
On the order of magnitude of the partial sums 
of rearranged Fourier series of square integrable functions 

By F E R E N C MÓRICZ in Szeged 

Introduction 
KOLMOGOROFF [1] was the first to remark that there exists a square integrable 

function the Fourier series of which diverges almost everywhere in a certain rearran-
gement of its terms. However, he has never published the proof of this fact. After-
wards ZAHORSKI [2] sketched a proof of this assertion. Recently OLEVSKIT [3] and 
UL'JANOV [4] obtained some more general theorems. Then, using less elementary • 
tools, TAIKOV [5] obtained a somewhat sharper result, and a direct elementary 
construction leading to KOLMOGOROFF'S assertion was given by TANDORI [6]. In this 
paper we are going to sharpen this result by refining a method, due to TANDORI [7], 
concerning the rearrangement of Walsh series. 

UL'JANOV has raised the following question [4 ] : what is the exact Weyl multipli-
cator of unconditional convergence in case of Fourier series? We shall show that 
it is at least O (log log n). *) 

T h e o r e m 1. If {e(n)} is any sequence of positive real numbers for which 

(1) Q(n) = o(Y loglogw) 

is satisfied, then, there exists a square integrable function whose Fourier series 

2 (a„ cos nx + bn sin nx) 
n= 1 

is such that 

(2) Í ( « „ 2 + № ( « ) < -

and which can be rearranged into an everywhere divergent series 
oo 

2 (an(j) cos n(j)x + b„U) sin n(j)x). 
j=1 

For the partial sums of the rearranged Fourier series we have following estimate: 

') In this paper log means logarithm with base 4 (but this is not essential to our results). 
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T h e o r e m 2. If {(?(«)} is any sequence of positive real numbers for which (1) 
holds, then there exists a square integrable function whose Fourier series 

2 (A„ cos tix + B„ sin nx) 

can be rearranged in a such a way that the partial sums aN{x) of the rearranged series 

satisfy 

(3) 

everywhere. 

2 (An(j) c o s n ( j ) x + B„U) s in n ( j ) x ) 
J=1 

l i m s u p i ^ U o 

I am grateful to Professor KÂROLY TANDORI for calling my attention to this 
problem. 

§ 1. Lemmas 

Consider the Fejér kernel 

Kn(x) = 
1 

2(«+ 1) 

s in («+ 1)-

sin • 

By a simple calculation we obtain the following inequalities 

(4) ^ / \ 2 ( n + 1 ) I I K • Kn(x) S v - if |*| g 

(5) 

and 

(6) 

KJx) g 

n+ 1 ' 

n2
 . . n 

W + W J f W - Y ' 

f Kl (x) dx < un. 

In the following a set E will be said to be simple if it is the union of finitely 
many, non-overlapping, closed intervals [ak, pk] (ak< flk). For any f.>0 
( e < m i n ( f i i t ^ a ^ l ? ) , we set 

£«= \J[ak + e,pk-e]. 
k 

For a function av cos vx + bv sin vx ( ^ 0 ) we call v its frequency. Two trigonometric 
polynomials will be called disjoint if they have no terms of the same frequency. 

C , , C 2 , ... will denote positive absolute constants. 
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L e m m a 1. Let e(<<5) and t](=l) be positive real numbers, and 
let n be a natural number such that n > CJsrj. Then there exists a non-negative trigono-
metric polynomial P(x) with frequencies 4v (v = 0, 1, ..., ri) and having the following 
properties: 
(7) if \x\^3-e, 

(8) if S s |*| ^ j , 

and 
71 

(9) fp2(x)dx^C25. 

P r o o f . We write 

bk = , , ( /c = 0 , ± 1 , ±2,...). 
4 ( k + 1) * 2(n+1) 

Let the integers q and a be determined by the inequalities 

bQ — a S — S + e<bQ and ba<S — e^ba + a. 

This choice of q and a is possible because n+ 1 >7t/2e. 
Define the trigonometric polynomial P(x) by 

P(x) - 271« J K„(4 (x~brj). 
r = e 

We are going to show that P(x) has the properties (7)—(9). On account of the 
choice of q and a and (4) we can easily see that (7) is satisfied. 

To prove the inequality (8), suppose <5^ Using (5), it follows 

P ( x ) ^ 2 n a f - < *3g f ^ < 
r% 32{n+\)(x-br)2 16(«+ 1) k = 0 (e + bk)2 

(2a 
m 32(n+l){s2 J x2) 16e(«+1) ' 
c 

Hence we get (8) if C j =tt3/16. 
It remains to show that (9) holds. By a simple transformation we get 

71 7Z 
(10) ¡P2(x)dx = 4n2a2 2 2 JKn(x-br)Kn{x-bs)dx. . 

-n r = e s = e -n 

If r ^ s , for example r<.s, then we can write 
71 br—a br + a bs — a bs + a jz 

(11) f K„(x-br)Kn(x-bs)dx = f + / + / + / + / . 
— re — n br — (i br + a bs—a bs + a 
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Let us denote the integrals on the right-hand side by I2, / 3 , /4, /5, respectively. 
Applying (4), (5) and (6), we get 

B R~ A J 4.
 h

-z" J dx ax /J2") j it f dx ic r 
1 - 4Cw4- n2 j ( x - h V i x - h V ^ A(nA-U2(h - b \ 2 j 4(«+ I)2 (x-br)2(x-bs)2 A(n+\)2(bs-br)2 ^ (x-bs)2 

T 2 

(s — r)2(bs~br + a) (s-r)2a 
br + a 

(13) r " + 1 f 2 _ 2 6 2 + n 2 . •/ Cx-
«+1 R dx TI2 2a 

2 ( « + l ) 2 J_a (x-bs)2 4 (bs — br — a)2 , 

8fl(n + l)2 _ n2 

~ (2s — 2r— l)2 ~ 2(2s — 2r— \)2a ' 
and the same is true for I5 and / 4 too, respectively. As to / 3 , it is clear that 73 = 0 
if s = r + 1 . In case s >r + 1 we break up the integral I } into the sum of the integrals 
Jr and J2 extended over (br + a, (br + bs)j2) and {{br + bh)j2, bs — a), respectively. 
./, may be estimated in the same way as I 1 and / 2 , and we get 

47c2 

(14) A < 7 r r - , 
(s — rya 

and the same is true for J2. 
In virtue of (11), (12), (13) and (14) we obtain that 

¡K„(x- br)Kn{x- bs) dx<2(Ii +12 +./,) -
1 ITI2 

(s — r)2a' 
Hence, using (6) and (10), it follows that 

¡P 2 ( x ) d x ^ a 2 ± (nn + ^ J -

< \71n*a(o — g + 1 ) = + a ) = C2d, 
if C2 = 177n4. This completes the proof of Lemma 1. 

The following generalization of Lemma 1 can be proved by the same argument.. 

L e m m a V. Let Ea[ — n/S, 7t/8] be a simple set, s and f / ( = l ) positive real 
numbers, and n a natural number such that n^C1jst], Then there exists a non-negative-
trigonometric polynomial P(x) with frequencies 4v (v = 0, 1, . . . ,«) such that 
(T) : P(x)S 1 if xCz E<c\ 

71 n 
( 8 ' ) P ( x ) m if xt 

and 
n 

(9') fp2(x)dx^C2mes(E).2) 

2) mes (E) denotes the Lebesgue measure of the set E. 
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L e m m a 2. Let P(x) be the trigonometric polynomial in Lemma V, and let N" 
be a natural number divisible by 4, 7V=> 4/? + 2. Furthermore, set 

0 5 ) 

Qt(x) = cos Nx-P(x), 

Q2{x) = -C3 cos 2.v Qiix), 

Q3(x) = Q cos 4Nx-P(x). 

Then Qi(x), Q2(x) and Qi(x) are mutually disjoint trigonometric polynomials wi'th-
frequencies 2v (N/2 — 2n— 1 ^ vS2N. + 2n), having the following properties: 

(16) 

(17) 

71 71 
Ißl(*) + ß 2 ( * ) + ß 3 ( * ) l ^ Csr, if Xt 

Jl 
f(Qi(x)+Q2(x) + Q3(x))2dx*C6mes(E). 

E, 

Furthermore, there exists a decomposition of the set £<E) into three simple, mutually 
disjoint subsets El, E2, E3, such that 

(18) ¿ Ö t w 4 f°r ( /=1»2,3). 

P r o o f . It is obvious that Qy(x), Q2(x) and Q3(x) are mutually disjoint, 
trigonometric polynomials, since Qt(x) and Q3(x) have only terms with frequencies 
divisible by 4, Q2(x) has only terms with frequencies divisible by 2, but not by 4, and,; 
furthermore, we have N + 4n<4N~4n. 

In virtue of the fact that cos x S l / 4 if 5n/12, we get the following estimates:.. 

ß i M S 
P(x) _ 1 

if x a ^ E ^ n { y [ i (2far - 1, 1 1 2 k n + ^ 1 2 . ' N 12 

Qi(x) + Q2(*) S - ( C 3 cos 2x- 1 )cosNx• P(x) — I 

if 

and 

if 

X£E2 = £ ( c ) Pi 1 [J 
i 

2kn + 
n 

2kn + Yin 
IT 

C4 QI(X) + Q2(X) + Q3(X) i s ( C 4 c o s 4 N x — C3 — L)P(x) £ - F - C 3 - 1 

x c E 3 = £ « n j U l i ^ - ^ Z L l i ü l l l 
_N{ 2 48 J ' JV I 2 +48j j j • 

Since 5jt/12>-7i/2-57t/48 and 7tt/12<?r/2 + 5tt/48, we have EM =E, U £ 2 U £ 3 . 
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-Set EV-EI, E2=E2-Et and E3=E3-(EiU E2). We get (18) with C 3 = 8 and 
C 4 = 4C3 + 5. 

The inequalities (16) and (17) are then satisfied with C5 = l + C3 + C 4 and 
-C6 = 1 + C 3 + . The proof of Lemma 2 is complete. 

We shall need Lemma 2 in the following slightly different form too: 

L e m m a 2'. Let P(x) be an arbitrary trigonometric polynomial with even 
frequencies v ( S n ) and let N be an even natural number, N>n + 1. Furthermore, set 

g , (x ) = cos Nx-P(x), 

•05') Q2(x) =-C3cosx-Qi(x), 

Q3(x) = C 4 cos ANx• P(x). 

Then QI(x), Q2(X) and Q3(x) are mutually disjoint trigonometric polynomials with 
frequencies v (N — n— 1 g v^4N + n), having the following properties: 

(16') . 12, (X) + Q2(X) + Q3(X)\ g C 5 \P(x)\, 
n 11 

.(17') F(Q1(x) + Q20-) + Q3(x))2dxsC6Jp2(x)dx. 
—n -n 

Furthermore, every measurable set E ( c [ — 7r/8, tt/8]), on which P(x) is positive, 
can be decomposed into three mutually disjoint measurable subsets Ei, E2, E3, such 
that 

.(18') . for xdEt ( / = 1 , 2 , 3 ) . 

L e m m a 3. Let e ( < u/4) be a positive real number. Then there exist mutually 
.disjoint trigonometric polynomials R^ (x) and simple sets E^ (k = 1,2, . . . , 3'; i = 1, 2,...) 
with the following properties: 

(i) the frequencies occurring in R(
k
l){x) (k—\,2, ..., 3') are even numbers, at 

. most equal to a number = (C7/e) f44 '; 

* 3 ' ' 

(ii) / ( 2 R^ ( . x ) f d x g C8 for / = 1 , 2 , ...; 
-n 1 

(iii) the sets E^ (k = 1, 2, ..., 3') corresponding to the same value of i are dis-
joint, the set 

' • - i - f - f l - . y , ^ ' 

consists of at most 2f disjoint intervals, and 

(19) m e s ^ S e f l - i ) ; 

(iv) for any natural number i, the trigonometric polynomials Rk
j){x) with 

k=\, 2, ..., 3 J ;7 = 1 , 2, ..., / can be arranged into a sequence 

U ? ( x ) , u f (x), ..., u
(

j! (x) where J , = 3 + 32 + ... + 3'; 
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such that 
CO /ik I 

(20) for every x££<;> 
j= 1 8 

with nk
l) not depending on the particular point x in E^ (k = 1, 2, ..., 3'). 

R e m a r k to Lemma 3. On the basis of (i) and (ii), it is obvious that 

* Ji n i 3J 
(21) / ( i up{x))2dx = f ( 2 2 Ri J >(x))2dx g C8i 

j=1 -n j=lk=i 

holds for i = l , 2, ... . 

P r o o f . The construction of the trigonometric polynomials R£'}(x) and sets 
Ejf* will be accomplished by recurrence with respect to i. 

First let i = 1. Apply Lemma 1 with <5 = 71/8, e/4 instead of s, r/ = l and n= 
= [4C,/s] +1 . 3 ) Then apply Lemma 2 for the obtained trigonometric polynomial 
and N—4n + 4. We get the trigonometric polynomials Qk(x) and simple sets 
Ek ( f c= l , 2, 3) satisfying (16), (17) and (18). Now write R^(x) = Qk(x) and E^ =Ek 
(k = 1,2, 3). It is clear that Rk

l>(x) (A: = 1,2, 3) have even frequencies at most 
equal to 

2(4iV+4w) = 40n + 32 == ^ - 4 4 = / l f s 

where C7 = 64 C, C 5 . The assertions (ii) and (iii) are satisfied with C8 = C67t/4, 
furthermore, the set Fx consists of at most 

2 2 mes (A(1))/i = 2/1 

intervals. Writing Uj1)(x) = Rj1)(x) and =j(j= 1, 2,3), we have that (iv) holds to.o 
Now we suppose that all the trigonometric polynomials R^ (x ) and sets E f t 

with i = l , 2 , ..., m are already determined and satisfy (i)—(iv), and we are. going 
to construct the polynomials and sets corresponding to i = m + 1 so that the enlarged 
system still satisfy (i)—(iv). 

We begin with applying Lemma 1' by choosing subsequently (k = 1,2,. . . , 3m) 
(instead of E), xs (instead of s), t] and n > m a x (CJxet], fm), where the positive 
numbers x, t] and the natural number n will be determined later on. Denote by 
Pk(x) (k = 1,2, ..., 3m) the corresponding trigonometric polynomials in the sense 
of Lemma 1'. Next apply Lemma 2 to each of the trigonometric polynomials 
Pk(x) by choosing for the three functions (15) the following ones: 

R№V(x) = cosNkx.Pk(x), 

R ^ P (x) •= - C3 cos 2x • R^ll > (x), 

^ 7 + 1 ) ( * ) = CAcos4Nkx-Pk(x) 

3) The integer part of a real number a is denoted by [a]. 
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(k = 1,2, ..., 3m), where the natural numbers Nk are chosen so that 

-y- — 2n — 1 > / m , J ^ - 2 n - l > 2 N k + 2n 

(k = 1, 2, ..., 3m — 1) and, in addition, each Nk be divisible by 4; we can choose 
for example: 
(22) N^Sn + 4, Nk+1-=4Nk + 8n+4 (k = 1, 2, ..., 3m - 1 ) . 

The condition (22) ensure that the trigonometric polynomials R(
k
m+1 '(x) 

(k = 1, 2, ..., 3m + 1) are disjoint from one another and from all the polynomials 
R^(x ) with i ^ m . From (22) we get that the frequencies occurring in ^ m + 1 > ( x ) 
are even numbers, at most equal to 

(23) 4_/V3m + 4 « < ( l + 4 + 42 + . . . +43 '") (16n +1) . 

In virtue of (17) we get 

¡Cz1 * i m + 1 ) {x))2dx s C6 Z mes (E<r>) g C 8 , 

so that (ii) holds for i = m +1 too, with C8 = C67i/4. 
By Lemma 2 there exists a decomposition of the set ( E ^ y * ^ into three mutually 

disjoint simple subsets, which we denote now by E$±\'> and E(
3k

 + "; thus 

(24) 2 R ^ i i j i x ) ^ | for a-6 E ^ H t 

( /=1 , 2, 3; k = 1, 2, ..., 3m). It is clear that the simple sets J^m+1> (k = 1, 2, ..., 3 r a + 1) 
are disjoint. Using also the induction hypotheses, we get 

mes(Fm + 1) g mes (Fm) + mes ( U - U E & t ? U E&+»))) g 

2 

Thus if we choose the hitherto indetermined y. such that 

1 
(25) if ' 

J m 

then (19) will be satisfied. We can easily see that Fm+l consists of at most 2 /^+j 
intervals, because 

k= I 11 

This proved that (iii) holds. 
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The arrangement of trigonometric polynomials Rii}(x) with k= 1, 2, ..., 3'; 
/ = 1,2, ..., m, m + 1 into a sequence, as required by (iv), will be realized as follows. 
On the basis of induction hypothesis we have a sequence 

(26) U[m)(x), U^>(x), ..., U^(x) 

of all the polynomials R p i x ) with i s m . For every trigonometric polynomial 
Rlm)(x) (k—1,2, ...,'3m) we find the place, where it occurs in the sequence (26), 
and then we insert the trigonometric polynomials 

. « ! ' ( * ) , R ^ l K x ) and 

immediately after Rjf\x) in (26). In such a way we have ordered into a sequence 
{t/jm+1>(x)} a u the trigonometric polynomials R ^ i x ) with i s m + l . 4 ) 

For every k(k = 1, 2, ..., 3 m + 1 ) let p[m+l> denote the subscrift j of that term 
of the sequence {i / jm + 1 ) (x)} which is equal to R£n+l)(x). A simple calculation 
shows that 

N(M +1) . im+l 
2 Ujm+1Hx) s 2 u'jm)(x)+ 2 r № V + j ( x ) - 2 ' \R{jm+y>(x)\, 
j=i j=i J=i J=I 

where the last sum is taken for each index j except j = 3>k — 3>-\-l ( / = 1 , 2 , 3 ) . On the 
basis of the induction hypothesis, of (16) and (24), we get 

„(m + l) 3k-3 + ' m 1 
2 c / j m + 1 ) W s _ + T - ( 3 » - i ) c 5 » i 

for every x ^ E ^ l i h ( / = 1, 2, 3;/c = 1, 2, ..., 3m), and this will be S ( m + l)/8 
if we now fix the value of /7 as follows: 

( 2 7 ) ^ = 8C5 (3m— 1) " 

This proved that (iv) holds for the case m + 1 too. -
Thus we have showed the properties (i)—(iv) with the exception, in (i), of the 

assertion concerning /„,+ 1 , i.e. that fm+1 = (C1le)m+14*m+l. By (25) and (27), n 
must be chosen so that 

f C , 6 4 C 1 C 5 - 6 m / m 

for example n = [C76mfjE] +1, where C7 = 6 4 C 1 C 5 . By (23), the frequencies 
occurring in R l m + 1 \ x ) equal at most 

C143"' + 26'"fm cy+144"1"' _ 
£ " 8m+! ""/m+l-

This completes the proof of Lemma 3. 

' ,)For example, in the case m = 1 the sequence {U'/Hx)} will be the following: R'j'^x), R',2'(x)r 
R'z2)(x), R?'{x\ Ri'Hx), R?>(x), R<s

2>(x), R'62>(x), № ( x ) , R'72>(x), Rh2>(x), Rl,2>(x). . 
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L e m m a 4. Let M be an arbitrary natural number. Then for every m(m= 1, 2, ...) 
there exist mutually disjoint trigonometric polynomials Sjm\x) ( 7 = 1 , 2 , ..., Jm+i) 
with the following properties: 

(v) the frequencies v occurring in Sj'"\x) are such that M+ l S v g 16M + 4 4 m + c " ; 

(vi) f ( m f (x)}2 1,2, . . . ) ; 
i 

f 2 , 1 7T 
(vii) e ^ r y lx| g - , 

where ^ = /<ira)(x) (¡ = 1,2), 1 ( / « = 1 , 2 , ...). 

P r o o f . Let us fix the natural number m. Apply Lemma 3 with e! = l/m. We 
get that there exist mutually disjoint trigonometric polynomials Ujm)(x) ( j = 1,2, ...•/,„), 
the frequencies occurring in Ujm)(x) are even numbers, at most equal to the number 
/„,; furthermore, there exist disjoint simple sets E'km) (k = 1, 2, ..., 3m) such that (iii), 
(20) and (21) hold. 

Denote by F the simple set which can be obtained from the intervals [a, /?] 
3"1 

of [ — 71/8,71/8]— |J Elm) by replacing them with [a —e2, /?+e2], where e2=eJ4fm. 
k= 1 

It is clear that F consists of at most 2 fm intervals. In virtue of (iii),. we have 

mes (F) g mes - j j £*">) + 4 / m 
2_ 
m 

Apply Lemma V by choosing F (instead of E), e2 (instead of e), r) — l and fm+i 
(instead of n). We get the trigonometric polynomial P{m)(x) with frequencies 4v 
(v = 0, 1, . . . , / „+ , ) such that (7') and (9') hold. 

Let JV, and N2 be the smallest even integers for which ¿V, — f„^M+l and 
N2—4fm+i + f n + l. Now apply Lemma, 2' to each of the trigonometric 
polynomials U(

J"')(x)lm with Nv, then to the trigonometric polynomial P{m\x)l8 
with\/V2 by choosing for the three functions (15') the following ones: 

S'r> (x) --- cos x • U<'""(x\ 
m 

£/'"+;(*) = -C3 cos A- • Sjm> (x), 

S&m+J(x) = C 4 cos 4AS A- • U ' m > ( x ) 
m 

( j — 1 ,2 , . . . , /,„), furthermore, 

Slt+dx) = c o s * 2 , . ^ « 

Sit+2 (*) = - C3 cos A-. s i t +1 (*), 

S i t , + 3(-V) = C4 cos 4N2 x • ^ ^ . 
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By this the trigonometric polynomials Sjm)(x) (j= 1, 2, ..., Jm+i) are defined because 
3Jm + 3 = Jm+1. 

It is obvious that 5jm)(x) (j= 1, 2, ..., Jm+1) are mutually disjoint trigono-
metric polynomials with frequencies at most equal to 4N2 + 4 / „ + 1 . Now, a simple 
calculation shows 

4N2 + 4fm+1 s 4(4iV1 + 4 / m + 1 + / m + 2) + 4/m + 1 a 1 6 M + 2 0 ( / B + 1 + / m + 2)-= 

< 1 6 M + / m + 2 = 16M+(C7rn)m + 244 m + 2 < 1 6 M + 44," + c ' . 

As to (vi), by (9'), (17') and (21) we get that 

* J N N J 

-71 J ~ 1 —nj — 1 

64 m 

holds with C 1 0 = C6(C8 + C2/32). 
To show (vii), in case of x£Elm) we set /i[m}(x) = 1 and on the ground of (18') 

Mm )(*)=/4m ) or Jm + [i(
k
m> or 2Jm+4m\ respectively (k = \,2, ...,Jm). Further-

more, in case of we set n\m)(x) = 3Jm + \ and pi
2
m>(x) = 3Jm+l or 3Jm + 2 

or 3Jm + 3 according to (18'). Thus the indices Mm)(*) and /4m)(x) (l 
are defined for every \x\Snj% because 

In virtue of (7'), (18) and (20), the assertion (vii) holds. So the proof is complete. 

§ 2. Proof of the theorems 

Without any loss of generality we may assume that {(?(«)} is a non-decreasing 
sequence. Define the sequence of natural numbers (C9 + l § ) m 1 < m 2 < . . . such that 

(28) g ( w ) a i if n^Mk = 4*mk+c> 
\ log log« k 

( k = \ , 2 , ...); this is possible by virtue of (1). Applying Lemma 4 with M*, we get 
the trigonometric polynomials S^"k)(x) (j= 1, 2, ..., J„k+1; k = 1,2, ...). Denote by 
Tk(x) the sum of the trigonometric polynomials S(jmK)(x — (k}snj4) 5) 
( / = 1 , 2 , ... ,J,„K+1); it is obvious that 

17 MK 

(29) Tk(x) = 2 cos nx + b„ sin nx) (k= 1 ,2, . . . ) . - -
n = Mk+ 1 

') (k)& denotes the remainder of k modulo 8. 
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Consider the series 

(30) a) ZTk(x), b) 2 ^ - T k { x ) . 
k=l k= I 

The trigonometric polynomials Tk(x) and T,(x) do not overlap for k?±l because 
\lMkr±Mk ^Mk+i (k = 1, 2, .;.)• Therefore, writing every Tk(x) in (30) in extenso, 
we represent (30) in the form of trigonometric series 

oo ©o 

(31) a) 2 (a„ cos nx + b„ sin nx), b) 2 (Ancos nx + B„ sin nx), 
/1=1 n = l 

where a„ and bn are defined by (29), An=animk\k and Bn = bn\'mklk if Mk + 1 g 
(k= 1,2, ...); and a„, bn, A„, B„ equal 0 otherwise. 

In virtue of (vi) and (28) the following estimates hold: 

OO CO llMk 
Z (an + t>l)Q2(n) ^ ZeHMM,) 2 (al + bl 

n=1 k=1 n-Mk+I 

71 
s z Q2(Mt) f Ti(x)dx S C 1 0 i m k t C ' + 1 ^ 2C 1 0 i T T < - , 

* = i k= i kimk i 
and 

« 1 

2 (A2+#) = 2 % fThx)dx ^ c10 i 
11=1 fc = l K _ „ t = l / c 

Hence, (31a) and (31b) are Fourier series of square integrable functions, and, in 
addition, (31a) satisfies (2). 

Write down the mutually disjoint trigonometric polynomials S(fk)(x) in this 
order: 

(32) S{r\x), (x);Sr\x), ..., (x); ... ; - S « ( x ) , ..., (x); ... 

and label the occurring frequencies, in this order, by the subscript n(j) (j= 1, 2, ...). 
It is clear that for the frequencies n(j) occurring in the trigonometric polynomials 
^ ( x ) , ..., S ( r : l , ( x ) of (32) ( ¿ = 1 , 2 , ...), we have 

(33) Mk+\^n{j)^\lMk. 
It is obvious that series 

a) Z (a»u)Cosn(j)x + b„wsmn(J)x), 
(34) 

t>) Z ( A K j ) c o s n 0 ' ) * + BnU) sin n ( / ) x ) 
j= i 

are well deteinedrm arrangements of the non-vanishing terms of (31a) and (31b), 
respectively. 

In virtue of (vii), the partial sums of (34a) diverge everywhere. Thus the proof 
of Theorem 1 is complete. 
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As to (3), denote by crA(x) the Ath partial sum of (34b). For any — ti/8, TC/8] 
and for k — 1, 2, ... denote by /, = j[k(x) the first natural number j, for which the 
frequency n(j) occurs in S(™k\x), and by j2 — j2k(x) the last natural number j, for 
which the frequency n(j) occurs in Sj£k>(x), where the subscripts jj.i = f i[ m k \ x ) 
(/ = 1,2) are defined in Lemma 4, by (vii). Thus, we have 

aj2(x) - a,, (x) = S ^ ( x - ( k ) 3 j ) , 

and by (33), it is obvious that 

Mk+ 1 Sjlk(x) Sj2k(x) s 17Mk (¿ = 1,2, . . . ; |*| 

Hence, for every x £ [ —rc/8, n/8],jik(x) and j2k{x) tend to » with k. In virtue of 
(vii) and (28) we obtain 

<Jh{x)-ah{x) ^ jmk ^ flog l o g M £ ___ 1 
e(Ji) 32kg(\7M

k
) 32 / 2 kg (M k

4 ) 32 / 2 

( |x-(/c)87r/4| g TT/8; / c - 1 , 2 , ...). Thus 

m a x feM K M ) ^ 1 

{ eUi) ' eO'i) i 64j/2 ' 

Taking into account the construction of the trigonometric polynomials Tk(x), 
(31b) satisfies (3) for every x € [ — n, TT]. This concludes the proof of Theorem 2. 
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