An example in the theory of Fourier series

By K. A. CORRADI and I. KÁTAI in Budapest

A. Plessner proved in [1] that if a trigonometric series converges on a set E with $m E>0$, then its conjugate series converges almost everywhere on E. This fact was proved independently by J. Marcinkiewicz and A. Zygmund [2] too.

In the present note we are going to prove the following
Theorem. There exists a sequence $\left\{\alpha_{n}\right\}$ of non-negative numbers with the following properties. The series

$$
\begin{equation*}
\frac{\alpha_{0}}{2}+\sum_{n=1}^{\infty} \alpha_{n} \cos n x \tag{1}
\end{equation*}
$$

is the Fourier series of an $f(x) \geqq 0, f(x) \in L^{q}[-\pi, \pi]$ for every $q>0$. The series (1) diverges unboundedly on an everywhere dense set of second category in $[-\pi, \pi]$. There exists an infinite sequence of natural numbers with

$$
\begin{equation*}
s_{n_{k}}(x)=\frac{\alpha_{0}}{2}+\sum_{v=1}^{n_{k}} \alpha_{v} \cos v x \geqq 0, \quad(x \in[-\pi, \pi] ; \quad k=1,2, \ldots) \tag{2}
\end{equation*}
$$

Finally the series

$$
\begin{equation*}
\sum_{n=1}^{\infty} \alpha_{n} \sin n x \tag{3}
\end{equation*}
$$

converges uniformly in $[-\pi, \pi]$, and so proves to be the Fourier series of a continuous function.

Remark. By the quoted result of Plessner the series (1) converges almost everywhere on $[-\pi, \pi]$.

For the proof of the Theorem we need three lemmas.
Lemma 1. Suppose that all partial sums of the series

$$
\begin{equation*}
\frac{b_{0}}{2}+\sum_{n=1}^{\infty} b_{n} \cos n x \tag{4}
\end{equation*}
$$

are non-negative for every $x \in[-\pi, \pi]$. Then the same is true for the series

$$
\begin{equation*}
\frac{b_{0}^{2}}{2}+\sum_{n=1}^{\infty} b_{n}^{2} \cos n x \tag{5}
\end{equation*}
$$

Proof. Let us denote the partial sums of (4) by

$$
u_{n}(x)=\frac{b_{0}}{2}+\sum_{v=1}^{n} b_{v} \cos v x, \quad(n=0,1,2, \ldots)
$$

So we have

$$
\frac{b_{0}^{2}}{2}+\sum_{v=1}^{n} b_{v}^{2} \cos v x=\frac{1}{\pi} \int_{-\pi}^{\pi} u_{n}(t) u_{\mu}(x-t) d t
$$

which, by the supposed non-negativity of $u_{n}(x)$, proves the statement of the lemma.
Lemma 2. Let $\left\{c_{n}\right\}$ be a decreasing sequence of positive numbers satisfying $c_{n}=0\left(\frac{1}{n}\right)$. Then

$$
\left|\sum_{v=1}^{n} c_{v} \sin v x\right|<K \quad(n=1,2, \ldots)
$$

This lemma represents a well-known result (see [3], Vol. I. pp. 182-183).
The third thing we need is a theorem of P. TURÁN, which we formulate as
Lemma 3. All partial sums of the series

$$
\begin{equation*}
1+\sum_{n=1}^{\infty}(-1)^{n}\binom{-\frac{1}{2}}{n} \cos n x \tag{6}
\end{equation*}
$$

are non-negative for every $x \in[-\pi, \pi]$.
Before going to prove the Theorem, we mention that the coefficients of (6) form a decreasing sequence satisfying

$$
\begin{equation*}
c_{1} n^{-\frac{1}{2}}<(-1)^{n}\binom{-\frac{1}{2}}{n}<c_{2} n^{-\frac{1}{2}} \tag{7}
\end{equation*}
$$

with suitable $c_{1}, c_{2}>0$.
Let now $\left\{\lambda_{r}\right\}$ be an arbitrary but fixed sequence of positive numbers with

$$
\sum_{r=1}^{\infty} \frac{1}{\lambda_{r}}<+\infty
$$

We introduce the notation

$$
a_{0}=4, \quad a_{i i}=\binom{-\frac{1}{2}}{n}^{2} \quad(n=1,2, \ldots)
$$

Then for every natural number u we have by (7)

$$
\begin{equation*}
\frac{a_{0}}{2}+\sum_{v=1}^{V} a_{u v}>B \tag{8}
\end{equation*}
$$

for any $B>0$ if $V=V(B)$ is large enough.
As the next step we define two sequences $\left\{l_{r}\right\}$ and $\left\{m_{r}\right\}$ of natural numbers by induction on r.

Let $l_{1}=1$ and let m_{1} be the least natural number satisfying the condition

$$
\frac{a_{0}}{2}+\sum_{v=1}^{m_{1}} a_{v}>\frac{1}{\lambda_{1}}
$$

The choice of m_{1} is always possible by (8).
Suppose now that the numbers l_{u} and m_{u} are already defined for $1<u<r-1$. Determine l_{r} and m_{r} by the conditions

1. l_{r} is the least natural number which is a multiple of l_{r-1} and satisfying

$$
l_{r}>l_{r-1} m_{r-1}
$$

2. If l_{r} is chosen as mentioned, m_{r} is the least natural number satisfying

$$
\frac{a_{0}}{2}+\sum_{v=1}^{m_{r}} a_{v l_{r}}>\frac{1}{\lambda_{r}}
$$

The choice of m_{r} is always possible by (8). Thus the sequences $\left\{l_{r}\right\}$ and $\left\{m_{r}\right\}$ are defined for every value of $r \geqq 1$.

Let now the trigonometric polynomials $U_{r}(x)$ and $V_{r}(x)$ be defined by

$$
\begin{equation*}
U_{r}(x)=\frac{a_{0}}{2}+\sum_{v=1}^{m_{r}} a_{v l_{r}} \cos v l_{r} x, \quad V_{r}(x)=\sum_{v=1}^{m_{r}} a_{v l_{r}} \sin v l_{r} x \quad(r=1,2, \ldots) \tag{9}
\end{equation*}
$$

We shall show that

$$
\begin{equation*}
\sum_{r=1}^{\infty} \frac{1}{\lambda_{r}} U_{r}(x) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{r=1}^{\infty} \frac{1}{\lambda_{r}} V_{r}(x) \tag{11}
\end{equation*}
$$

are conjugate trigonometric series possessing the properties required in the Theorem.

First of all, observe that the series

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n} \sin n x \tag{12}
\end{equation*}
$$

has monotonically decreasing coefficients satisfying $a_{n}=O\left(\frac{1}{n}\right)$ by (7) and (8)..
Thus, using Lemma 2, we get that

$$
\begin{equation*}
\left|\sum_{v=1}^{n} a_{v} \sin v x\right|<K \quad(n=1,2, \ldots) \tag{13}
\end{equation*}
$$

holds for every $x \in[-\pi, \pi]$. On the other hand, we have

$$
\begin{equation*}
V_{r}(x)=\frac{1}{l_{r}} \sum_{t=0}^{l_{r}-1}\left\{\sum_{v=1}^{m_{r} l_{r}} a_{v} \sin v\left(x+\frac{2 \pi t}{l_{r}}\right)\right\} \tag{14}
\end{equation*}
$$

So one can deduce from (14), using (13), that.

$$
\begin{equation*}
\left|V_{r}(x)\right|<K \quad(x \in[-\pi, \pi] ; r=1,2, \ldots) . \tag{15}
\end{equation*}
$$

holds. (15) means that the series (11) converges uniformly in $[-\pi, \pi]$. Thus

$$
\begin{equation*}
\tilde{f}(x) \xlongequal{\text { def }} \sum_{r=1}^{\infty} \frac{1}{\lambda_{r}} V_{r}(x) \tag{16}
\end{equation*}
$$

is a continuous function. By the choice of the sequences $\left\{l_{r}\right\}$ and $\left\{m_{r}\right\}, V_{r}(x)$ and $V_{\mathrm{s}}(x)$ do not contain common sines if $r \neq s$.

By the uniform convergence of (16) and the remark done before we have

$$
\alpha_{n}= \begin{cases}\frac{1}{\lambda_{r}} a_{v l_{r}} & \text { if } n=v l_{r}, \quad 1 \leqq v \leqq m_{r} \tag{17}\\ 0 & \text { otherwise, }\end{cases}
$$

-where α_{n} denotes the nth Fourier sine coefficient of $\tilde{f}(x)$. By (17), using the definition of the sequences $\left\{a_{n}\right\}$ and $\left\{\lambda_{r}\right\}$ we get the inequality

$$
\begin{equation*}
\alpha_{n} \geqq 0 \quad(n=1,2, \ldots) . \tag{18}
\end{equation*}
$$

Now (18) means by a theorem of Paley [5], that the Fourier series of $\tilde{f}(x)$.converges uniformly.

A representation similar to (14) shows that

$$
U_{r}(x) \geqq 0 \quad(x \in[-\pi, \pi] ; r=1,2, \ldots)
$$

'holds. Indeed, by Lemma 3 and Lemma 1 all the partial sums of the series

$$
\begin{equation*}
\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x \tag{19}
\end{equation*}
$$

are non-negative for every $x \in[-\pi, \pi]$. Using this fact we get

$$
\begin{equation*}
\sum_{r=1}^{\infty} \frac{1}{\lambda_{r}} \int_{-\pi}^{\pi} U_{r}(x) d x<+\infty \tag{20}
\end{equation*}
$$

which means by the theorem of Beppo Levi, that the series (10) converges a. e. on $[-\pi, \pi]$ to an $f(x) \geqq 0, f(x) \in L[-\pi, \pi]$.

A similar argument shows that

$$
\begin{equation*}
f(x) \sim \frac{\alpha_{0}}{2}+\sum_{n=1}^{\infty} \alpha_{n} \cos n x . \tag{21}
\end{equation*}
$$

$f(x)$ and $\tilde{f}(x)$ being given by conjugate Fourier-series and since $\tilde{f}(x) \in L^{q}[-\pi, \pi]$ for every $q>0$, it follows by known arguments that $f(x) \in L^{q}[-\pi, \pi]$ holds for every $q>0$.

Now we note that the series (21) diverges unboundedly on an everywhere dense set of second category' in $[-\pi, \pi]$. In fact

$$
\frac{1}{\lambda_{r}} U_{r}\left(2 \pi \frac{l}{l_{s}}\right) \geqq 1, \quad 0 \leqq l<l_{s}-1, \quad r \geqq s
$$

holds by $l_{s} \mid l_{r}$ if $r \geqq s$ and by the choice of the numbers $\left\{l_{r}\right\}$ and $\left\{m_{r}\right\}$. From this, noting that the numbers $2 \pi \frac{l}{l_{s}}(s=1,2, \ldots)$ lie everywhere dense in $[0,2 \pi]$, the assertion follows. We quote the result that if a series of continuous functions diverges unboundedly on an everywhere dense set in $[-\pi, \pi]$, then the set of points where the series diverges unboundedly is of the second category in $[-\pi, \pi]$. For the proof see for example [6].

We conclude by remarking that for the choice $n_{k}=l_{k} m_{k}$ the non-negativity of the partial sums required in the theorem follows without difficulty.

References

[1] A. Plessner, Über Konvergenz vön trigonometrischen Reihen, J. reine angew. Math., 155 (1925), 15-25.
[2] J. Marcinkiewicz and A. Zygmund, On the behavior of trigonometric series and power series, Trans. Amer. Math. Soc., 50 (1941), 407-453.
[3] A. Zygmund, Trigonometric series. I-II (Cambridge, 1959).
[4] P. Turán, Egy Steinhaus-féle problémáról, Mat. Lapok, 4 (1953), 263-275.
[5] R. Paley, On Fourier series with positive coefficients, J. London Math. Soc., 7 (1932), 205-208. [6] N. Bari, Trigonometric series (Moscow, 1961), p. 319 (in Russian).
(Received July 9, 1966)

