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1. Introduction 

In his paper [9], VON NEUMANN introduced the notion of a spectral set for an 
operator T o n a Hilbert space. He proved that each spectral set is a superset of 
a minimal spectral set, but aside from the trivial case in which the spectrum of T 
is spectral, there are no other known minimal spectral sets. In the present paper 
we obtain a necessary and sufficient condition for the minimality of certain spectral 
sets of finite-dimensional (or compact) operators. A corollary is that the disk 
l z | â [ T | is a minimal spectral set if T is compact and completely non-normal. 
An example shows that the result is not true without the adjective "compact". 
A few other results, based on an interpretation of VON NEUMANN'S work as an ex-
tension of the Schwarz lemma, are also included. 

2. Preliminaries 

We begin with a summary of the relevant results of [9]. 
If T is a (bounded linear) operator on a complex Hilbert space, a closed set 

X is a spectral set of T if X contains the spectrum cr(T) of T and if 

!!«(^)ll — IMLv = sup {|w(z)l: z ^ x j 

for each rational function u(z) with poles off X. Any closed superset of a spectral 
set is again spectral, and, less trivially, any spectral set contains a minimal spectral 
set, i. e., a spectral set no proper closed subset of which is spectral. For example, 
if Tis normal, then a{T) is a minimal spectral set of T. (A result of HALMOS implies 
the same conclusion if T is merely subnormal [4].) There is exactly one spectral 
set of T, or, equivalently, a(T) is spectral for T, if and only if the intersection of 
any two spectral sets of Tis spectral. In general, the spectrum o f T i s not big enough 
to be spectral for T. Thus if X is spectral for T and X is "thin" in the sense that 
rational functions with poles off X are uniformly dense in the continuous functions 
on X, then T must be normal. 

') The results of this paper constitute a portion of the author's thesis written under the super-
vision of Professor ARLEN BROWN at The University of Michigan. 
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The disk |z| g || I'll is always a spectral set of T. This result is equivalent to the 
assertion that a half-plane is a spectral set of any T whose numerical range W(T) — 
= {{Tx,x): ||A'|| = 1} is contained in that half-plane. 

Finally, let us remark that as a consequence of the identical relation \\(T—OLI)X\\2 

—1|(/ —aT)x||2 = (1 — |a|2)[||7a||2 — ||x||2], we have for 9>a(z) = ( z - a ) ( l - a z ) " 1 

( | a | < l ) : 
\\<px(T)\\Sl if \\T\\^l, and | K ( r ) | | = 1 if | | r | | = l. 

3. Functions of a contraction 

The classical Schwarz lemma is concerned with functions analytic in the open 
unit disk D. If we identify each z£Z) with the operator z-I we obtain a natural, 
embedding of D into the set 3) of proper contractions on the Hilbert space H. 
It is reasonable to expect that the conclusion of the lemma is valid for all 
This is essentially what VON NEUMANN proved. 

T h e o r e m 1. (Schwarz lemma.) Let H be a Hilbert space, 3> the set of proper 
contractions on H. If f is analytic in D, f(0) = 0 and | | / | | D ^1 , then | | / ( r ) | | ^ || 2 1 
for each Moreover, equality can hold for some Tu£!3 only if f( T) = y- T for 
some constant y of modulus 1. 

P r o o f . Note that if TZ.3), t h e n / i s analytic in a neighborhood of o(T) so-
that there is no difficulty in defining/(T). Now if T£<2), then by VON NEUMANN'S. 
theorem we have 

ll/(T)ll—sup {| /00| : | z | s | | r | | } . 

and since / (0) = 0, the usual version of the Schwarz lemma implies that the right, 
member of this inequality is ^ | |T | | . Moreover, we can have | | / ( r ) | | = I^U 
for some T£ S> only if there is a z0 with |z0| = | |r | | < 1 and |/(z0)| = | |r | | . This occurs-
only if f(z) = y-z for some constant y of modulus 1. 

C o r o l l a r y 1. Let T be an operator, X a closed set containing o(T), and let 
H be an interior point of X. If ||w(r)|| ^ \\u\\xfor each rational function which vanishes-
at ¡x, then X is spectral for T. 

P r o o f . Let D be a rational function with ||y||x = 1. We claim that ||u(R)|| ^ 1 . 
If u(/t) = 0, this is true by hypothesis, otherwise v(n) — a has modulus less than 
1 by the maximum principle, so that cpjz) is a conformal map of the disk D onto-
itself. Then u(z)=<px(v(z)) is rational, vanishes at ¡.i, and has bound 1 on X. Hence 
u(T) is a contraction. But then, so is v(T) = (p~'(u(T)). 

C o r o l l a r y 2. Consider the "two-dimensional shift" A2 whose matrix relative-
to an orthonormal basis is 

Then ||a + M=i{|/?|+y4|a|2+|/}|2}. 
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P r o o f . We have = 1 for all | a | < 1. Since 

<?Mi) = (A2-a)(l-aA2)-1 = (A2-a) (1 + aA2) = - a + (l - \a\2)A2, 

this gives 

M 2 - a ( l - | a | 2 ) - i | | = ( l - | a | 2 ) - i . 

Put X = a(l — |a|2)~1 and compute 

= y { l + V W + O to arrive at 

This yields the proposition for /MO. If /? = 0, the result is trivial. 
According to the Sz.-Nagy—Foia§ theory of contractions, a contraction T 

is completely non-unitary if T has no reducing subspace restricted to which T is' 
unitary. A compact contraction is completely non-unitary if and only of its spectrum, 
lies in D. (This follows from the fact that if |A| = ||>4|!', then Ax = Xx is equivalent 
to (Ax, x) = (Xx, x) and therefore to A*x=Xx.) The (unique, strong, minimal) 
unitary dilation U— JXdE; of T has spectrum equal to the unit circle dD, and f o r 
each x ^ O in the domain of T, Lebesgue measure on the circle is equivalent to 
the measure (E(-)x, x) [6]. 

T h e o r e m 2. Let T be a compact completely non-unitary contraction. If f is-
analytic in]z\< 1 and bounded by 1 there, then \\f(T)\\ = 1 only i f f is an inner function. 

P r o o f . First of all, since T is completely non-unitary, the operator f(T) is-
well-defined for each bounded analytic function and for x, y in H, 

(f{T)x,y) = (f(U)x,y) ; 

where U is the unitary dilation of T [7]. Secondly, it is elementary that any compact: 
operator attains its bound. 

Now suppose that f(T) has norm 1, where / i s analytic and of bound 1 in \z\ < 1.. 
Replacing/(z), if necessary, by ^ ( / (2 ) ) , where a =/(0) , we may suppose that /(0) = 0 . 
Then f{T) is compact and so we can choose a unit vector x in H so t h a t / ( T ) x has-
norm 1. Then 

1 = II/(2>il2 S ||f(U)x\\2 = /\f(X)\2d(Exx, x). 

Since j / ( A ) | ^ l on dD, this implies that \f{X)\ has the value 1 on dD almost every-
where with respect to (E(-)x, x). By the result referred to above, this in turn implies, 
that / has modulus 1 on dD almost everywhere with respect to Lebesgue measure. 
This however is exactly the requirement the / b e an inner function. 

R e m a r k . Using a result of HAVINSON [3, Theorem 2. 5] a stronger veision. 
of Theorem 2 can be obtained. Under the same hypothesis on / and T one can show-' 
t h a t / i s a Blaschke product with only finitely many zeros. 
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4. Completely non-normal operators 

We call an operator T completely non-normal if T has no reducing subspace 
restricted to which T is normal. Any operator T is the direct sum of a normal operator 
N and a completely non-normal operator T0 (cf. e. g. [10]). It follows that a closed 
set X is spectral for T if and only if X is spectral for T0 and X contains o{N), so 
the theory of spectral sets reduces to the study of completely non-normal operators. 

If T is completely non-normal and i//(z) = (az + b)(cz + d)~1 is analytic on 
•a{T), then i p ( T ) is also completely non-normal. Hence the class of completely 
non-normals is closed with respect to translation, inversion, adjunction, and scalar 
multiplication. It is not however closed with respect to products or sums. 

If d i m / / ^ 3 , the notions of completely non-normal and completely non-
unitary are distinct. I f / / is two-dimensional there are essentially only two completely 
non-normal operators as the following theorem shows. 

T h e o r e m 3. Let T be a completely non-normal operator of norm I on a two-
dimensional space. Either T = a+ [1A2 with |/?| = 1 — |a|2, or there exist unit vectors 
x , , x2 and scalars , l2 such that Txi = / ¡ x ; . In the second case the following relations 

.are valid: 

Observe that if T is the two-dimensional completely non-normal operator 
with two eigenvalues and norm 1, then for 'any function / analytic in D, the above 
theorem implies that f(T) has norm 1 if and only if 

Consequently, if / also has bound 1 on D, then the Schwarz lemma implies that 
/ is a conformal map of D onto itself. It is easy to see that the same conclusion 
is also valid for the other two-dimensional completely non-normal operator. We 
record these facts as a 

C o r o l l a r y . Let T be a completely non-normal operator of norm I on a two-
dimensional space. Then the only non-constant functions analytic in D which satisfy 

are the conformal maps of D onto itself. 

We conclude this section with a decomposition theorem which, although 
it does not appear in the literature, is probably known to specialists. Consider 
a compact set X containing the spectrum of an operator T, and suppose that X is 
the union of two non-empty disjoint sets X, and X2. Put 

where y is a rectifiable path surrounding Ar
1 and containing X2 in its exterior. Then 

/ is analytic on X, identically 1 on Xx and identically zero on X2. Put E=f{T). 

. ( i ) ( M < X , , X 2 > ! ^ I , 

(ii) i\-\(x„x2)\2 = K ^ - A . K 1-M2)-M-

I ( / ( ^ - / ( ¿ o K i - z a , ) / ^ ) ) - 1 ! = K ^ - ^ H i - ^ ) - 1 ! -

\\f(T)\\ = \\f\\D=l 



Minimal spectral sets 97"-

T h e o r e m 4. If X is spectra! for T, then E is a self-adjoint projection, the range 
of E reduces T, and X, is spectral for the restriction of T to E(H). 

P r o o f . . The operator E is idempotent and commutes with T [2] so that it 
suffices to show that E is self-adjoint and that X{ is spectral for T\E(H). 

The first assertion is almost trivial. Thus by approximating the integral defining 
/ , one sees that / is the uniform limit on X of functions which are rational and 
bounded on X, hence 

ll£|| = ll/(T)ll = ll/llx= 1-

It remains only to observe that an idempotent of norm 1 is necessarily self-adjoint; 
this is straightforward and we omit the details. 

It now follows that Hl =E(H) reduces T. To prove that Xx is spectral for 
Tt = T\HX, let u be a rational function with poles off X,. Set 

n 1 fu(A) 

y 

where y is the path used to define E, and note that v(z) is a uniform limit of functions 
which are rational and bounded on X. Also 

and so 
I W ^ I N N ^ M U , . 

Now use the fact that u(Tt) = v(T)\H1 (see [2, p. 574] for example) to conclude 
that IHr j I l s l l i / l l * , . Thus X, is spectral for T , . 

C o r o l l a r y 1. If the spectrum of T consists of a single point, in particular, 
if T is quasi-nilpotent, then each minimal spectral set of T is connected. The same 
conclusion is valid for any completely non-normal operator if dim but is other-
wise false. 

Proof . The first assertion is clear, and the second follows from the fact that 
if £ is a self-adjoint projection with one-dimensional range, and if E commutes 
with T, then T is normal on the range of E. 

To complete the proof observe that the set 

X={z: | z | ^ l } U { z : | z - 3 | s l } 

is not connected, and is spectral,for the completely non-normal operator T = A 2 ® 
(B(A2 +3). We will prove later that Xis in fact a minimal spectral set for T. 

C o r o l l a r y 2. If the operator T is irreducible, then each minimal spectral set 
of T is connected. 

There is another consequence of Theorem 4 which J . STAMPFLI pointed out 
to me. To state this, recall that an operator Ton H is subnormal if T is the restriction 
to H of a normal operator N acting on a space Kz> H. 



'98 }. P. Williams 

C o r o l l a r y 3.. If T is subnormal and if a(T) = oy U a2 with <r, and a2 non-
empty and disjoint, then T can be decomposed into a direct sum T= T, © T2 of sub-
normal operators with — (/=1,2). 

P r o o f . The spectrum of a subnormal operator is spectral [4]. 
In the next section we will be interested in determining which spectral sets 

are minimal. The general problem of course reduces to the case of a completely 
non-normal operator. By further restricting attention to irreducible operators, 
the preceding corollary allows us to consider only connected spectral sets. It is 
this latter problem we will study, not in complete generality but with the additional 
assumption that the sets in question have nice boundaries. 

5. Minimal spectral sets of completely non-normal operators 

In the remainder of this paper G will denote a bounded region (open, connected 
set) in the plane; G has finite connectivity n, and the boundary dG of G is the union 
of n disjoint, closed, rectifiable Jordan curves. We assume that these curves are 
oriented in the usual positive sense with respect to G. 

B(G) will denote the algebra of functions analytic and bounded in G; Bt(G) 
consists of those f£B(G) whose norm | | / | | = | | / | | c = sup {|/(z)|: z6(7} does not 
exceed 1. 

Our main result depends on a theorem of HAVINSON concerning extremal 
problems in the region G. To state this theorem we introduce the following definition 

n 

(here dG = \J yt, and y, is the outer boundary of G). 
;= I 

D e f i n i t i o n [3]. Let / b e analytic in G. Then f£Ep(G) (p> 0) if there is a 
n 

sequence of closed rectifiable Jordan curves Tk = [J yk such that 
t — 1 

(1) y'i lies inside and yk (i = 2, ..., n) contains inside it for every k, 
(2) y l - y i as ( / = 1 , 2 , .. . ,«), 
(3) the lengths of the r k are uniformly bounded, 
( 4 ) s u p / | / ( z ) | p | i / z | < ° o . 

k j-k 

The space Ep(G) is obviously a generalization of the classical space Hp to multiply 
connected regions, and most of the classical results have analogues in Ep(G). For 
example, any Ep function has boundary values (for approach in an angle) almost 
everywhere with respect to arc length, and the function itself can be written as the 
Cauchy integral of its boundary values. The F. and M. Riesz Theorem is also valid 
in Ep: If / € £ „ has 0 boundary values on a set of positive arc length then / must 
vanish identically. 

T h e o r e m 5 . (HAVINSON) Let a>(X) be-summable on F = i)G. Then 

(1) sup I \'f(X)oj(A)d}\ = inf f \co(X)-<P(X)\ds. 
/€B,(C)r «€£i(C)r 

(2) The infimum on the right is always attained by an extremal function <P € ES(G). 
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(3) The supremum on the left is attained by a function f^B^G) and, moreover, 
f is unique to within a factor e'a provided co(A) is not the boundary value of any 
El function. 

(4) A necessary and sufficient condition for f <z Bl and i> to be extremal 
functions is that almost everywhere on T, 

f(A) [w (A) - <2> (2)] dA = eix\co (A) — <P(A)\ds 

where a. is a real constant. 

To conclude these general considerations, consider the situation in which 
our region G contains the spectrum of an operator T. Then for any g£B(G) we 
can fotm the operator g( T) by the Riesz—Dunford functional calculus. If g is actually 
analytic on G, then g(T) is given by the integral 

(g(T)x,y) = -^.jg(X)(Ri(T)x,y)cU (x,yeH) 
r 

The same formula is valid for any g£B(G). This is a consequence of the following 
facts: 

(1) If gdB(G), then g = lim g„ where the g„ are uniformly bounded and 
analytic on G, and the limit is subuniform in G. 

(2) If {g,,} is a sequence of uniformly bounded analytic functions which 
converges to g subuniformly in G, then for any function co(A) summable on T 

jgn(A)co(A) dA+Jg(A)(o(A)dA (see [3]). 
J' r 

We begin now the task of applying the preceding function theory to the study 
of the minimal spectral sets of a fixed completely non-normal operator T on a 
finite-dimensional Hilbert space (the infinite case will be discussed later). The connec-
tion is made possible by the fact that G can be spectral for T only if a(T) is wholly 
contained in G: 

T h e o r e m 6. ( S Z . - N A G Y — F O I A § [8]) Let S be the closure of a simply connected 
region bounded by a Jordan curve, and assume that S is spectral for an operator A. 
If-A £dS, then Ax = Ax if and only if A*x= Ax. 

C o r o l l a r y . If G is spectral for T, then a(T)<zG. 

P r o o f . Write £=_}>! U y 2 U ... U yn, and let Gl,G2, Gn be the components 
of the complement of G. We may assume that 9° £ G^. Then the complement Gx 
is the closure of a simply connected region bounded by the Jordan curve yx, and 
moreover, G[ is spectral for T because G\~S)G. Hence by Theorem 6, o(T) cannot 
meet y , . 

If 2 ^ / c ^ / i , choose zk6Gk and let cok(z) = (z — zk)~1. Then <pk(T) is completely 
non-normal'and cpk(Gk) is spectral for <pk(T). Applying the theorem we conclude 
that a{(pk{T)) = q>k(a{T)) does not meet (pk(yk), that is a(T)f]yk = q>. 

R e m a r k . The proof of Theorem 6 given in [8] uses unitary dilations, but 
there is a more elementary proof. Thus if S is the unit disk the result is a consequence 
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of the fact that if y£dS then both Ax = Xx and A*x = 2.x are equivalent to (Ax, x) = 
= ?.(x, A). In the general case the set S is the image of D under a function / which 
is 1 — 1 and continuous on D, analytic in D. Then f~[ is the limit of a sequence 
of polynomials which converge uniformly on 5 and because Sis spectral for A, f~'(A) 
is a contraction. The assertion about A and X then reduces to the same assertion 
about f~\A) a n d / - ' ( A ) . 

R e m a r k 2. The preceding corollary is not valid under the assumption that 
T is completely non-unitary. For example, T=A2@X0I is completely non unitary 
if k0 = \\A2. + 1II — I • Also X0 belongs to <T(T) and X0 lies on the boundary of the spect-
ral set 

5 = {z: | 2 + I | S M 2 + 1||}. 

(Incidentally, the same example is the basis for our earlier remark that the notions 
of completely non-normal and completely non-unitary are distinct as soon as 
dim Wis3.)-

T h e o r e m 7. Let T be completely non-normal and let G be rectifiably bounded 
as above. Then G is spectral for T if and only if 

(1) <t(7-)CG, 
(2) max {||/(7)|| : / € S , ( C ) } s l. 

// /(6 G is fixed, then (2) is equivalent to 

(T) max {|!/(r) | | : / € 6 , (C) , / ( / ; )= 0}=£ 1. 

P roof . We have just seen that (1) is necessary. The necessity of (2) follows 
from the facts that (a) the rational functions with poles off G are subuniformly 
dense in B(G) and (b), B,(<7) is a compact subset of B(G) for this topology so that 
the continuous functional/—||/(T)| | attains its supremum over B^G). The sufficiency 
of (1) and (2) are obvious, and the equivalence of (2) and (2') is a standard application 
of Corollary 2 of Theorem 1. 

The next result gives a necessary condition for certain spectral sets to be minimal. 
(Here the operator A is quite arbitrary.) 

T h e o r e m 8. Let X be a minimal spectral set for the operator A and assume 
that a(A)a int .V. If 6int X, then there is a function f analytic in int X with 
/(/t) = 0 and 

II/(-4)11 = s u p {|/(z)|: z 6 int X}. 

Proof . We may assume that int X is connected. Choose a point a 6 int X with 
a^a(A) U {p} and put 

X„ = {z: ¡z —£?2~ 'V/}0 in t X (/;= 1, 2, ...) 

where d is the distance from a to a(_/()U{^}. Then a(A)a int X„ and Xn^X. 
Since X is minimal for A, it follows that X,: is not spectral for A, and since ^ € int X„, 
this in turn implies that there is a rational function un(z) with poles off X,. such that 

= 0, ||i/„(>f>|| ^ = "1. 
Now the functions u„(z) form a normal family in int X minus the point a, and 
hence a subsequence u„k converge to a limit function/uniformly on compact subsets. 
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It is easy to see that a is a removable singularity of / and hence / 'extends to be 
analytic in int X. Then / i s bounded by 1 vanishes at z = p and 

• . ||/(,4)|| = lim |jV.(/!)i| a: 1 
k 

because ;/„k—/ uniformly on a (A). 
We are finally able to prove the principal theorem. 

T h e o r e m 9. Let G be rectifiably bounded and let T be completely non-normal 
as above. Fix Then G is spectral for T if and only if 

(1) <y(T) c G, 
(2) max {||/(70ll : /€Ä1(C) J /(A i) = 0} s i . 

Moreover, G is minima! for T if and only if this maximum is 1. 

Proof . In view of Theorems 7 and 8 remains only to prove the sufficiency 
of the minimality condition. For this, let / £B , (G) be an extremal function with 

f(p)~0 and | | / ( r ) | | = | | / | | c = l. Since the underlying space-is finite-dimensional 
we can choose unit vectors x and y so that (f(T)x, y)= l. Now any proper closed 
subset of G which contains a(T) fails to contain some point of G and hence is 
contained in a set of the form 

S={z£G:\z-a\^s} (aeG1;£>0). 

Hence to prove that G is minimal, it suffices to show that 5 is not spectral for T. 
We make use of the fact that dS = dGUyn+l where y„+1 is a circle contained in G. 

If S is spectral for T, then it follows from Theorem 7 that / is an extremal 
function for the problem 

sup j| jg(X)a>(X)d^, giB^ntS), gQ.0 = 0) 
as • 

where co(z) = (Rz(T)x, y). By HAVINSON'S theorem there is a function </>££,(int S} 
such that almost everywhere on dS, 

/(A) (to (A) - 0 (A)) i/A = e1,* \ a> (A) - <P (A) | ds 

where a is a real constant. This in turn implies that |/(A)| = 1 on the subset Z of 
dS consisting of those A for which co(X)^ $(A). Assuming for the moment that 
we can show that Z intersects yn+l it will then follow from the maximum principle 
t h a t / i s constant. However since/vanishes at p and | | / ( r ) | | = 1, this is a contradic-
tion. In short, we need the following 

Lemma. The function co(z)=(Rz(T)x, y) does not coincide on y„+1 with 
a function of class £ ](int S). 

P r o o f . The spectrum of T consists of finitely many interior points of 5" and 
so we can choose a finite number of open disks Df such that 

5 i n ö J = 0 if i ^ j , ^ c i n t S , er(T)c:UZ);. 

Let 5, be the (rectifiably bounded) set obtained from S by deleting these disks and 
let «5 be the boundary of U D t . Then dS, =dSÖ yn+l U<5. 
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Suppose now that co — <P on yn+1, where $ is a function of class £ t ( i n t S). 
Since CD is bounded on SL, w^E^rA £,). Also <?6£,(int 5 , ) and so by the Riesz 
theorem we can conclude that co = on d S , . In particular, co — <Z> on S. This however 
is impossible, for on one hand 

Jf(l)o)(l)dl = 0 
a 

(because the integrand is analytic in U Dt), while on the other hand 

Jf(X)0}(A) dk = 2ni(f(T)x, y)* 0 
0 

because 5 is a path in G surrounding a(T). The assumption co = <Z> on y„+ [ therefore 
leads to a contradiction and the lemma is proved. 

C o r o l l a r y 1. The unit disk is a minimal spectral set for any completely non-
normal operator of norm I. 

P r o o f . If ju6o-(r), then \p\ < 1 and so the function (pll(z) = (z — fi) (1 — / iz) - 1 

belongs to BX(D), vanishes at z = /t and ||<pM(r)|| = 1. Since D is spectral for T, 
it follows from the theorem just proved that D is in fact minimal. 

C o r o l l a r y 2. (Converse of the Schwarz Lemma.) Let X be a dosed subset 
of the closed unit disk D which contains 0. If |i('(0)| S ||i/||x for each rational function 
u(z) which vanishes at 0, then X = B. Similarly, if for some A£X with U| < 1 
the conditions u(z) rational, u(0)=0, | | t / | | x=l imply |w(A)|s|A|, then X=D. 

P r o o f . The first assertion follows from the fact that D is a minimal spectral 
set for A2. The second assertion follows similarly by considering the two-dimensional 
completely non-normal of norm 1 with eigenvalues 0 and X. 

Using the fact that linear fractional transformations preserve both complete 
non-normality and minimality of a spectral set we get the following improvement 
of VON NEUMANN'S theorem: 

C o r o l l a r y 3. Let T be completely non-normal. Then 

5, = {z: \z-l\rS\\T-X\\} and S2 = {z: | z - S \ \ R , ( T ) \ \ - 1 } 

are minimal spectral sets of T. The set 

S} = {z: Re zSO} 

is a minimal spectral set of T if either ||(.T— l ) ( r + 1 ) - ' | | = 1 or if the. numerical 
range of T lies in the right half-plane and meets the imaginary axis. 

R e m a r k . In the hypothesis of Theorem 9 it is actually superfluous to require 
that T be completely non-normal. Indeed, the assumption max {| | / (r) | | : / € B,(G), 
/(¿() = 0 } = 1 implies that T has a nontrivial completely non-normal part. For if 
T=Nis normal with <x(./V)cint S, and if f^B^G) is chosen as an extremal function 
for the problem 

max {Wgm.giB^G), g(p)= 0} 
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then we have 
|| / ( A 0 | | = s u p ( | / ( z ) | : z € <r(N) } = | | / L ( i v ) . 

Since/is continuous on a(N) it attains its maximum there and the maximum principle 
then shows that H/ll ̂ ( |V)<1. 

6. Remarks on the infinite case 

If T is a completely non-normal operator on an infinite-dimensional space, 
then our previous argument shows that both the point spectrum and residual 
spectrum of T are subsets of the interior of any Jordan spectral set of T. In general, 
this is best possible as the unilateral shift shows (point spectrum void, residual 
spectrum = { |z |< l} , continuous spectrum = {|z| = 1}.) It is perhaps surprising 
that even compact operators can exhibit this behavior. 

E x a m p l e 1. The spectrum of a compact completely non-normal operator 
need not be contained in the interior of each Jordan spectral seet. 

Consider the Yolterra operator A defined on L2(0, 1) by 

( 

(Af )(t) = / / ( / ) ds. 
o 

It is well known that A is compact with a ( A) = {0} and Re A S 0. It follows from 
the equality of norm and spectral radius for normal operators that A is completely 
non-normal. Now let T = (l—A)(l+A)~1— I and observe that T is compact, 
completely non-normal, and T+1 is a contraction because 

|| (T + l)x||2 - M 2 = II(1 - A)( 1 + A)~1 A-||2 - M | 2 -

= 1 1 ( 1 - 1 1 0 = - 4 R e < ^ , ^ > s 0 . (y = 04 + l ) - 'x) . 

It follows that the unit disk D is spectral for T + 1 , and hence S = D — 1 = 
= {z: | z + l | ^ l } is a Jordan spectral set for T. Finally, a(T) = {0} meets the 
boundary of S. 

Example 1 shows that the techniques of § 5 are not suitable for establishing 
the minimality of rectifiably bounded spectral sets of arbitrary completely non-
normal operators. It is natural to expect however that the results are extendable 
by other means. Even this is not possible: 

E x a m p l e 2. The unit disk D is not a minimal spectral set for every completely 
non-normal operator of norm 1. 

Recall that if T is subnormal, then a(T) is a spectral set of T. It follows then 
that it is sufficient to exhibit a completely non-normal subnormal operator of norm 1 
whose spectrum is a proper subset of D. Our construction is motivated by the theory 
of analytic Toeplitz operators developed in [1]. 

First of all, it is easy to see that if T is subnormal on H with minimal normal 
extension N on Kz^H, then T is completely non-normal if and only if no non-trivial 
subspace of H reduces N. 
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Now to construct the example, let V be the unilateral shift on H2 and I) the 
bilateral shift on L2. Let <p be a conformal map of D onto the half-disk 
S= {RezSOjPlD. We claim that T=q>(V) is subnormal, completely non-normal, 
and S is spectral for T. 

The subnormality of T is clear: T=tp(U)\H2 and cp(U) is normal. To prove 
that T is completely non-normal it suffices, by the above remark, to show that 
any reducing subspace H0 for (p(U) which is contained in H2 is trivial. But if H0 
reduces <p(U) then (p(U) commutes with the projection P of L2 onto H0 and this 
implies that U commutes with P, that is, H„ is a reducing subspace of U contained 
in H2. However, it is well-known that the only reducing subspace of U contained 
in H2 is the subspace {0}. Consequently, T is completely non-normal. 

Finally, S is spectral for T because <x(T) is spectral and SZJO{T). (if <p(Z) -A 
is bounded below on D, then (p(V) — A has an inverse.) 

The preceding example indicates that it is not just complete non-normality 
of a contraction which forces the unit disk to be a minimal spectral set and it is 
therefore worth investigating our earlier arguments a little more carefully. Some 
of these are independent of the dimensionality of the underlying space. For example, 
if G is the rectifiably bounded region previously studied, and T is any operator 
with (T(J)CC, the condition for spectrality of G for T is still the same: 

max {\\f(T)\\:fiB,(G),f(n) = 0}S\ 

and if G is minimal for T, this maximum is 1. There are two difficulties encountered 
in proving the sufficiency of the minimality condition. In the first place we need 
the fact that certain functions of Tattain their bound. The second difficulty concerns 
the proof of the Lemma of § 5 where we explicitly assumed that a{T) was a finite 
set. The latter requirement is not really essential and it is easy to extract the 
following extension of Theorem 9: 

T h e o r e m 10. Let G be rectifiably bounded as before and let 0£G. Let T be 
a compact completely non-normal operator. G is spectral for T if and only if 

(1) <7(7-) c-<7, 
(2) max { | | / ( r ) | | : / €5 1 (G) , / (0 ) = 0 } ^ 1. 

Moreover, G is minimal for T precisely when the maximum is 1. 

P r o o f . If T is compact, then so is any f(T) with / (0) = 0 and so f(T) attains 
its bound. Secondly, if S is a rectifiably bounded subset of G whose boundary 
meets G, then because 0 is the only limit point of a{T) we can still punch finitely 
many holes in int S to get the set 5, needed in the proof of the lemma of § 5. 
The remainder of the argument is exactly as before. 

C o r o l l a r y \. If T is compact and completely non-normal, then | z |^ | |T | | is 
a minimal spectral set of T. 

There is an obvious extension of the corollary: If T has norm 1, is completely 
non-normal and for some a of modulus less than 1 the operator <pa(T) is compact 
(<pa(z) = (z — a)(l —az) - 1), then D is minimal for T. To prove this note that (p^T) 
has norm 1, is completely non-normal and so by the above corollary, D is minimal 
for T. This implies that cp~i(D)=D is minimal for <p~1(<pa(T)) = T. 
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Since T—cc = (p0l(T)(l—ctT'), the operator (px(T) is compact precisely when 
T— a is compact, and so the extension of the corollary reads as follows: 

C o r o l l a r y 2. Let T be completely non-normal of norm 1 and suppose that 
T—a. is compact for some a of modulus less than 1. Then D is minimal for T. 

The signifiance of the condition |oc| = l' is clear: T — a can be compact only 
if 0€<r (T-a ) , i. e., only if a £a(T). What is not clear however is that the condition 
fails in case |a| = l. Equivalently, if T has norm 1, is completely non-normal, and 
T— 1 is compact, must D be minimal for 7? 

7. An application concerning numerical ranges 

Recently several authors have been interested in the relation between the spectral 
sets of an operator T and its numerical range W(T). VON NEUMANN'S theorem 
asserts that a closed half-plane H is spectral for T if and only if Hr> W(T). The 
latter inclusion is equivalent to 

| | ( r - A ) - ' | l ^ s u p { | z - A | - < : z € / / } (X$H) 

and so to determine whether or not H is spectral we need only look at (a subset of) 
the rational functions of order 1 with poles off H. This fact leads, naturally to the 
question of whether one can similarly prescribe a sub-class of rational functions 
which determine the spectrality of W(T). Such a result is the following one: 

If \\P(T)\\ =; \\p\\w(T) for aH polynomials, then W(T) is a spectral set for T. 
( P r o o f . The compact set W(T) has a connected complement and so by a 

theorem of LAVRENTIEFF (see [5]) the polynomials are uniformly dense in the algebra 
of functions which are continuous on W(T) and analytic in int W(T).) 

It is an elementary fact that if \W(A)\ and \a(A)\ denote the numerical radius 
and the spectral radius of an operator A, respectively, one has ||X|| = \W(A)\ if and 
only if \\A\\ = \<r(A)\. It follows that either of the equivalent conditions 

||/7(r)|| = \c(p(T))|, ||/7(r)|| = | W{p(T))\ 

(for all polynomials) is a sufficient condition for the spectrality of W(T). It seems 
reasonable to ask whether the condition remains sufficient when the class of all 
polynomials is replaced by the linear ones. That is, does the condition |H/(7— A)| = 
= \\T— X\\ (all complex X) imply spectrality of W(T) ? The following example answers 
the question negatively. 

E x a m p l e 3. Let T=A2®U where U is unitary with spectrum equal to eth 
cube roots of unity. Then \W(T-X)\ = \\T-k\\ for all complex X but W(T) is not. 
spectral for 7. 

First of all, W(T) is the convex hull of the numerical ranges of W(A2) and. 
W(U), and hence W(T) is the equilateral triangle which constitutes W(U). Therefore 

\\U-X\\ = \W(U-X)\ = \W(T-X)\, 
thus . 

| | 7 - A | | = m a x { | M 2 - ; . | | , ||£/ —A||} = max {\\A2|H/(7-A)!). 
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It remains to see that 

(1) \\A2-X\\^\W(T-X)\. 
(2) The triangle W(U) is not spectral for A2. 

The first of these is a simple computation (see Corollary 2 of Theorem 1), and the 
..second is a consequence of the fact that the unit disk is a minimal spectral set for A2. 
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