
Complete sets of unitary invariants 
for compact and trace-class operators 

By D O N D E C K A R D in Houston (Texas, U. S. A.)*) 

I. Introduction 

A complete set of unitary invariants for operators in a family OF of operators 
on a (complex) Hilbert space is an indexed collection {Oy}y i r of objects attached 
to each operator in J5" such that if A, B^.'F, then A is unitarily equivalent to B if 
and only if Oy(A) = Oy(B) for each y£T. 

For several families of operators complete sets of unitary invariants are known. 
For example, probably the best known family is the family of normal operators, 
where the theory of spectral multiplicity provides such a complete set of unitary 
invariants (see [2]). However, no complete set of unitary invariants has been found 
for arbitrary operators. The object of this paper is to solve the problem for compact 
operators. RADJAVI [5] has recently given a completely different characterization 
of unitary equivalence for compact operators. 

The first problem which one encounters in trying to obtain a complete set of 
unitary invariants for compact operators on a Hilbert space § is that of obtaining, 
a complete set of unitary invariants for nXn matrices, that is, of solving the problem 
in the special case that is finite dimensional. Such a set of invariants was provided 
by SPECHT [7], who obtained the following result: Let Q denote the free multiplicative: 
semigroup in the free variables x and y. Two nXn matrices A and B are unitarily 
equivalent if and only if t[a>(A, A*)] = t[co(B, B*)] for each o(x, y) £ Q, where 
t(A) denotes the trace of A in the usual sense. 

PEARCY has shown in [4] that for each n there is a finite subset Qn of Q (contain-
ing at most 4"2 members) such that two n X n matrices A and B are unitarily equiv-
alent if and only if t[co(A, A*)] = l[co(B, B*)] for each co(x, y)£Q„. We shall refer 
to the above two sets of invariants as the Specht and Specht—Pearcy invariants,, 
respectively. 

Throughout this paper we shall denote the null space of an operator A by 
91(A), the closure of the range of A by SR(/f), and the operator (A* A)* by [A]:. 

Since compact operators on a Hilbert space can be uniformly approximated 
by operators of finite rank, which are essentially operators on finite dimensional1 

*) This paper is essentially a thesis presented to the Rice University in partial fulfillment 
of the requirements for the degree of Doctor of Philosophy. The author wishes to thank his thesis 
director, Professor ARLEN BROWN, and also Professor C A R L PEARCY for their helpful suggestions 
and constructive criticism. 
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spaces, it is reasonable to expect the above sets of invariants to provide some sort 
•of complete sets of unitary invariants for compact operators. This is, indeed, the 
•case. In § III we show that if the appropriate approximates of two compact oper-
ators A and B are unitarily equivalent and if dim [9l(/4) Pi 9I(,4*)] = dim [91(B) Pi 
Pl9i(B*)], then A and B are unitarily equivalent. This, together with the choice 

• of approximate canonical approximating sequences, yields complete sets of unitary 
invariants for compact operators. 

In § IV we make use of a class of compact operators on Hilbert space having 
well defined numerical traces. This class, called the trace class, has been studied 

•extensively by SCHATTEN (see [6]). We show that i f / i s a strictly increasing continuous 
.real valued function on the non-negative reals such that / (0) = 0, then 

{t[f([A})co(A, A*)):o(x,y)<iQ} and dim [9l(v4)Pl9i(^*)] 

form a complete set of unitary invariants for operators A such that f([A\) is a member 
•of the trace class. With each compact operator A we associate a function fA such 
that fJ[A]) is in the trace class and such that fA =fB if A and B are unitarily equi-
valent; this then extends SPECHT'S theorem to compact operators. 

SPECHT'S theorem extends more directly to the trace class. For this class 

{t[a)(A,A*)]:co(x,y)iQ} and dim [31(4) Pl9l(^*)] 

form a complete set of unitary invariants. The same result holds for the Schmidt-
class (the class of Hilbert—Schmidt operators), except that the words x and y must 
be omitted. 

II. Preliminaries 

We say, as usual, that two operators A and B on a Hilbert space S3 are unitarily 
equivalent if there is a unitary operator U on §> such that UAU* = B. 

We denote by <5(A) the subspace § © [9*04) Pi 9t(,4*)]; the subspace 9l( / i )n 
Pi 9t(/4*) is the largest subspace which reduces A and on which A is the zero operator. 

D e f i n i t i o n . Two operators A and B are isometrically equivalent if there is 
a partial isometry U with initial space <5(A) and final space <3(B) such that UAU* = B 
(or, equivalently, UA=BU). 

If A and B are unitarily equivalent, say via a unitary operator U, then U maps 
9l(/J) Pi isometrically onto 91(B) Pi 9l(B*) and S(A) isometrically onto <3(3), 
so that A and B are also isometrically equivalent and dim [9i(/l) Pi 9t (/!*)] = 
= dim [91(5) Pl91(B*)]. Conversely, if A and B are isometrically equivalent and 

if dim [9l(/4) Pi 91(̂ 4*)] = dim [91(B) Pi 91(5*)], then it is obvious that A and B are 
unitarily equivalent. » 

An operator A on § is said to be of finite rank if dim 9?(̂ 4) < «>. If {<p,} is 
an orthonormal basis for we define the trace t(A) of an operator A of finite 
rank to be Ii(Acph <¡9,). The sum is finite and is independent of the basis chosen 
(§1V). If is an m-dimensional subspace of § containing S(^) , we can choose 
{(Pi) such that (pi, ..., (pm is a basis for . Then the trace of A is the trace of the 
restriction of A to as calculated for operators on finite dimensional spaces. 
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Let A and B be of finite rank and suppose that t[(o(A, A*)] = t[co{B, B*)] for 
each co(x, y)£Q. Then, by SPECHT'S theorem, there is a unitary operator U1 de-
fined on the subspace spanned by S ( ^ ) and <Z(B) which implements the unitary 
equivalence of the restrictions of A and B to . The operator U which equals 
U l on and which equals the identity operator on then implements the 
unitary equivalence of A and.B. 

If A and B are of finite rank and if dim <5(A) = dim <5(B)=n, there is a unitary 
operator V which maps <s(A) isometrically onto <S(B). If, in addition, the «-dimen-
sional Specht—Pearcy invariants of A and B are equal, the restrictions of VAV* 
and B to <5(B) are unitarily equivalent as operators on <5(1?). Thus, as above, A is 
unitarily equivalent to B. 

We summarize these results in the following 

L e m m a 2. 1. Each of the following is a complete set of unitary invariants for' 
operators A of finite rank: 

(1) {t{co[A,A*)]:co(x,y)eQ} 

'(2) dimS(,4) and ' {t[<a{A, (»(*, >0 € fidimSU)}. ' 

III. Unitary equivalence of compact operators 

In this section we establish a sort of "continuity" property for isometric equiv-
alence and then use this result to obtain complete sets of unitary invariants for 
compact operators. 

L e m m a 3. 1. Suppose that P and Q are projections of finite rank and that 
{Pn} and {Qn} are sequences of projections converging uniformly to P and Q, respectively. 
Suppose also that for each n there is a partial isometry U„ whose initial space contains 
5R(Pn) and whose final space contains 9l(Q„) such that UnPn — QnU„. Then there is 
a subsequence {U„k} of {£/„} such that the sequence of the restrictions of the U„k's 
to 9{(P) converges to a linear map sending 9?(P) isometrically onto 9? (0 . 

P r o o f . Let x , , . . . ,x p be an orthonormal basis of 9?(P). It suffices to find 
a subsequence {U„k} of {£/„} such that U„kxt—yt strongly, i=l,...,p, where 
yl, ..., yp is some orthonormal basis of 9?(0 . Since g i / „ x i £ 9 i ( 0 , which is finite 
dimensional, and since 

' • 1 SllfiCUII = II UnPnXi - UnP„Xi + QUnx,\\ = II UnP„Xi - Q„Unxi + QU„xi\\ s 

m U M ] - W Q ^ - Q U ^ W = | | P „ * ; | | - 1 1 ( 0 - 0 ^ 1 1 = 

= wpx^p^-px-tw -11(0 - 0[/„*,.II s l -qpn -p\\ +110 - 01) - l , 
there is a subsequence {U„k} of {£/„} such that QU^Xi—yi, i= 1, ...,p, and ||j,|| = ) . 
Moreover, 

0 ^ || UnXi - QUnXl\\ = || UnPXi - UnP„Xi + 0UnXi - QU„Xi\| S 

si || Un(P - P„)Xi\\ + 1 | ( 0 - 0 ^ 1 1 - 0 , so 
U^x^y,, i=\, ...,p. 
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Also, 
|| UnPnx, - Un.v,.|| = || £/„(/>„ - P)x,-|| - 0, 

so 
U i - y i -

If 
|((/„P„x,., UnPnXj)I = |(Pnx,., P^v,) I -

- Xj) -(A-,., x7)| = |([P„ - P]x,., Xj-)| ^ ||P„ - P | | - 0 , 
and hence 

O W ; ) = 0. 

Since, front [1], p. 73, if UP,,- /5! < 1 and \\Q„-Q\\ < 1 , then 

dim 91(P) = dim 9?(P„) = dim 9J(g„) = dim 9?(g), 

it follows that yt, ..., yp is a basis of 9?(g). This completes the proof of the lemma. 
Lernrna 3.2. Suppose that {Pk} and {Qk} are "sequences of projections of 

finite rank and that, for each k, |Pfc „} and {Qk,n} are sequences of projections 
converging in the uniform topology to Pk and Qk, respectively. Suppose also that, 
for each n, there is a partial isometry U„ whose initial space contains 9?(P t n) and 
whose final space contains 9l(gM) such that, for each k, UnPkn = Qki„U„. Then 
there is a partial isometry U such that for each k the initial space of U contains (P t ) 
and the final space of U contains Si(Qk) and such that UPk = Qk U. 

P r o o f . We first choose subsequences {£/„(r)} of {£/„} inductively. Let {f/,i0)} = 
= {U„}, and suppose that {C/,i0)}, ..., {U(

n
r)} have been chosen. By lemma 3.1, 

we may choose {t/,(,r+,)} to be a subsequence of {Uj,r)} converging uniformly on 
r+1)- The diagonal sequence {U{,"}} converges on 91(Pt) to a map sending 9?(Pk) 

isometrically onto for each k. Let 9JI be the submanifold spanned by {9?(Pt)}£°=! 
and let x£sJJl, say x = xt + ... + x r , where xk €9?(P t), k = 1, . . . , r . Since the sequence 
of vectors {U',"1 xk}',"=, converges strongly for each k — \,...,r, and since C/*n)x = 
= U^x,+... + Uj,n)xr, the sequence of operators {Uin)} converges strongly on 

9Ji to an operator U0 (defined on 9Jt) such that U0Pk = QkU0, k= 1,2, ... . Also, 
setting 

en = l|Pi - Pi, „11 Ikill + ••• + l|Pr-Pr. .11 ll*,ll, 
we have 

| |x| |S| |C/„x| |=| |C/„x1 + ... + Unxr\\ = 

= || Un[ P,, „x, + ... + P„, „xr] + Un[(P, - P , , „)x t + ... + (P r - P r , ,,)x J ^ 

^ [ P , . ^ ' , + ... + Pr,„xr]|| —e„ = | | P + ... + P r ,„x r | | - e 0 = 

= | |xj + . . . + x r + ( P , , „ - P , ) x 1 + ... + ( P r , „ - P r ) x r | | - e „ S 

fc||xi + ,'.. + x r | | - 2 s „ —||x||, 

so || i70x|| = || x||. The extension U of l/0 defined by continuity on the closure of 
9.U and defined to be zero on f)©93l has the desired properties. 
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T h e o r e m 1. Let A and B be compact operators on a Hilbert space. If there 
exist sequences {An} and {Bn} of (not necessarily compact) operators converging 
uniformly to A and B, respectively, such that, for each n, An is isometrically equiv-
alent to Bn, then A is isometrically equivalent to B. 

P r o o f . We denote by IA the spectrum of A, by Re A the operator (A + A*)/2, 
and by Im^4 the operator (A—A*)/2i. If A is a Borel subset of the line, we denote 
by En(A), E(A), Fn(A), F(A), Gn(A), G{A), Hn{A) and H(A) the spectral projections 
of Re A„, Re A, Im An, Im A, Re Bn, Re B, Im Bn, and Im B, respectively, associated 
with A. Since A„ is isometrically equivalent to Bn, there is a partial isometry U„ 
with initial space <«04„) and final space <3(j3„) such that UnA„=BnU„. If A is any 
Borel subset of the line not containing zero, 9K[En(A)] and 9i|\F„(d)] are contained 
in <s(A„), and 5R[G„(zl)] and %[Hn(A)] are contained in <3(2?„). As in the case of 
unitary equivalence, UnEn(A) = Gn(A)U„ and UnFn(A) = Hn(A)U„. In order to show 
that A is isometrically equivalent to B, it suffices to show that there is a partial 
isometry U with initial space and final space <3(1?) such that UE(A) = G(A)U 
and UF(A) = H(A)U for all Borel subsets of the line not containing zero. In fact, 
since each non-zero member of ZRe/( or I , m A is isolated, it suffices to show that 
^RE A = ¿RE B , 2TIm A = Z lm B , and that if A ^ 0 then UE[(X - s, X + e)] = G [(A - e, A + e)] U 
.and UF[(X — s, A + e)] = / / [ (A-e , A+ £)]£/for all sufficiently small e > 0 . 

We first show that if Aj^O, then X£ZReA if and only if for each s > 0 , E„[(X — s, 
A + £ ) ] ^ 0 for 7?>«0(e). This and the analogous results for I i m A , I R e B and I l m B 
guarantee that IReA = IReB and ZlmA = IlmB. 

• IfA<£ ¿Re î > k t £ be less than the distance d from X to rR e , i . Then || (£ — Re A) 11| 
is bounded for A| <e , say by M. One can easily see by power series expansions 
that if || Re An — Re A\] < 1/M, then (C — Re A„) is invertible, so that the interval 
(A — e, A-he) contains no points of . 

If A 6 ¿Rc/i) A T^O, let d be the distance from X to XRe/1 — {A}; d is positive since 
A is compact. We shall show that E„[(X — e, A + s)]— E[(X — e, A + s)] uniformly, 
at least for 0 < e < d / 3 . As above, the intervals (X—2d/3, A —e) and (A+ 8, A + 2i//3) 
contain no points of rRey4ii for n sufficiently large. Thus 

L„ [(A — e, A + e)] = (1 /27n) (j) (£'— Re A„) ~1 

c 
and 

E[(X — £, A + e)] = (1/2*0 <|> (C - Re A)~1 dC, 
c 

where C is the circle |£— X\=dj2. Since inversion is a continuous operation where 
it is defined, 

||En [(A - e, A + £)] - E[(X - e, X + e)]|| = 

= (1/2*) || (j) [(£ - Re A,,)-' - (C - Re A)~ d£-1| S 
c 

^ (ll2n)j> ||(C - Re - 1 - (f - Re - J ¡1 № 1 - 0 as . 
c 

Now, let a l , a 2 , ... and P 1 , P 2 , - . - be the distinct non-zero members of 
rR e / 1 and IimA, respectively, Ak = (ock~dl3,,ak + dJ3) where d is the distance from 
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ak to ¿Rc/i ~ {»/¿}, and A'k = (pk—dj3, fik + d/3), where d is the distance from pk to 
Set 

P2k-i=E(Ak\ . P2k-t,n = En(Ak), 

P2k = F(A'k), P2k,n = Fn(K), 

Q2k_x = G(Ak), Q2k-t,n = Gn(Ak), 

Q2k = H(A'k), Q2k,n = Hn(A'k). 

An application of lemma 3.2 completes the proof. 

We now apply the preceding'results to the problem of obtaining completp 
sets of unitary invariants for compact operators on Hilbert space. For this purpose, 
let A and B be any two compact operators on a Hilbert space We order the 
distinct non-zero eigenvalues of Re A, Im A, Re B and Im B and denote these 
sequences by {afc}, {ft}, {yfc} and {<5fc}, respectively. We require of the orderings 
that |<Xfc| S that |afc| = |afc+11 implies that ak > 0 and ock+1 <0 , and analogously 
for {Pk}, and {<5fc}. (This guarantees that if IReA = £R c f l , then the sequences 
{ak} and {yfc} are identical, and similarly for ZlmA and £ |m B . ) If Ek, Fk, Gk, and Hk 
are the spectral projections of Re A, Im A, Re B and Im B corresponding to ak, fikr 
yk and 5k, respectively, then A and B can be written A = 2&kEk + i2PkPk

 a n d 
k k 

B = ZykGk + iZhHk- We write An = Z«kEk + iIPkFk and Bn = ¿ykGk + i¿ZkHk, 
k k. k=l k=l fc=l k=l 

with obvious modifications if any of the sequences are finite. Then {A„} and {Bn} 
converge uniformly to A and B, respectively. 

Now suppose that A is isometrically equivalent to B, say UAU* — B. Then 
B = 2*kUEkU* + i2PkUFkU*. Thus, since the spectral representation of an operator 

k k 
is unique, <xk = yk, fik = Sk, UEkU* = Gk, and UFkU* = Hk for each k. It follows 
that UAnU* — Bn, so for each n, A„ isunitarily equivalent to Bn. On the other hand, 
if, for each n, A„ is unitarily equivalent to Bn, then A is isometrically equivalent 
to B by theorem 1. We have thus proved 

T h e o r e m 2. Let A be compact, let the sequence {A,,} be obtained from the 
Cartesian decomposition of A as described above, and let I be either of the complete 
sets of unitary invariants for operators of finite rank described in lemma 2. 1. Then 
{/(/)„) }~=, is a complete set of isometric invariants for A. The addition of dim [9R(/)) Pi 
f~l 9t(/4*)] to the above collection of isometric invariants yields a complete set of unitary 

invariants for A. ' 

A different complete set of unitary invariants can be obtained by using the 
polar decomposition of a compact operator to obtain a canonical set of approximat-
ing operators of finite rank. Let {pk} be the non-zero eigenvalues of [A], ¡.ii > / t 2 
and let Ek be the (finite dimensional) spectral projection of [A] associated with pik. 
Then the series 2l-l

kEk converges to [A] in the uniform topology. Let A = W[A] 
k 

be the polar decomposition of A, and denote by Wk the partial isometry of finite 
rank WEk. The series 21hw

k- 2ilkWEk = W2HkEk converges to A in the uniform 
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topology. Let B = 2vk^k ' n a similar fashion, and suppose U implements the i so -
k 

metric equivalence of A and B, UAU*=B. Let Tk be the partial isometry UWkU* 
and let Fk be the projection on the initial space of Tk. The series ]?Tk converges 

k 
in the strong operator topology to a partial isometry T a n d 

B =. U(Znk Wk)u* = 2 n uwk u* = 2»kTk = z»kTkFk = T 2 n*F k . 
k k k k k 

The operator Z^k^k is positive,' so, by the unicity of the polar decomposition of" 
k n n 

an operator, vk = fik and Vk = Tk = UWkU*. Thus, if A„ = 2llk^k a n d Bn = 2 vkVk,-
k=l fe=1 

we have UA„U*=Bn. Conversely; {A„} and {5,,} converge uniformly to A and B, 
respectively, so, by theorem 1, we have n 

T h e o r e m 3. Let A be compact, let An = Zl*kWk be obtained from the polar-
*=i 

decomposition of A as described above, and let I be either of the complete sets of unitary-, 
invariants for operators of finite rank described in lemma 2. 1. Then {I(An)}~=, is 
a complete set of isometric invariants for A. The addition of dim [9i04) 0 9104*)] 
to the above collection of isometric invariants yields a complete set of unitary invariants-
for A. 

IV. Unitary invariants involving traces 

Before discussing the Schmidt- and:trace-classes of operators we prove a lemma, 
which will be useful in the proof of theorem 4. 

L e m m a 4. 1. Suppose that {ak} and {bk} are sequences of complex numbers, 
that {nk} and {vfc} are strictly decreasing sequences of real numbers converging to-
zero, and that 2\ak\K < 00 and 2\bk\vk < 00• Suppose also that, for each positive-

k k 
integer p, 2akltkp = 2^kvkp- Then: 

k k 

(1) I f , for each k, ak, bk9i0, then ak = bk and pik = vk for each k. 

(2) If nkt = vkl , then akl=bkl. 

P r o o f . The series 2akHkl(z2 — nl) converges uniformly in any domain in. 
k 

which z is uniformly bounded away from { ± n k } to a function which we shall denote-
/(z) , and similarly for g(z) = 2bkvH(z2 - v'k). j\z) has a pole of order one and 

k 
residue ±iakiik at z = ± ;/ t for each k such that 0, a limit point of poles at. 
z = 0, and is holomorphic elsewhere; g(z) has a pole of order one and residue 
±ibkvk at z = ±vk for each k such that bk^ 0, a limit point of poles at z = and 
is holomorphic elsewhere. For z in the domain {z: |z| we can expand nkj(z2 

about z = °o to obtain 

• " • • ' • f(z)=2akZ(t*klz)2p. 
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.In order to change the order of summation, we note that 

2kl2WM)2p = ZK\tiK\A2-ti) s (ZK\ ^2)/(M2-/<?)<-; 
k p k k 

ithus 
f(z) = 2(2 

P k 
Similarly 

P k 

for ¡z| vi. Thus, by hypothesis, f(z)—g(z) for |z| > m a x (¿t,, Vj). By analytic 
•continuation, f ( z ) and g(z) are identical, and the conclusion of the lemma follows. 

The reader is referred to [6] for the proofs of the following and other interesting 
facts about the trace- and Schmidt-classes. 

Let A be an operator on a Hilbert space § and let {<pf} be an orthonormal 
basis of A is in the Schmidt-class (ac) if 2M (P;II2 the sum is independent 

i 
•of the basis chosen. The Schmidt-class is a proper subset of the set of compact 
•operators. If § is L2 of the unit interval, (ac) consists of all operators of the form 

(Af)(x)=jK(x,y)f(y)dy 

where K(x, y) is in L2 of the unit square. 
An operator A is in the trace-class (rc) if A is the product of two members 

of the Schmidt-class. The following are equivalent: 

(1) A£(?c), 
(2) [A]£(rc), 
(3) M]* €(«:), 

(4) <Pi) < 0 0 for some, and thus every, orthonormal basis {<?;} of 
i 

If A is in the trace class and {<} is an orthonormal basis of £j, then 
2l04<??i, «p.OH 03. The trace t(A) = Zi^Ph <Pd o f <4 is independent of the basis with 
respect to which it is computed. If A, B£(TC), X is any bounded operator, and c is 
a complex number, then 

(1) t(A*) = tjA), 
(2) t(cA) = ct(A), 
(3) (A + B)t(Tc) and t(A +B) = t(A) + t(B), 
(4) AX, XA £(TC) and t(AX) = t(XA) (the traces of commutators are zero). 

D e f i n i t i o n . Let f be any continuous strictly increasing real valued function 
on the non-negative real numbers such that / (0) = 0. The class (rc) f is the set of 
all operators A such that f([A]) £ (tc). 

It is easy to see that an operator A is compact if and only if/([/4]) is compact; 
thus (zc)f is a subset of the compacts. If A is compact, A = Zh^k as in § HI. then 

k 
[A] = ZHkEk> where Ek is the projection Wl? Wk. We denote by fA the convex 

k 
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support (see [3]) of the set of points (nk, \j(k2 dim [9i(iTt)])). If {<P;}is an orthonormal 
basis of § consisting of eigenvectors of [̂ 4], then 

2( / (MD<P, <p) = 2 dim [ « ( £ * ) № * ) S 2 dim dim [9? (£,)]) < 
i k k 

so A^(rc)fA. If A and B are compact and unitarily equivalent, then so are [A] and 
[B], so fA=fB. Thus, if If is a complete set of unitary invariants for (T c)f,fA and 
I f J A ) form a complete set of unitary invariants for all compact operators. 

Although we shall not need to make use of this fact, we note that an easy appli-
cation of lemma 4. 1, shows that {/[(/(,4))"]}„~= i is a complete set of isometric in-
variants for the positive members of ( rc) f . 

T h e o r e m 4. Let Q denote the free multiplicative semigroup of all words co(x, y) 
in the free variables x and y. A complete set of isometric invariants for operators.-. 
A in (TC)j- is 

{t[f№)u(A, A*)Y co(x,y)tn}. 

The addition of dim [9l(/4) fl 9t(/4*)] to the above set of isometric invariants yields 
a complete set of unitary invariants for (r c)f. 

P r o o f . Since traces are independent of the bases with respect to which they 
are computed and since t[f([A])(x>(A, A*)] is not affected by the dimension of 91(̂ 4) fl 
H9l(^*), t[f([A])co(A, A*)] is preserved under isometric equivalence. 

Now suppose that A and B are in (tc) f and' that t[f([A])aj(A, A*)\ = t{f([B])-

•<o(B,B*)) for each co(x, y) f n. Let A= 2nkWk, AK = 2 ¡ikWk, B = 2^Vk, and 
„ k k= 1 k 

Bn = 2vkVk a s i n §HI. By theorem 3, it suffices to show that t[co(An, A*)] = 
k= 1 

= t [co(Bn, B*)] for each OJ(X, y)£Q and each n. 
We first show that ¡xk — vk for each k. Choose an orthonormal set of vectors 

{(pi) such that (pik,...,<pit+1_1 is a basis of the initial space of Wk. Since 
f&A\)(A*Ay = is in (TC), we have, for each positive integer p, 

k • • 

t[f{[A])(A*AY} = 2 {f([A])(A*A)><pt ,cp) = 

= 2 '" i f 1 ( / ( M ) (A*A)'<pi, cp) = 2RHk)t(WtWk)nl". 
k i = ik k 

Similarly 
t[f([B])(B*By] = 2f(vk)t(vtvk)vl". 

* 

Setting ak=f(nk)t( W% Wk) ¿¿0 and bk=f(vk)t(V£Vk)?± 0, we conclude from lemma 
4. 1 that ¡.ik = vk for each k. 

r 

For each co(x,y)€Q we write a>(x,y) = ]Jzj, where z}—x or z ; = y. Since 
j = i 

the traces of commutators are zero and the trace of the adjoint of an operator is 
the complex conjugate of the trace of the operator, it suffices to show that 
t[a>(An, A*)] = t[co(Bn, B*)] for each co such that z, =y. 

In an induction argument later in the proof we shall consider products in-
volving not only A and A* but also the/partial isometries Wx, I V f , W2, ..., 
and the corresponding products involving B, 5*, Vn V f , V2, V}, ... . For this 

1 A 
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purpose we introduce the free semigroup Q of words d>(x, y, xu yt, x2, y2, •••) = 
m 

= IICj where Cj € y, xt, yt, x2, y2, •••}• Denote by A(<fi) the number of /'s, 
j=i 

1 ^j^m, such that j , , y2, ...}. (Thus if no is equal to .v or y, X(d>) 
is the length m of d).) For simplicity of notation we write 

d>(A) = <&(A,A*, Wlt W\, W2, W2, ...} 
and 

d>(B)=<j)(B, B*, K,, V2, V2, ...}. 
r 

With each (o(x,y) = JJzj£ Q and each r-tuple kt, ...,kr of positive integers 
j= i 

r 
we associate the member a)(U; kl kr(x, y, x,, y,, ...) = ]J(>j of Q such that Cj = xk 

j= i 
if Zj = x and L',j=ykj if Zj=y• Then 

n 
co(A„, A*) = 2 Hk, ••• Mtr it, kr(A) 

ki, ...,kr= 1 
and 

(o(Bg,£*)= 2 vkl ... vkrd>a,ki kr(B). 
k,,...,kr=l 

We now give an example to illustrate the notation introduced above. If 
(o(x,y)=y2x, the word 6>yzx,kuklAi (x, y, x,, y,, ...) is then yk,yk2xkj. We have 

a>(A„, A*) = KJ Hk2 [k2f Hk3 = 

/1 n 
— At f-lkt llk2 t*k3 A, Akz Akj = 2 PkiltkilLks&yT-x.ki.kLkiiA). 

Since we already know that ¡ik = vk for all k, it suffices to show that 
'[¿>m,jt, kr (¿)] = ([<&„,, *„•..., kr forall co(x, j ) € i2 such that z, =y and for all 

r 
klt ...,kr; that is, that t[a>(A)] = /[d>(5)] for all 0 = J]Cj such that £ (xt, yt, x2, 

J = 1 

y2, ...} and (¡=ykl. We note that for such an d>, since fV^fVkfVkl=Sk!kllVki> 

A[A])u>(A) = 2f(Hk)Wt Wk d>(A) =/(jlkl)A(A); 
k 

similarly, 
f([B])A(B) =f(vki)MB) =f(j-ikl)6->(B). 

Thus, for such an d>, if t{f([A})uj{A)] = t[f({B])<h(B)l then t[&(A)] = t[&(B)\. We 
conclude the proof by proving the following by induction on X(<£>): 

( * ) If & € Q, then t[f([A])u(A)} = t[f([B])a>{B)}. 

Note that, since then traces of commutators are zero, if ( * ) holds for all c£>€& 
such that A(d)) = g, then t[d>(A)f([A])} = /[d>(S)/([fl])] if l(w) = q, and t[6j{(A)-
•f([A])&M)Y='Vh(B)f([B})vj2(B)\ if X ( ( h t ) + m 2 ) = g. 
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If A(<S>) = 0, then there is an co(x, y)€£2 such that <x>(A) = o(A, A*) and d>(B) = 
= a>(B,B*), SO (•&) is true by hypothesis. 

We now suppose that holds for l = q, that /1(d)) = <7 + 1, and prove that 
l[ f{[A])(h(A)} = t[f{[B])6j(Bj\. By taking adjoints if necessary and using the fact 
that the traces of commutators are zero, it suffices to show that t[CWk] = t[DVk] 
in the three cases 

(i) ' C=f([AW>0(A), D=f([B])a)0(B),l(d>0) = q, 

(ii) C — (S)0(A)f([A]), D = cb0(B)f([B]),X(db0) = q, 
and 

(iii) C = dh{A)fW№iiA), D = 6Ji(B)f([B})&2(B), }.(&,) +).(aH) = q. 

In each of the three cases, the induction hypothesis guarantees that 

t[CA (A*A)»] = t[DB(B*B)p] 
for each positive integer p. As above, we choose an orthonormal set of vectors 
{<pi} such that <pik, ...,(pik+i_1 is a basis of the initial space of Wk. Then 

№2p+i t[CWk] = tld"^ CWA = 'k+2 1 {CA(A*A)>q>u<p), 
i = ik 

so 
t[CA (A* A)"] = Z{CA(A*A)p<p.jp) 

= 2 'k+21 (CA(A*Ay<pu tp) = 2 1 t[CWk). k i~ik k 
Now, since CA(A*A)P is in the trace class, 

Z\(CA(A*Ayq>h<p)\ 2 Hkp+1\t[cwk]\ = 2. 
k k " l ' (CA(A*A)"<puq>) i = ik 

Similarly 
i[DB(B'By] = 2vlp+vt[DVk] = 2tip+lt[DVk] 

k k 
and 

. 2v2
k
p+1 \t[DVk]\^~. 

k • 
Setting ak = pkt[CWk] and bk = iikt[DVk], we can conclude from lemma 4.1 

that t[CW,] = t[DV^\ for all k, which completes the proof of theorem. 

C o r o l l a r y 4.2. Let Q denote the free multiplicative semigroup in the free 
variables x and y. Complete sets of isometric invariants for operators A in the trace-
and Schmidt-classes are {t[m(A, A*)]:a>(x, y) 6 Q} and {t[(A*A)a(A, A*)]: co(x, y) Gi2}, 
respectively. The addition of dim [9l(/l) D yi(A*)] to the above sets of isometric 
invariants yields complete sets of unitary invariants. 

P r o o f . The Schmidt-class is the class (Tc)f where f(x) = xz, so the result 
for the Schmidt-class is a special case of theorem 4. The result for the trace-class, 
follows from the fact that the trace-class is a subset of the Schmidt-class. 
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