -"fc = 
this gives (10). 
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P r o o f of L e m m a 3 is so simple that we can omit it. 

P r o o f of T h e o r e m 1. First of all we prove that the series (2) is convergent 
almost everywhere if 

(15) ^ 4 im-
1 

Let {nk} be a sequence of integers for which 

(16) 

and (10) holds. Set 
2 \ 2 cj\l\k) k = 1 \j = n,<+ 1 

>Pk = 
1 nk+ 1 

— 2 CjCPj if a t > 0 ak } = nk+ 1 

where a t = 

(17) 

0 if ak = 0 
N 

2 c j \ and put oN = 2 c J < P J - Clearly we have 
j = ltk+ 1 j= 1 

K-l 
anK = 2 ak¥k 

By Lemma 3, Theorem A and (16), the sequence {er„K} is convergent almost every-
where. By Lemma 1 and (10) 

(18) 2 / MAX I 2 CI<PI) DP-
1 = 1 J í i k < i s i i k + 1 V = nk+ 1 ) 

Hence by the Beppo Levi theorem we have 

hence 

y Í i V 2J m a x 2J CI<PI\ 
k= 1 nk<jStlk+ I l'=n<c+l ) 

max 
nk<jmnk + i 2 CI<PL l = nk+ 1 

-0 

almost everywhere. This fact and the almost everywhere convergence of the sequence 
(17) prove our theorem in the case when (15) holds. 

Now Theorem 1 can be proved by induction. Suppose that, for every sequence 
{ak} and for every system {/,.} having the properties (5) and (6) we have already 
proved that the condition 

(19) • -
k= 1 

implies the almost everywhere convergence of the series 

2°kXk(x). 
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Let {cfc} be a sequence of real numbers for which (7) holds. Now we can construct 
a sequence {/?A} for which (9) and (10) hold. Then we can obtain by the same way 
that a„K (defined by (17)) is convergent almost everywhere, if we replace the reference , 
to Theorem A by a reference to the condition (19) of our induction. (18) follows 
from (10). 
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