An example in the theory of Fourier series

By K. A. CORRADI and I. KATAI in Budapest

A. PLESSNER proved in [1] that if a trigonometric series converges on a set E with mE > 0, then its conjugate series converges almost everywhere on E. This fact was proved independently by J. MARCINKIEWICZ and A. ZYGMUND [2] too.

In the present note we are going to prove the following

Theorem. There exists a sequence $\{\alpha_n\}$ of non-negative numbers with the following properties. The series

(1)
$$\frac{\alpha_0}{2} + \sum_{n=1}^{\infty} \alpha_n \cos nx$$

is the Fourier series of an $f(x) \ge 0$, $f(x) \in L^q[-\pi, \pi]$ for every q > 0. The series (1) diverges unboundedly on an everywhere dense set of second category in $[-\pi, \pi]$. There exists an infinite sequence of natural numbers with

(2)
$$s_{n_k}(x) = \frac{\alpha_0}{2} + \sum_{v=1}^{n_k} \alpha_v \cos vx \ge 0, \quad (x \in [-\pi, \pi]; k = 1, 2, ...).$$

Finally the series

(3)

$$\sum_{n=1}^{\infty} \alpha_n \sin nx$$

converges uniformly in $[-\pi, \pi]$, and so proves to be the Fourier series of a continuous function.

Remark. By the quoted result of PLESSNER the series (1) converges almost everywhere on $[-\pi, \pi]$.

For the proof of the Theorem we need three lemmas.

Lemma 1. Suppose that all partial sums of the series

(4)
$$\frac{b_0}{2} + \sum_{n=1}^{\infty} b_n \cos nx$$

are non-negative for every $x \in [-\pi, \pi]$. Then the same is true for the series

(5)
$$\frac{b_0^2}{2} + \sum_{n=1}^{\infty} b_n^2 \cos nx.$$

Proof. Let us denote the partial sums of (4) by

$$u_n(x) = \frac{b_0}{2} + \sum_{\nu=1}^n b_\nu \cos \nu x, \qquad (n = 0, 1, 2, ...).$$

So we have

$$\frac{b_0^2}{2} + \sum_{\nu=1}^n b_{\nu}^2 \cos \nu x = \frac{1}{\pi} \int_{-\pi}^{\pi} u_n(t) u_n(x-t) dt$$

which, by the supposed non-negativity of $u_n(x)$, proves the statement of the lemma.

Lemma 2. Let $\{c_n\}$ be a decreasing sequence of positive numbers satisfying $c_n = 0\left(\frac{1}{n}\right)$. Then

$$\left|\sum_{\nu=1}^{n} c_{\nu} \sin \nu x\right| < K \qquad (n=1,\,2,\,\ldots).$$

This lemma represents a well-known result (see [3], Vol. I. pp. 182-183). The third thing we need is a theorem of P. TURÁN, which we formulate as

Lemma 3. All partial sums of the series

(6)
$$1 + \sum_{n=1}^{\infty} (-1)^n {\binom{-1}{2}}_n \cos nx$$

are non-negative for every $x \in [-\pi, \pi]$.

Before going to prove the Theorem, we mention that the coefficients of (6) form a decreasing sequence satisfying

(7)
$$c_1 n^{-\frac{1}{2}} < (-1)^n {\binom{-\frac{1}{2}}{n}} < c_2 n^{-\frac{1}{2}}$$

with suitable $c_1, c_2 > 0$.

Let now $\{\lambda_r\}$ be an arbitrary but fixed sequence of positive numbers with

$$\sum_{r=1}^{\infty}\frac{1}{\lambda_r}<+\infty.$$

We introduce the notation

$$a_0 = 4, \quad a_n = \left(-\frac{1}{2} \atop n\right)^2 \qquad (n = 1, 2, ...).$$

Then for every natural number u we have by (7)

8)
$$\frac{a_0}{2} + \sum_{v=1}^{V} a_{uv} > B$$

for any B > 0 if V = V(B) is large enough.

As the next step we define two sequences $\{l_r\}$ and $\{m_r\}$ of natural numbers by induction on r.

An example in the theory of Fourier series .

Let $l_1 = 1$ and let m_1 be the least natural number satisfying the condition

 $\frac{a_0}{2} + \sum_{v=1}^{m_1} a_v > \frac{1}{\lambda_1}.$

The choice of m_1 is always possible by (8).

Suppose now that the numbers l_u and m_u are already defined for 1 < u < r - 1. Determine l_r and m_r by the conditions

1. I, is the least natural number which is a multiple of l_{r-1} and satisfying

$$l_r > l_{r-1} m_{r-1}$$
.

2. If l_r is chosen as mentioned, m_r is the least natural number satisfying

$$\frac{a_0}{2} + \sum_{v=1}^{m_r} a_{vl_r} > \frac{1}{\lambda_r}.$$

The choice of m_r is always possible by (8). Thus the sequences $\{l_r\}$ and $\{m_r\}$ are defined for every value of $r \ge 1$.

Let now the trigonometric polynomials $U_r(x)$ and $V_r(x)$ be defined by

(9)
$$U_r(x) = \frac{a_0}{2} + \sum_{\nu=1}^{m_r} a_{\nu l_r} \cos \nu l_r x, \quad V_r(x) = \sum_{\nu=1}^{m_r} a_{\nu l_r} \sin \nu l_r x \quad (r = 1, 2, ...).$$

We shall show that

(10)
$$\sum_{r=1}^{\infty} \frac{1}{\lambda_r} U_r(x)$$

and

(11)
$$\sum_{r=1}^{\infty} \frac{1}{\lambda_r} V_r(x)$$

are conjugate trigonometric series possessing the properties required in the Theorem.

First of all, observe that the series

(12)
$$\sum_{n=1}^{\infty} a_n \sin nx$$

has monotonically decreasing coefficients satisfying $a_n = O\left(\frac{1}{n}\right)$ by (7) and (8).

Thus, using Lemma 2, we get that

(13)
$$\left| \sum_{\nu=1}^{n} a_{\nu} \sin \nu x \right| < K \qquad (n=1,2,...)$$

holds for every $x \in [-\pi, \pi]$. On the other hand, we have

(14)
$$V_r(x) = \frac{1}{l_r} \sum_{t=0}^{l_r-1} \left\{ \sum_{v=1}^{m_r l_r} a_v \sin v \left(x + \frac{2\pi t}{l_r} \right) \right\}.$$

So one can deduce from (14), using (13), that

(15)
$$|V_r(x)| < K$$
 $(x \in [-\pi, \pi]; r = 1, 2, ...)$

K. A. Corradi and I. Kátai

holds. (15) means that the series (11) converges uniformly in $[-\pi, \pi]$. Thus

(16)
$$\tilde{f}(x) \stackrel{\text{def}}{=} \sum_{r=1}^{\infty} \frac{1}{\lambda_r} V_r(x)$$

is a continuous function. By the choice of the sequences $\{l_r\}$ and $\{m_r\}$, $V_r(x)$ and $V_s(x)$ do not contain common sines if $r \neq s$.

By the uniform convergence of (16) and the remark done before we have

(17)
$$\alpha_n = \begin{cases} \frac{1}{\lambda_r} a_{vl_r} & \text{if } n = vl_r, \quad 1 \leq v \leq m_r \\ 0 & \text{otherwise,} \end{cases}$$

where α_n denotes the *n*th Fourier sine coefficient of $\tilde{f}(x)$. By (17), using the definition of the sequences $\{a_n\}$ and $\{\lambda_r\}$ we get the inequality

(18)
$$\alpha_n \ge 0 \quad (n=1, 2, ...).$$

Now (18) means by a theorem of PALEY [5], that the Fourier series of $\tilde{f}(x)$ converges uniformly.

A representation similar to (14) shows that

 $U_r(x) \ge 0$ $(x \in [-\pi, \pi]; r = 1, 2, ...)$

holds. Indeed, by Lemma 3 and Lemma 1 all the partial sums of the series

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx$$

are non-negative for every $x \in [-\pi,\pi]$. Using this fact we get

(20)
$$\sum_{r=1}^{\infty} \frac{1}{\lambda_r} \int_{-\pi}^{\pi} U_r(x) \, dx < +\infty$$

which means by the theorem of Beppo Levi, that the series (10) converges a.e. on $[-\pi, \pi]$ to an $f(x) \ge 0$, $f(x) \in L[-\pi, \pi]$.

A similar argument shows that

$$f(x) \sim \frac{\alpha_0}{2} + \sum_{n=1}^{\infty} \alpha_n \cos nx.$$

f(x) and $\tilde{f}(x)$ being given by conjugate Fourier-series and since $\tilde{f}(x) \in L^q[-\pi, \pi]$ for every q > 0, it follows by known arguments that $f(x) \in L^q[-\pi, \pi]$ holds for every q > 0.

Now we note that the series (21) diverges unboundedly on an everywhere dense set of second category in $[-\pi, \pi]$. In fact

$$\frac{1}{\lambda_r} U_r \left(2\pi \frac{l}{l_s} \right) \ge 1, \qquad 0 \le l < l_s - 1, \quad r \ge s$$

80

holds by $l_s|l_r$ if $r \ge s$ and by the choice of the numbers $\{l_r\}$ and $\{m_r\}$. From this, noting that the numbers $2\pi \frac{l}{l_s}$ (s=1, 2, ...) lie everywhere dense in $[0, 2\pi]$, the assertion follows. We quote the result that if a series of continuous functions diverges unboundedly on an everywhere dense set in $[-\pi, \pi]$, then the set of points where the series diverges unboundedly is of the second category in $[-\pi, \pi]$. For the proof see for example [6].

We conclude by remarking that for the choice $n_k = l_k m_k$ the non-negativity of the partial sums required in the theorem follows without difficulty.

References

- [1] A. PLESSNER, Über Konvergenz von trigonometrischen Reihen, J. reine angew. Math., 155 (1925), 15-25.
- [2] J. MARCINKIEWICZ and A. ZYGMUND, On the behavior of trigonometric series and power series, Trans. Amer. Math. Soc., 50 (1941), 407-453.
- [3] A. ZYGMUND, Trigonometric series. I-II (Cambridge, 1959).
- [4] P. TURÁN, Egy Steinhaus-féle problémáról, Mat. Lapok, 4 (1953), 263-275.
- [5] R. PALEY, On Fourier series with positive coefficients, J. London Math. Soc., 7 (1932), 205-208.
- [6] N. BARI, Trigonometric series (Moscow, 1961), p. 319 (in Russian).

(Received July 9, 1966)