
An example in the theory of Fourier series 

By K . A. C O R R A D I a n d I. K A T A I in Budapes t 

A . PLESSNER proved in [ 1 ] that if a trigonometric series converges on a set E 
with mE>0, then its conjugate series converges almost everywhere on E. This 
fact was proved independently by J . MARCINKIEWICZ and A . Z Y G M U N D [ 2 ] too. 

In the present note we are going to prove the following 
1 T h e o r e m . There exists a sequence {<x„} of non-negative numbers with the following 

properties. The series 

(1) ^ a„ cos nx 1 n=l 
is the Fourier series of an f(x)^0,f(x)£Lq[ —n, n] for every q >0 . The series (1) 
diverges unboundedly on an everywhere dense set of second category in [ — n, n]. 
There exists, an infinite sequence of natural numbers with 

a "k 

(2) i „ t W = T + 2 ' a v C O S v x £ 0 , ( x e t - j i . n ] ; k= 1 ,2, . . . ) . 
/ v=l 

Finally the series 

( 3 ) AN SIN N X 

n= 1 

converges uniformly in [ — n, n], and so proves to be the Fourier series of a continuous 
function. 

. R e m a r k . By the quoted result of PLESSNER the series ( 1 ) converges almost 
everywhere on [ — n,n]. 

For the proof of the Theorem we need three lemmas. 

L e m m a 1. Suppose that all partial sums of the series . 

( 4 ) - ? R + J > N C O S nx 

a re non-negative for every x £ [ — n, ii\. Then the same is true for the series 

( 5 ) ^ + 2 B 2 „ C O S N X . 
n= 1 
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P r o o f . Let us denote the partial sums of (4) by 

bo 
"n W = 

So we have 

»»W = 2 cos vx, (« = 0 ,1 ,2 , ...). 
^ »= i 

3 
2 
2 iL, ] r 
p + 2 ' ^ 2 c o s v j = - / un(t)u„{x-t)dt 

v=l X J 

which, by the supposed non-negativity of w,,(.*), proves the statement of the lemma. 

L e m m a 2. Let {c„} be a decreasing sequence of positive numbers satisfying 

c„=o|^j . Then 

Z c v si sin vx ZK (#i = 1,2, . . . ) . 

This lemma represents a well-known result (see [3], Vol. I. pp. 182—183). 
The third thing we need is a theorem of P. TURAN, which we formulate as 

L e m m a 3. All partial sums of the series 

(6) l + J j ( - l ) " | ~ * ) c o s n j c 

are non-negative for every xfc[ — n, 7t]. 

Before going to prove the Theorem, we mention that the coefficients of (6) 
form a decreasing sequence satisfying 

x 
n 

with suitable c l t c 2 > 0 . 
Let now {¿r} be an arbitrary but fixed sequence of positive numbers with 

(7) c , » - * < ( - ! ) " 2 < c 2 « - ± 

r = 1 A r 

We introduce the notation 

«o = 4, ( « = 1 , 2 , . . . ) . 

Then for every natural number u we have by (7) 

(8) 

for any 0 if V= V(B) is large enough. 
As the next step we define two sequences {/r} and {wr} of natural numbers by 

induction on r. 
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Let /i = l and let m, be the least natural number satisfying the condition 
.mi , GN STI 1 

Z V = 1 A1 

The choice of m, is always possible by (8). 
Suppose now that the numbers /„ and mu are already defined for l < M < r - l . . 

Determine lr and mr by the conditions 
1. lr is the least natural number which is a multiple of / r_, and satisfying 

/,>/,.-

2. If lr is chosen as mentioned, mr is the least natural number satisfying 
mr , a0 , V 1 

Z v = 1 Ar 

The choice of mr is always possible by (8). Thus the sequences {/,} and {mr} are 
defined for every value of r S l . 

. Let now the trigonometric polynomials Ur(x) and Vr(x) be defined by 
^ mr' tltr 

(9) Ur(x) = Z avlrcosvlrx, Vr(x) = ^ ' a v i r s i n vlrx (/• = 1,2, . . .) . 
z v=l v — 1 

We shall show that 

(10) 

and 

(11) 

Z y U X x ) 
r = 1 

co , 
ZyK(x) r= 1 r 

are conjugate trigonometric series possessing the properties required in the The-
orem. 

First of all, observe that the series 

(12) ^ f l „ s i n / i x 
n=i 

has monotonically decreasing coefficients satisfying a„ = O by (7) and (8). 

Thus, using Lemma 2, we get that 
n 

(13) Z av s ' n v x ( « = 1 , 2 , . . . ) 
v=1 

holds for every x f [ — n, n\. On the other hand, we have 

(14) Vr{x) = - Z [g«vSinv^ + - ^ j J -

So one can deduce from (14), using (13), that 

(15) | F , ( x ) | < i ( * € [ - * , * ] ; r - 1 , 2 , ...)-. 
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holds. (15) means that the series (11) converges uniformly in [ — n, n]. Thus 

¿16) / M - i f K(.y) r= 1 Ar 

is a continuous function. By the choice of the sequences {/,.} and {mr}, Fr(x) and 
,Ks(x) do not contain common sines if r?±s. 

By the uniform convergence of (16) and the remark done before we have 

. ( 1 7 ) A„ = 

_1 
K 
0 otherwise, 

avlr if n = vlr, l ^ v g /;?,. 

where a„ denotes the nth Fourier sine coefficient of f(x). By (17), using the definition 
•of the sequences {a,,} and {/ r} we get the inequality 

,(18) a „ s O ( n = 1,2, ...). 

Now ( 1 8 ) means by a theorem of PALEY [5], that the Fourier series of f(x) 
.converges uniformly. 

A representation similar to (14) shows that 

U,.(x)^ 0 ( * € [ - * , * ] ; / • = 1 , 2 , . . . ) 

'holds. Indeed, by Lemma 3 and Lemma 1 all the partial sums of the series • 

•(19) • Z "N COS NX 
^ n = i 

;are non-negative for every —7c,7r]. Using this fact we get 
71 

<20) ¿ 1 jur(x)dx~, -i-o. 
— K ' 

which means by the theorem of Beppo Levi, that the series (10) converges a. e. 
,on [ — n, n] to an / ( x ) ^ 0 , f(x) 6 L[ — n, 71]. 

A similar argument shows that 

<21) / ( * ) - - ? - + 2"«, . 2 cos nx. 
n= 1 

f(x) and / (x) being given by conjugate Fourier-series and since /(x)£Z,?[ — n, n] 
Jfor every 0, it follows by known arguments that / (x) 6 L"[ — n, n] holds for 
«very 0. 

Now we note that the series (21) diverges unboundedly on an everywhere 
.dense set o.f second category in [ — k, n\ In fact 
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holds by ls\lr if rSs and by the choice of the numbers {/,} and {mr}. From this, 

noting that the numbers 2n —(s = 1, 2, ...) lie everywhere dense in [0, 2n], the 
s 

assertion follows. We quote the result that if a series of continuous functions diverges 
unboundedly on an everywhere dense set in [ — n, it], then the set of points where 
the series diverges unboundedly is of the second category in [— n, n]. For the proof 
see for example [6]. 

We conclude by remarking that for the choice nk = lkmk the non-negativity 
of the partial sums required in the theorem follows without difficulty. 
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