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§1 

In this paper we investigate the commutativity of endomorphism rings E(G) 
of groups G and apply the results on the rings R, which can be defined on G. A ring 
R is said to be defined on G, in case the additive group of R, denoted by R+, is G. 
In the special case that G is a discrete direct sum of groups we obtain conditions 
for the uniqueness of the holomorphs of rings R, defined on G. 

In [5] SZELE—SZENDREI have completely solved the problem of the commutativity 
of E(G), in case G is a torsion group. For the case of mixed groups they have got 
some partial results. We consider a group G, which is a discrete direct sum of groups 
G; and obtain necessary and sufficient conditions that E{G) be commutative (Theorem. 
2 and 2a). As a special case we have the torsion-free completely decomposable 
groups G = 2jAk, where the Ax are torsion-free groups of rank 1, i. e. subgroups 

of the additive group of all rationals 91 (Theorem 3, Corollaries 3 and 4). Then we 
apply our result to torsion groups and obtain Theorem 4, which occurs as Theorem 1 
in [5]. We also investigate the finite and finitely generated groups. A finite or a 
finitely generated group G has a commutative E(G) if and only if G is a cyclic group 
(Corollaries 5 and 6). For mixed groups we have Theorem 5, due to SZELE—SZENDREI 
[5], and, in a special case, Corollary 7. 

' As to the holomorphs of a ring, we first prove a theorem for rings R, which 
are the ring-theoretic discrete direct sum of rings R, (/. £ A). In Theorem 1 we give 

..a necessary and sufficient condition that such a ring R have, one holomorph. For 
the definition of holomorph we refer to our paper [3]. From Theorem 1 a result of 
WEINERT—EILHAUER is easily obtained [6] (Corollary 1) and likewise our Theorem 1 
in [3], (Corollary 2). In Theorem 6 we consider a ring R which is defined on a group 
G = (discrete direct sum), where the G; are fully invariant subgroups of G. 

A 
The ring R is the direct sum of its ideals Gx (as rings). Now the uniqueness of the 
holomorph of R depends only on the same property for the direct summands Gx 
of R. In the special case that the Gx are rational groups, each Gk (as a ring) has one 
holomorph P(GA), which is isomorphic to the direct sum G; © G} (G; as a ring) 
(Theorem 7). 

The groups, used in this paper, are all abelian groups, the rings are associative 
rings. For the definition of group-theoretic notions such as type of an element of 
a torsion-free group, divisible group, etc. we refer to the book of L. FLCHS [2]. 
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§ 2 

T h e o r e m 1. A ring R = 2 Rx (ring-theoretic discrete direct sum) has one 
XIA 

holomorph if and only if each R, (X £ A) has one holomorph and each Rx is invariant 
for the components of double homothetisms of R. 

Proof . First suppose that R has one holomorph. Consider the projection 
i1x:R — Rx of R (r-*rx). It is easily seen that (r]x, r]x) is a double homothetism of R. 
Now suppose that (a,, a2) is an arbitrary double homothetism of R: As (a , , a 2 ) ~ 
~(r]x, (R has one holomorph) we have <xlr]x = r]xal or oclt]x(r) = rixai(r) or a , ( r j = 
= 1x{a\(r)} £ f ° r every rx£Rx. This shows that Rx is invariant for the components 
of double homothetisms of R. Then take two arbitrary double homothetisms (a*, a2) 
and (PtPt) of Rx. Then we define ai(r) = rj*(r.) a nd a2(r) = a$(r}), [il(r) = P\(rx) 
and P2(r) = P2(rx), for r£R and rx is the projection of r (X is fixed). Now one proves 
easily, that (a , , a2) and (/?,, p2) are double homothetisms of R. As R has one hol-
omorph, a v p 2 ( r ) = P2ai(r) and a2Pt(r) = Pla2(r) for all r£R. Or a.^2{rx) = P2cc$(rx) 
and a2PUrx) = P l^2(rx) or a*/^(rA) = ftat&rj and a = This proves 
(af, af) ~(P*, p2) and Rx has one holomorph. 

Conversely, let us suppose that each R> (I £ A) has one holomorph and is 
invariant for the components of double homothetisms of R. We take two arbitrary 
double homothetisms (a , , a2) and (P , , p2) of R. Then a,( 2 ' ; ) — 2 ai'"x and a,/-; £ Rx 

for each X, P2(2
 rx)= 2Pirx and P2rx£Rx for each X. And (a,/?2 - 0 2 a i ) ( Z rx) = 

= 2 ( X \P2— P2ai) rx> where (oiiP2—P2al)rx£Rx for each X. Consider a fixed direct x 
summand Rx of R and define a*(rA) = a](rx) and a 2 ( 0 = <x2(rx) for each rx£Rx. 
Then a^) ¡s a double homothetism of Rx. Likewise (/?*, /?£) is a double homothe-
tism of Rx, if we define P*(rx) — / ^ ( r j , P$(rx) = P2(rx) for each rx£Rx. As Rx has 
one holomorph, one gets (af, af) ~ (/?f, /?£),• which means af/?2 =/?faf. Therefore 

— P2a*) (rx) = (a,/?2 — p2a{) (rx) = 0 for each rx in Rx. As this is the case 
for each Rx, we obtain that (atP2'— P2&\) (2rx)~^- Likewise (a2/?! — /? ia 2 ) (2o. ) — 0. 

X . X 
Therefore (a,, a2) ~ (P,, p2), i .e . R has one holomorph. 

C o r o l l a r y 1. If R = R2@nR (direct sum of the ideal generated by all products 
in R and the annullator in R), then R has one holomorph if and only if the endo-
morphism ring of n£ is commutative (see WEINERT—EILHAUER [6], Theorem 4 ) . 

It is clear that both R2 and nR are invariant for components of double homothe-
tisms of R. From R — / ? 2 0« K and nR has one holomorph it follows that R2 has 
one holomorph. Therefore nR has one holomorph is a necessary and. sufficient 
condition for the uniqueness of the holomorph of R. As nR is a zero-ring this is the 
case if and only if E(nR) is commutative (see REDEI [4]) . 

In the special case that R = 2 ^x Horn (/?+, P+) = 0 for i ^ j we have 
Ag/t ' ' 1 

that E(R+) = 2 E(Rx) (direct sum) and each R£ is a fully invariant subgroup 

of R+. Particularly, the R;, are invariant for the components of double homothetisms 
of R. So we get: 
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C o r o l l a r y 2. R = with Horn (/?+., /?+) = 0 for i ^ j has one holomorph 
x 1 ' 

if and only if each of the Rx has one holomorph. 

Moreover the holomorph of R is the direct sum of the holomorphs of the Rx, 
(cf. Theorem 6). Again specializing we have that a finite ring R is the direct sum of 
its ^-components Rp and the holomorph of R is the direct sum of the holomorphs 
of the Rp (cf. Theorem 1, [3]), if each of the Rp has one holomorph. 

§ 3 

In order to get further information about the holomorphs of direct sums of 
rings, we have to investigate the commutativity of the endomorphism rings of direct 
sums of groups. • , 

T h e o r e m 2. The endomorphism ring of a discrete direct sum G = 2&X of 
X 

groups Gx is commutative if and only if each of the summands G, has a commutative 
E(Gand none of G, can be mapped homomorphically onto a non-zero subgroup of 
another Gx.. 

P r o o f . Necessity. As E(G) is commutative, it follows that every endomorphic 
image of G is fully invariant (Lemma 1, [5]). As every direct summand is an endo-
morphic image, it follows that the Gx are fully invariant subgroups of G (X(LA). 
Suppose now that Gx. is mapped homomorphically onto a subgroup ( # 0 ) of Gx. 
by the homomorphism 9 dHorn (GXl,GXj) (X^-Xj). We define the mapping ,9' of 
G into itself by: 9'gx = 0 if gxiGx with 9'gx=9gx. if gXt£Gx.. Then 9' is an 
endomorphism of G or 9'€E(G). But 9'GX.<£GX., since 9' coincides with 9 on 
Gx.. Therefore Gx. is not fully invariant, which is a contradiction. We conclude 
that, none of G, can be mapped homomorphically onto a nor.-zero sub;1,roup of 
another Gx. Now let <r;, g, be two arbitrary endomorphisms of G, (X is fixed). G, 
is an endomorphic image of G and let qx be the projection of G onto Gx. Then we 
can extend the endomorphisms <rA resp. Q, of Gx to endomorphisms A resp. Q of G 
•defining ff(2g,.)='-2(TS„ and agfl 0 if gp£Gp with p^X, ag, a:gx if gx f Gx and 

likewise for g.with respect to qx. Then ag(r]xg) = Qo(f]xg) (g€G), as E(G) is commu-
tative, or oox(gx) = Q(T,(g;), gx f G,, or <rxox(g;) = Qx(7x(g,) for every g} 6 G,. This 
m e a n s (TxQx — Qx(Tx or E(GX) is commuta t ive . 

Sufficiency. Let a be an arbitrary endomorphism of G. Then &(2g>)  = 2 aS>-
x x 

Take a fixed G,. Now agx = 2 £ G„)is a finite sum and if we put a x pg x = gXp, 
f 

then aXp clearly belongs to Horn (Gx, Gp). Therefoie a>4l — 0 for X^n, and gXp— 0 
for k ^ f i . Then ag. = 2 g,^ = g.. a Q., which means that Gx is a fully invariant 
subgroup of G. E(G) = 2 ^(G;) (direct sum) and as each G, has a commutative 

. " X£A ' ' ' 
E(GX), it follows that E(G) is commutative. 

From the proof above we see that Theorem 2 also may be read as: 

T h e o r e m 2a. Let G — 2 Gx be a discrete direct sum of groups Gx. Then E(G) 
i ' 
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is commutative if and only if each G¡ has a commutative E(G/) and is a fully invariant 
subgroup of G. 

T h e o r e m 3. A completely decomposable torsion-free group G = 2A.> where 
x 

the Ax are torsion-free groups of rank 1 and G is their direct sum,, has a commutative 
E(G) if and only if the types of the components Ax are pairwise incomparable. 

P r o o f . First we remark that, if AXl and A, are two torsion-free groups of rank 
1, of type a and b respectively, then Ak. is isomorphic to a subgroup of Ax. if and 
only if a =§b. Now suppose that the conditions of the theorem are satisfied. Then 
we show, that none of the groups Ax can be mapped homomorphically onto a non-
zero subgroup of another Ax. For let A,... AXj be torsion-free groups of rank 1 
(X-^kj) and Jet (p be a homomorphism of A,, onto a subgroup (=»0) of Akj. Then 
it is easy to ^ee, that Ker(<p)—0 or ¡p is a monomorphism (isomorphism into). 
This means A){ is isomorphic to a subgroup of AXj i. e. <p(Ax), but this is impossible 
by the remark above as the types of Ax. and A}j are incomparable. As the A- are 
rational groups, they have commutative endomorphism rings, and E(G) is commu-
tative by Theorem 2. 

Conversely, if E{G) is commutative, then again none of the vl;. is isomorphic 
to a subgroup of another Ax by theorem 2. This means, the types of the components 
Ax are pairwise incomparable. 

The class of completely decomposable groups comprises all groups of rank 1, 
all free abelian groups as well as all divisible torsion-free abelian groups. Thus we 
have the corollaries: 

C o r o l l a r y 3. A free abelian group G has a commutative E(G) if and only if 
G = C(°°) (infinite cyclic group). 

C o r o l l a r y 4. A divisible torsion-free abelian G has a commutative E(G) if 
and only if G = 9?, where 91 is the additive group of all rational numbers. 

§ 4 . 

a) Torsion groups. Every torsion group may be represented as a direct sum of 
/7-groups Gp belonging to different primes p. The Gp, uniquely determined by G, 
are called the p-components of G. They are fully invariant subgroups of G. Therefore 
by Theorem 2a, G — 2 Gp has a commutative E(G) if and only if each GP has a p 
commutative E(GP). Then we have to characterize the /»-groups with commutative 
endomorphism ring. Now let p be a fixed prime and consider the ^-component 
Gp of G. The center of E(GP) is the ring Ŝ of p-adic integers or the residue class 
iing l/(pk) of the integers mod pk, where / is the ring of rational integers ([2], Theorem 
56. 3). Therefore, E(G„) is commutative if and only if E(Gp) is either the ring B̂ 
of p-adic integers or the ring I/ip") of integers mod pk. We now use: if A is a group 
C(pk) (k= 1,2, ...,*=), and B i s ' a /»-group such that E(B) = E(A), then B^A, 
(see [2], p. 215). Incase E(Gp)^=E(C(p")), we have Gp~C(pm). In case E(Gp) = 
— ll(pk)=zE(C(pk)), we have Gp = C(pk). Thus a /^-component Gp of G has a commu-
tative E(GP) if and only if Gp is either C(p") or C(pk). Then G = 2 Gp has a commu-
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tative E(G) if and only if G is a direct sum of groups C(pk) (k= 1,2, .... f o r 
different primes p. 

T h e o r e m 4. abelian torsion group G has a commutative E(G) if and only 
if G is a subgroup of C, where C is the additive group of rational numbers mod 1 
(cf. [5], §4, Theorem 1). 

If G is a finite abelian group, then components C(p°°) do not occur in a direct 
decomposition of G — 2 Gp in /j-components. But then G is a direct sum of a finite 

p 

number of cyclic groups C(pk) for different primes p, that means, G is cyclic. So 
.we get: 

C o r o l l a r y 5. A finite abelian group G has a commutative E(G) if and only if 
G is a cyclic group. 

More generally, a finitely generated group G is a direct sum of a finite number 
of cyclic groups of infinite and/or prime power order, say G = 2 C H + 2 C(Pk)-

in p 

Let G have a commutative E(G). If G is torsion-free, then G = (Corollary 3): 
If G is a torsion group, then G= 2 C ( P k ) f"9r different primes p, or G is a cyclic 

p . 
group (Corollary 5). If G is a mixed group, then the torsion-free component of G 
is C(«>), as none of the direct summands can be mapped homomorphically onto 
another one. The maximal torsion subgroup of G is 2C(Pk) a r , d a s E(G) is commu-

p . 
tative, 2 jC(p k ) has a commutative endomorphism ring (Theorem 2). Then 

p 

2 C(pk) is a subgroup of C (Theorem 4); in this case, as G is finitely generated, 
p 

2 C(pk) is a cyclic group C(n) (Corollary 5). Now G = C(=°) + C(«) is impossible, p 
as Horn (C(°°), C(n)).= C(n) and this contradicts the commutativity of E{G). There-
fore a mixed group G, which is finitely generated and has commutative E(G), is 
impossible. We have proved: 

C o r o l l a r y a) 6. A finitely generated abelian group G has a commutative E(G) if 
and only if G is a cyclic (infinite or finite) group. 

R e m a r k , a) For a torsion group G, SZELE—SZENDREI [5] have proved that G 
has a commutative E(G) if and only if G has this property locally, i. e. every finitely 
generated subgroup of G has a commutative E(G). By Corollary 6, this means, 
every finitely generated subgroup of G is cyclic or G is locally cyclic. Now a torsion, 
group G is locally cyclic if and only if it is a subgroup of C, which is again Theorem 4. 

b) For a torsion-free group G it is clear that if every finitely generated subgroup' 
F of G has a commutative E(F), then G has a commutative E(G). For, according 
to Corollary 6, this means that every finitely generated subgroup is C(°°), or G is. 
locally cyclic. But a locally cyclic torsion-free group G is a rational group or a sub-
group of the additive group of all rationals. Therefore G has a commutative 
E(G). The converse does not hold. A counter-example is: let p^ ,p2, .. '. be an infinite-
sequence of different prime numbers and let R be the additive group of those-
rationals, whose denominator is relatively prime to p„. Then the-complete direct". 
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sum G — 2* RF„ has a commutative E{G) (SZELE—SZENDREI [5]), but G is not 
Pn 

locally cyclic. 

c) Mixed groups. Let G be an arbitrary (mixed) group and p be an arbitrary 
prime number. If the group G contains an element of order p, then p is called 
relevant for G. Let G — T + J be a splitting mixed group, i. e. G decomposes into 
a direct sum of a torsion group T and a torsion-free group J. Here we have the 
following theorem, due to SZELE—SZENDREI [5]: 

T h e o r e m 5. Let G — T + J be a splitting mixed group, where T is the torsion 
subgroup of G. Then E(G) is commutative if and only if T is a locally cyclic group 
containing no subgroup of type C(p~) and J has a commutative E(J) and pJ=J holds 
for all primes p relevant for G. 

R e m a r k . As a special case of Theorem 5 we consider the mixed groups G 
with bounded maximal torsion subgroup. Let G be a mixed group with bounded 
maximal torsion subgroup T(nT=0). Then G is a splitting mixed group: G = T+J 
([2], Corollary 50. 4). Now suppose that G has a commutative E(G). By Theorem 5, 
T is a locally cyclic group containing no subgroup of type C(p°°). From nT— 0 
we infer that only those cyclic components C(pk) can occur in T, for which p\n. 
As n has only a finite number of prime divisors, it follows that T has a finite number 
of direct summands, i.e. T is a cyclic group and a subgroup of C(n). We may assume, 
without loss of generality, that n is the least positive integer such that nT=Q. Then 
we get T—C(n). Evidently we also have T—G[n], where G[n] is the set of all gdG 
with ng = 0. Now it is clear that J ss GIT=G/G[n] nG, i. e. the set of all ng 
with g£G, hence E(nG) is commutative by Theorem 5. As T=C(n), the prime 
divisors Pj of n are relevant for G. From Theorem 5 it follows that ptJ=J for all 
p\n. Hence nJ = J or nG = J, as nG — nJ. Conversely, if G is a mixed group with 
bounded maximal torsion subgroup T=C(n), then again T=G[n]. If nG is the 
torsion-free component of G, then we have the direct decomposition G = G[ri\ \-nG. 
Both G[«] and nG are fully invariant subgroups of G. Moreover 7 as a cyclic group 
has a commutative E(T). By Theorem 2a the commutativity of E(nG) is sufficient 
now for the commutativity of E(G). Thus we get: 

C o r o l l a r y 7. Let G be a mixed group with bounded maximal torsion subgroup 
T such that « 7 = 0 and n is the least positive integer with this property. Then E(G) 

.is commutative if and only if T=C(n) and nG is the torsion-free component of G and 
has a commutative E(nG). 

Now we want to apply these results to the investigation of rings which can be 
defined on direct sums of groups. Let G be an arbitrary (abelian) group. An (associa-
tive) ring R on G is a ring R, such that R + = G. Such a ring R has one holomorph 
if the endomorphism ring E(R+) = E(G) is commutative [6]. If G is a discrete direct 
sum of groups, and every direct summand is a fully invariant subgroup of G, the 
structure of the holomorph of a ring R on G can be described. 

T h e o r e m 6. Let G= 2 be a discrete direct sum of groups G,, such that 
Xg/i 

. each GA is a fully invariant subgroup of G. Then in each ring R on G the G:. are ideals 

.and R is their direct sum in ring-theoretic sense. A ring R on G has one holomorph 



Endomorphism ring 27; 

if and only if each of the G, (as a ring) has one holomorph. If R has one holomorph 
P(R), then P(R) is an interdirect sum of the holomorphs P(GX) (k<£A). 

P r o o f . Let g be a fixed element of G. Then multiplication of the elements of 
G from the left by g in a ring R on G induces an endomorphism of G. As Gx is fully 
invariant in G, we get ggx£Gx for each gx £ G,. Likewise we find that g, operating 
on the right side on the elements of G, induces an endomorphism of G and there-
fore gxg G G;. for each gx £ Gx. Gx is a two-sided ideal in G. Moreover gxgp £ GXH\ Gfl (0) 
for k n or GXGP •— (0). As G is a direct sum of groups Gx, we infer that R is a direct 
sum of its ideals Gx in ring-theoretic sense: Then, each Gx is fully invariant in G 
implies in particular that each Gx is invariant for the components of double homo-
thetisms of R. By Theorem 1, R has one holomorph if and only if each of the Gx 
(as a ring) has one holomorph. Finally we have to prove that the holomorph P(R) 
of R is an interdirect sum of the holomorps P(GX), (k£A). Let D resp. Dx be the 
maximal ring of related double homothetisms of R resp. G, (/. Í A ). The elements 
of the holomorph P(R) are the pairs (a, a), a£D, a£R and sum and product are 
obtained as follows: (a, a) + (Jt, b) - (cc + P, a + b), (a, a)(P, b) = (a/?, P2a + axb + ab) 
with a = (a , , a2), P = (P,, P2). As G = ¿ G ; is the discrete direct sum of ' i ts fully 

invariant subgroups Gx, it is clear that E(G) is the complete direct sum of the groups 
E(GX). Likewise D is the complete direct sum of the rings Dx. Any <x£Z) induces 
a well-defined double homothetism ax of Dx for every k. If a = (a l s a 2 )€-D and a, 
induces a i ; in Dx,a2 induces aIX in Dx, then aA = ( a u , a2;J is a double homothetism 
of Dx. Every double homothetism ax£Dx (k fixed) may be obtained as the "1 th 

component" of a double homothetism a The mapping (a, a) — (..., (<xx, ax), ...) 
is a homomorphism of P(R) = DoR into the complete direct sum of the P(GX) = 
= DxoGx. Moreover, this homomorphism is an isomorphism, because if (<xx, ax) = 
= (0,0) holds for all k£A, then (a, a) = (0,0). Then P(R) is isomorphic to a 
subring of the complete direct sum of the rings P(Gx) = DxoGx i. e. an interdirect 
sum of the rings P(GX) (k£A). This completes the proof of Theorem 6. 

Now we will give examples of groups, which satisfy the requirements of Theorem 
6. In.the torsion case, we have that every torsion group G may be represented as a 
direct sum of its p-compónents Gp. These /^-components Gp are fully invariant 
subgroúps of G. Therefore Theorem 6 may be applied to torsion groups. If G is a 
finite group, say of order n, then, if n = p\l.. .pk

r
r, G is the direct sum of r subgroups 

G. of order pki> (/ = 1, ..., r). Every ring Ron G is a finite ring and the ring-theoretic 
direct sum of finite /»¡-rings. RPl, which are rings on G¡ ( /=1 , . . . , r ) and annihilate 
each other for different primes p¡. The ring R has one holomorph if and only if 
each of the Rp. has one holomorph. Moreover P(R) is the direct sum of the P(Rp). 
This establishes Theorem 1 of my paper [3], (cf. also Corollary 2 of this paper). 

In the torsion-free case, we consider a torsion-free group G which is the direct 
sum of homogeneous groups such that the types of the components G are páirwise 
incomparable. By a homogeneous group we mean a torsion-free group all of whose 
elements ^ 0 are of one and the same type a. We denote by G(a) the set of all elements 
a in G for which T(a)^a. Now let Gx be a fixed homogeneous component of G of 
type ct;.. As the types of the components Gx are páirwise incomparable, we get 
G(ax) = Gx. Now the subgroups G(ci) are, for any type a, fully invariant in G. There-
fore Gx is a fully invariant subgroup of G for every k. We do not know, however, 
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whether a homogeneous group Gx has a commutative E(GX). If the homogeneous 
components Gx are torsion-free groups of rank 1 or rational groups the group 
G = 2 G). is completely decomposable. If now the types of the rational groups are 

pairwise incomparable, then the Gx are fully invariant in G. A ring R on G is the 
direct sum of its ideals Gx. In this case, any ring R on G has one holomorph, as each 
of the Gx (as a ring) has one holomorph. The last result is due to the fact, that each 
of the G) (as a rational group) has a commutative E(G}) and this is a sufficient condition 
for the uniqueness of the holomorph P(G}). The uniqueness of the holomorph of 
R is also an easy consequence of Theorem 3, as the ring E(R+) = E(G) is commu-
tative. By Theorem 6, P(R) is an interdirect sum of the holomorphs P(GX) A). 

If Gx is a rational group, then any ring Rx on Gx is a subring of the rational 
number field or a zero-ring [1]. Now we have the theorem: 

T h e o r e m 7. Let G? denote a subgroup of the additive group 91 of all rationals 
and assume that 1 € G ; . Let Rx be a non-zero ring on G; and let 1 X 1 = 1 in R¿ • 
Then the holomorph P(R>) of Rx is isomorphic to Rx © R, (ring-theoretic direct sum). 

P r o o f . Any r¡£E(R^) — E(Gx) maps 1 upon a rational r and this r characterizes 
rj. A double endomorphism ( a , , a 2 ) of R f , al £E(R¿), a2£E°(R^) is a double 
homothetism of Rx if the following conditions are satisfied: a)(ab) = (a]a)b, 
a2(ab) — a(a2b), (a.2a)b = a(a.lb) and a 2 ( a i f l ) = a,(a2a) for all a,b£Rx. As 1 X 1 = 1 
in Rx, the multiplication in Rx is the usual one of rational numbers. Now, if 
a, 1 =rx and a 2 l =r2 (r¡, r2£Rx), it is clear that a.xa — rxa, a 2 a ~ r 2 a for a l l c rgR x . 
This means, that al(ab) = (ala)b,a2(ab) = a(a2b) and a2(ata)~a¡(a2a) for all 
a,b£Rx. From (a2a)¿ = a(a1¿>) it follows that r2(ab) = ri(ab) for all a,b£Rx. As 
Rx has no zero-divisors (RÁ is a subring of the rational number field), we get r, =r2 
or a, — o£2. The double homothetisms of Rx have the form (a, a), where a.£E(Rj[). 
Now Rx has one maximal ring D, of related double homothetisms, as all double 
homothetisms are pairwise related. The mapping (/?, r¡)-+r¡ provides an isomorphism 
of Dx onto E(RX). Now every double homothetism (r¡, rj)£Dx is an inner one, i. e. 
every (f],t]) is induced by a rational number r£R such that i]a — ra for all a£Rx. 
Therefore Dx — D0k — ring of all inner double homothetisms of Rx. It is known, 
that R-JnRl^-D0k, where nRj is the annullator of Rx (RÉDEI [4]). But nKx = (0), there-
fore Rx = b„J = D) . The elements of P(RX) are pairs (77, a), r¡ = (»;, r¡) £ Dx, a € Rx. 
We write these elements as (a, b), a, b£Rx, as Rx=ÍD; . Addition and multiplication 
are defined by 

(a, b) + (c, d) = (a + c, b + d), (a, b)(c, d) = (ac, bc + ad \-bd). 
In this case P(RX) = L)xoRx is a direct sum. For let (a, b)-+n(a, b) '= (a, a + b) 

be a permutation of the elements of Rx. Then we define: (a, b) + (c, d) = 
= n(n~l(a, b)+n~l(c, d)) and (a, b)x(c, d) = 71(7i~1(a, ¿)7r_I(c, d)), and it turns 
out that (a, b) + (c, d) = (a + c,b + d) and (a, b)x(c, d) = (ac, bd). Then P(R>) = 
- D> o R; SS D; © R; P; © R,. Finally, let G = T+J be a splitting mixed group, 
where T is the torsion subgroup of G and both T and J satisfy the conditions of 
Theorem 5. Tis the maximal torsion subgroup of G and therefore Tis a fully invariant 
subgroup of G. As pJ=J for all primes relevant íor G, it is clear that the equation 
pnx — a (a £ J) is solvable in / for every natural number n and every prime p relevant 
for G. Then J is a fully invariant subgroup of G. Thus G = T + J is the direct sum 
of its fully invariant subgroups T and J and we may apply Theorem 6. 
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