
A remark on the theory of multiplicative functions 

By K . A. C O R R A D I in Budapest 

In [2] E. M. WRIGHT presents a proof of the prime-number theorem, which 
uses elementary methods and depends on ideas introduced by A . SELBERG in the 
theory of numbers. His method used there enables one to prove more general 
results of the same character concerning multiplicative functions. We call in the 
sequel a function /(я) , defined on the domain of the natural numbers, multiplicative 
if for coprime integers m and n the relation 

f(mn) =f(m)f(n) 

holds. In this note we prove a theorem concerning multiplicative functions of 
that kind. It can be stated as follows. 

T h e o r e m . Let f(n) be a multiplicative function, which takes the three values 
0, 1, — 1 only. Let к be a positive integer. Suppose that there exists a natural number /, 
for which l^k and (l,k) = 1, and the relation 

nSx n 
л = 1 (mod ft) 

is satisfied. Then for all и with lSu^t, (u,k)= 1, the relation 

Fu(xP 2 /(") = o(x) 
n Sx 

n = u (mod k) 
holds. 

We mention, that in the case k = \ , / = 1, when 

f(n)=ii(n), 

where ц{п) stands for MOEBIUS'S function, our result presents the prime number 
theorem. For the detailed elementary deduction of the prime number theorem 
from 2 u(n) — o(x), and for an elementary proof of the mentioned relation (and 

nSx 
thus of the prime number theorem) see [3]. 
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The proof of the theorem consists of two different parts. In the first part we 
prove the inequality 

.V 

<0 2 J 
(.v,k,= 1 1 

where <p{k) denotes EULER'S function, and in the second one we deduce from (1 ) 
the statement of the theorem. 

For the sake of completeness we give the proof in full details. The method used 
by us shows a great formal similarity to that of [2]. The difference between the two 
methods lies primarily in the fact, that we make use, besides the original formulas 
of SELBERG, of some further formulas closely related to them. In the paper we 
make free use of the terminology applied in [2]. Before concluding these preliminary 
remarks, we observe that the result of the paper does not seem to be obtainable 
by analytical methods, thus in this case elementary methods seem to go further 
than those of the theory of functions. 

Proof of the first part of the theorem 

We shall need the following lemmas: 

L e m m a 1. Let cj,c2, ... be a sequence of numbers, 

c ( 0 = 2 c , nSf 
and f ( j ) a function of t. Then 

2 c„m = 2 C(n) {/(«) - / ( „ + 1)} + C(x)/(M). IÎ X Ĥx— 1 

I f , in addition, €¡ = 0 for j<n{ and / ( / ) has a continuous derivative for then 

X 

2 c„f(n) = C(x)f(x)~ J C(t)f [t)dt. 
nmx „, 

For the proof of the lemma see [1], theorem 421, p. 346. 

Lemma 2. (SELBERG'S formula.) Let k be a positive integer. Then if 1 ^u^k, 
(u, k) — i, we have 

(2) Z A {n) log n + Z A (m) A (n) = x log .v + O (x). 
nurSjt <P (K) 

ti = u (mod k ) inn = u (mod k ) 

Here <p(k) stands for EULER'S function. For the proof see [4]. 

Le in m a 3. Let f(ti) be any multiplicative function satisfying the condition 

< log t dt+ 0(x log x), 

I / W M 1 
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for all values of the positive integer n. Then 

(3) F „ ( x ) l o g x - 2 m A (n)Fu„-A^\ = O(x), 
« i l \n

 ) 

where A in) denotes VON M A N G O L D T ' S function, and n~ 1 stands for the number m 
determined by the conditions 

mn = 1 (mod k), l^Sm^Sk. 

P r o o f . We start with the obvious formula 

Hence 

2" /(«) log4 = O(X). 
11 ̂ X " 

n = u (mod fc)-

F „ ( x ) l o g x - ^ / ( " ) l o g " = Fn(x) l o g x ~ 2 f ( P ) ]ogpFHP~. [ - + 0(x) = O(x). 
nSx pSx \ P ) n = u (mod ft) 1 

Now considering that 

A(p) = l ogp and 2f(n)A(n)Fun-1 [ - = O(x), 
ltS:X,n±p \n J 

we get at once the statement of the lemma. 

After these preliminaries we perform the first part of the proof, i. e. the proof 
of the inequality (1). 

If we replace n by m and x by xjn in (3), we have 

F. l o g ^ - Z m A W F ^ = O(x). 
n 

Hence 

| F „ ( X ) log x - Z / ( « ) ^ («)Fun-, ( - J J log x + 

+ Zf(n)A{n)\Fm-. U ) l o g - - ^ f ( m ) A ( m ) F u l = 
nSx { \K ) ft x \ mn J) 

m ^ — n 

= 0(xlogx) + 0\x 2 = 0(x log x), 
I .Sj n J 

that is 

Fu(x) log^ x = 2 / ( « ) Mn) log nFun-. f - | + 
n i l { n ) 

• + 2 f{m)f(n)A{m)A(n)Fum-in-\-^-\ + 0{x\ogx), 
mnsx {mn) 
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|F„(x)| log 2x == 2 2W 
1SOSk nSx 
(",k)=l 

F„„-i I — 
It 

-f O(xlogx) , 

,(v) 

whence 

(4) 

where 

and 

by (2). 

We now replace the inner sum on the right-hand side of (4) by an integral. 
To do so, we shall prove that 

{ A («) log n+ 2 A(h)A(k), if n = v (mod k), 

0 
hk = n 

otherwise, 

„ • 4 " <p(k) 
x l o g x + 0 (x ) 

(5) 2*1 
(v) 

2 
cp(k) h- I:) log tdt + 0{x logx). 

Noticing the fact, that if v runs through a restricted system of residues mod k, 
then the same is true of uv~l for an arbitrary u with (u, k) = 1, which means that 
(4) and (5) together will conclude the proof of (1). 

We remark that if 0 

I \Fm..(01 - IFm-,(/')! I •(') - Fuv-,(Ol = • 

= |(F„,-,(0 + GWJ- ,(0) - ( F u u - , ( 0 + (?„„-,(/')) - Gm- . (0 + G„ -1(/') | =S 

where 

Ifgt n = oy~ 

and that Huo-i(t) is a steadily increasing function of t, H,w-i(t) = 0(t). Using 
lemma 1, we obtain that 

(6) 
j-AH~> (^r)l = 

= 0 U = O(xlogx). 

X 

M 

jSI n 

Now we prove (5) in two steps. First if we put 
n 

C l = 0 , c„ = a(nv)~-^ J log tdt, f(n) 
n- 1 
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in the lemma 1, we have 

.S i <P(k) 

M 

/ l o ; log t dt = 0{x) 

and 

2 < F„„-i • — 2 (p{k) lÉÁkx •1:1 / «-I 
log t dt = 

(7) =, j^íK-* («JhK"1 (̂ frJIK̂ -̂1 (M)= 

= 0
 ( j - i n K" (i) {^tt)})+0(x} = °(xlgx) 

by (6). 

Next 

ilA-" /'- I;! 
n-i n- i 

log t dt 

log t dt 5 
* / I M Í ) I - M T ) I n-1 

Hence 

2 

ft X 

n-l 1 
log t dt = 

(8) 

= ^ " ' ( 7 ) - H«> ' ' ( ^ T r ) } ) + 0 l 0 g X ) = 0 ( x l o g x ) . 

Combining (7) and (8), we get (5). 
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Proof of the second part of the theorem 

First we give our inequality (1) another form. We introduce the functions 

V„(0 = e~tFv(eS), 1 *v*k,(v,k) = L 

If we write x = e(, t = xe~n, we have 
i, 

* i i C 5 
J\Fv(^)\logtdt = xf\VM\^~ri)dri = xf\VM\JdCdn = x J'J \Vv(r,)\drj dt 
1 1 0 0 >1 0 0 

by interchanging the order of integration. Then our inequality (1) becomes 

'
 i ? > 

(9) Z ff\VM\dndt + 0(£). ' 
(», fc)=l 0 0 . . _ . . * 

The functions Vv(0 are bounded as £ — Hence we may write 

« 

a„ = Em| Vv(0\, P„ = I™ y [I VM\ dri, 
{-»ON { - • » S J 

o 
since both these upper limits exist. Clearly 

(10) \VM)\^o + o{\), 

and f . 
J \VM\dn^Pvt + o(Q. 
o 

Using this in (9), we get , 

i 

't2\Va(0\ — tr^IT Z [{M + omdZ + 0 « ) = (2-Jpr Z fi. + o(t2), <PW vlSk J (p^K) vtsk 
(», *) = 1 0 (v, k) — 1 

and from this 

Z Pv + 0( 1). 
(p \JC) vmk 

Hence 

(11) «"-¿T 2 Pv 
<P ( K ) VSK 

o>, *)=i 
In the sequel, let 

(12) a = m ax a„. 
lSuSfc 

(", k ) = l 
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To the completion of the proof it is enough to show that a = 0. We suppose 
that a > 0 and prove that this leads to a contradiction. For all v in question 

holds by trivial arguments. So (11) gives that 

(13) a 5 — U 2 P» = -4?T 2 
<p(k) vsk (p{k) <fSi 

(v,k)=l (v,k)= 1 

and this can only hold if for all values of v 

Pv =  av = <* 

is fulfilled. Now from the assumption a > 0 we shall derive that 

for the index / occurring in the theorem, and this will give a contradiction in the 
inequality (13). 

For the proof we require two further lemmas. 

L e m m a 4. Let the meaning of I be that of the theorem. Then there is a fixed 
positive number A, such that for every positive , £ 2 = £, we have 

Î2 
\j V ^ d ^ A . 
ii 

P r o o f . If we put x — e^, t=.e*, we have 

J J ' n Sx n X 
0 1 n = /(mod k) using the condition for f(n) required in the theorem, and applying lemma 1 with 

, = l™ 
"" 1 o, 

= {/(«), if B S / ( m o d f c ) , a n d I 
" 1 " otherwise • y w t ' 

Hence we get for the numbers f , and <?2 that 
<2 «2 {l 

[ / V M d n | = |/VM)dn~ f Vl ( t f ) dt]\ S 
o 

{2 
5 I f v ^ d n l + l f v ^ d n l = 0(1) + 0 ( 1 ) = 0(1), 

0 0 . 

and this gives the statement of the lemma. 
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L e m m a 5. If rio>0, and Vl(rio)=0, then 
a 

0 

where the meaning of a. is the same as in (12). 

P r o o f . We start with a simple remark. If we put Tu(x) for 

2 i 
nSx 

n = u(mod k) 

then as one can see it without difficulty these functions satisfy the relation 

Tl(x)\ogx+ 2A(n)Tln-i\-\=^rx\ogx+0(x). 
nSx \n) K 

Combining this with (3) we have 

(14) {Ti(x) + F,(x)} logx + 2A(n)Q,„-1[-] = | x l o g x + 0 ( x ) , 
nmx V » ) K 

where 0,n-i{y) stands for 
2 {!-/(«)/("»)}• 

m^y 
m = ln~ 1 (mod k) 

If we take into account that the function T,(x) + F,(x) steadily increases, and 
that for &„-.(j/) 

holds and this function has the same monotonity property as the function mentioned 
before, we get that for any positive x0 and xssxg 

0 S {T,(/) + F, (x)} log x - {T,(xq) + Ft(x0)} log Xq log x - x0 log x0} + O(x). 

From this we deduce that 

(15) \F,(x) log x - F(x0) log x01 ^ 1 {x log x - x0 log x0} + O(x) 

by virtue of the trivial relation 

r , (x) = ! + 0 ( 1). 

We put x = e'l0+x, x0—e''0, so that F,(x0) = 0. We have, since O S i S o : 
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by (15), and so 
a • et 

J |K l ( , 0 + x)| A 4 / + = + ' 
0 0 

which gives the statement of the lemma. 
We now write 

2Ak + (4k— l)a2 

. 5 = 2koi >a' 

take any positive number ( and consider the behaviour of V,(rj) in the interval 
+ — a. By the definition of V,{ri), this function can change sign in the 

interval mentioned above only in the case, if there is an t\0 lying in (£, £ + <5 — a) 
for which VlQio) = 0, owing to the fact that f(n) takes the three values 0,1, —1 
only. Hence in our interval, either V,(rio) = 0 for some f/0 or F,(>?) does not change 
sign at all. In the first case, we use (10) and lemma 5, and have 

£ + •5 10 1o + a ; + s 

J WM\dn=f+f + J I 
C C 10 lo+ 01 

s a(r]0-Q + ^jc0i2+a(C + S-r]0-a) + o(l) = 

= a ^ - ^ l - ^ j a j + o ( l ) = 

for large where a' = a |l— — < a . In the second one we have 

C+S-a c+i-a 

/ \VM\dri = \ f Vt(r,)dr,\^A 

by lemma 4. Hence 

C+a i+s-a t+s 
f \Vt(r,)\ dr, = J + / \V,(rj)\dti^A + a2. + o(l) = a"<5 + o(l) , 
C C t+i-« 

where 

„ A + tx2 ( 2kA 4- 2ka2 ) . i, f , 1 ) «1 

Thus we have always 
/ \V,(t,)\dn^a'S + o(l) 
c 
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where — as ( —«. if M = , 

f I v, Ш d>1 = 2 f . IУ, (n)I ^ + / 1 á 
0 m = 0 т» М<\ 

Hence 
=§ a'M5 + o(M) + 0(\) = <x'Z + o(0. 

f 

Pi = lim 1/ \V,(n)\dn S 
{->~ C J o 

and this inequality gives the contradiction as desired. So our theorem is proved. 
Befoie finishing the paper, we mention that the condition (/, k) = I is essential in 

the theorem, as the following example shows. Let f(n) be the function defined by 

f(n) = i f " s l ( m o d 2 ) , 
u(m)> if n = 2xm, m = l ( m o d 2 ) , 

where x i
n

) ¡stands for the non-principal character mod 4. It is easy to see that the 
series 

y Í^L 
/i = í « 

/ 1=2 (mod 4) 

being an alternating series of Leibniz type, converges and so for its partial sums 

n ax '< 
n = 2 (mod 4) 

holds. On the other hand it follows from the construction that 

2 / ( « ) = 2 /.(«) = 2 i = £+o(i)*o(x). 
II 0x n^X n0X ^ 

n s 1 (mod 4) n = l (mod 4) n = l (mod 4) 
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