
On multiplicative characters 

By K. A. C O R R A D I and I. KATAr in Budapest 

Let / (h) be a multiplicative number-theoretical function, i. e. 

f(mn)=f(m)f(n), (m, n) = 1, 
satisfying 
(1) \f{n) 1 ^ 1 (>7-1,2, . . . ) . 

H . DELANGE [1] proved that for the fulfilment of the relation 

(2) M ( x ) £ 2 / ( « ) = « W 

a sufficient condition is given by (1) and 

(3) 
p p 

It is natural to ask for a condition, which turns out to be besides (1) • sufficient 
for the fulfilment of the relation 

(4) M(x; k, I) = 2 /(«) = o(x). 
II^X 

n = l (mod ft) 

It is clear that (2) alone is a too weak condition for the fulfilment of (4). If for 
example f{n) — x(n), where y,(n) stands for an arbitrary but fixed non-principal 
character mod k, then 

Mix) = 2 y.(n) = O(X), 

and" oil the other-hand for every I with (/,£:) = 1, l ^ I ^ k , 

M(X-k, I) = 2 M = X(l) { +1} * o(x). 

n = I (mod ft) 

We will show in the sequel that the characters are exceptional in a certain 
sense. 

T h e o r e m 1. Letf(ri) bean arbitrary but fixed multiplicative function satisfying 
(1). Let k and I be given natural numbers with (k, /) — 1. Suppose that 

f(p) = x, if p = l'(mod k), pprime, 
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and suppose that the value of a is different from all the values x(I) taken by any 
X mod k. Then for every m satisfying (m, k) = l 

2 f(n) = o(x) 
(5) "Sx n = m(mod k) 
holds. 

Theorem 1 is a consequence of the following 

T h e o r e m 2. Let g(n) be an arbitrary but fixed multiplicative function satisfying 
(1). Suppose that for a pair k, I of coprime natural numbers 

g(p)=P, if p = / (mod k), p prime 

holds, where [1 ^ I. Then 
2g(n) = o(x). 
riSx 

D e d u c t i o n of T h e o r e m 1 f r o m T h e o r e m 2. Let gx{n) = x{n)f{n), 
where /(«) stands for an arbitrary character mod k. Then Theorem 2 applies by 
trivial arguments and gives the relation 

21 Win) = 0«. 
From this, using 

Z m = Z l On) Z z («)/(«)> 
nsx <p{k) x 

n = m(modfc) 

the statement of Theorem 1 follows. 
For the proof of Theorem 2 we need three lemmas. Before formulating the 

first of them we quote the following preliminaries. 
Let 0> be an arbitrary infinite subset of the rational primes. Let the function 

V»{n) be defined by 

(6) v , ( n ) & 2 1 . . 
pin 

Pif 
V#(n) is an additive function. Let the number Ax be defined by 

(7) 
pSx P 

Then the following result of P. T U R A N [2] yields, which we state as 

L e m m a 1. 

' 2\V,(n)-Ax\ = 0(xA1
x>2), 

2(VAn)-Ax)2 = 0(xAx). 
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L e m m a 2. For a coprime pair k, I of natural numbers 

2 1 = —^Trloglogx+oCl). 
¿¿x P <p(k) . p = /(mod k) 

This is an easy consequence of the prime-number theorem for arithmetical-
progressions. 

L e m m a 3. Let f(n) be an arbitrary multiplicative function satisfying (1). Then 
in the notation of (2) and (7) 

(8) M(x) Ax = 2 f ( P ) M\~\ + °M V2). 
pSx \P) 
pi 9 

For the proof, see [3]. 

P r o o f of T h e o r e m 2. Let us define SP as the set of rational primes satisfying 

(9) p = / (mod k). 
For the sake of brevity we take 

(10) A log l o g * 

Then using lemma 3 and the condition of Theorem 2 we have 

M(x)h — fi 2 M —} + 0(xhl 

pSx P) 
(11) M(x)h — p Z M —\ + 0(xhll2). 

pSx 
p = l(mod k) 

We have to deal with two cases: 1) | /? |<1 and 2) |/?| = 1. In the first case the 
statement of Theorem 2 can be deduced from (11) in a very simple way. 

Take 

(12) = 

Then by (11) 

\M(x)\h^\p\(t + e)x 2 - + o(xh) 
p i l P 

p = I (mod k) 

holds for every. £=>0 when ,v ^ x v (i:). From this one can deduce by lemma 2 the 
inequality | T | ^ | J 8 | T . 

In the case \ < 1 this implies r = 0 i. e. the statement of the theorem is then true. 
So it only remains to deal with the case = 1. Let <5 be an arbitrary but fixed 

number with 0 < < 5 < i . Using 

2 M[A =O[X 2 ^ } = 0(X) 
x'SpSv \P ) V I'spSJC P) 
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and applying (11) with x/g instead of x, where g^xd stands for a prime = / (mod k), 
we deduce by adding the results that 

(13) h Z M\-\=p Z Af (——) + 0(xh3/2). 
qSx* \g ) pSx6,qSx* \P<1 J 

« s i ( m o d f t ) p=q = I (mod k) 

.Remark that by the deduction of (13) we have used the relation 

log l o g y = log log x + 0 ( 1 ) , g 5 x". 

From (13), by the modified form of (11), it follows that 

.(14) M(x)h2 = p2 Z m\—\ + 0(xhi!2). 
PSX* {pg) 
qSx" 

p = q = /(mod ft) 

The first term on the right-hand side of (14) can be described as 

2 p2 2 M\ — 
pq) pqSx° 

psq 
p = q = 1 (mod ft) 

+ o(x/i). 

"From (11), multiplying by h, and from (14) we obtain finally 

( I 5) = h Z . " ( f ) - J . + 

p = /(modfc) p-^q 
p = q = l(mo6k) 

Let now s be an arbitrary but fixed positive number, and let us define the 
numbers «„ by «v = ( 1 +s)v (v = l , 2 , ...). Then 

ATI — \-M -
», J I m 

-
X X 
"v m 

sx 
+ 1 5 — + 1 

m 

holds for mf[n v , hv.(. ,]. So by (15) we have 

1 1 
.(16) h2 

P IP2 

where av is given by 

<17) 

] M(x) = Z avM [JL] + 0(sxh2), 
) v a_jii2§iL_ U v J 

l o g ( l + £ ) 

av = h Z I - 2 I-
nv+ i] pq£[nv, "v + i] p = ((mod k) p-^q 
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From the prime-number theorem for arithmetical progressions it follows that 

h 2 . = ( l+o( l>) , . 
P£["V <p(k)lognv 
p = / (mod k) 

l en y = 
pq(lnv, Mv+ il <p2(k) log« 

pSq 
p =q = l (mod k) 

^I0gl0g77 v ( l + 0(1)). 

So for n„Sx512 we have 

(18) a, --
1 SI1V , logx 

<p2(k) log nv log«v 

Now as in the case | j3 |< l we have to show that t = 0 . From (16) it follows 
by (18) that 

(19) h2 1_ 
1~W I 2 ' o g l Q g f ~ ' o g l o g ^ +« w 

From (19) one has the inequality 

(20) h2 J 1 
J ~ W 

Letting first x —*• °° then £—0 it results 

h2 + o(xsh2). 

_1_ 1_ T 
T - 2' 

Hence t = 0 or 1 
S — . The second possibility can not occur in our case. 1 1 

P 2 p2 

For it implies \P\^l and it holds in the case \P\ = l for P—l only. But /? = 1 is 
impossible by the assumption of the theorem. Thus t = 0 and Theorem 2 is proved. 

A similar argument leads to the following 

T h e o r e m 3. Let f(n)be an arbitrary multiplicative function satisfying (I). Suppose 
that f ( p ) =a if p == / (mod k), p prime, holds for some k, I with (k,l) = 1, where 

arg a 
[a | < 1 or — is an irrational number. Then for every pair k*. I* of natural numbers 

¿71 
2 m = o{x). 

n^x 
7i = f*(mod k*) 

We note for the proof, that it is sufficient to deal with the case (/*, k*) = 1 
only. In this case it is enough to show the fulfilment of 

2gx(n) = o(x), 

where gx(n)= f(n)x(n) and y(n) stands for an arbitrary but fixed character mod k*. 
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The proof of Theorem 2 applies in this case too, the only difference is in the 
choice of the set 0> of Theorem 2, which requires but obvious modifications. We 
omit the details. 

As an immediate consequence of Theorem 2 we mention the following 

T h e o r e m 4. Let f(n) be an arbitrary multiplicative function satisfying (1). 
Suppose that for a given natural number k and for every I coprime to k 

f(p) = a, if p = l (mod k), p prime. 

Suppose further that there exists for every character y (n) mod k at least one prime 
p with 

Then for all I with 1^/S/c, (k, I) = 1, we have 

Z /(«) = o(x). 
n^x 

n - 1 (mod k) 

Observe that Theorem 3 has some consequences for the distribution of the 
fractional parts of the values taken by an additive function. Let h(n) be an additive 
function i.e. h(mn)=h(m) +h(n) for (m,n)=l. Suppose that 

h(p)=a if p = I (mod k), p prime 

holds for a given coprime pair k, 1 of natural numbers, where a denotes an arbitrary 
irrational number. 

Under these conditions we have the following 

T h e o r e m 5. The values of {h(n)} are uniformly distributed in every arithmetical 
progression. (Here { } stands for the fractional part.) 

The proof of Theorem 5 can be obtained by applying Theorem 3 to the functions 

ft(n) = e2Kit/.(n) 

and using WEYL'S theorem [4] concerning uniform distribution. 
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