Smoothness conditions for Fourier series with monotone coefficients

By RICHARD ASKEY in Madison (Wisconsin, U.S.A.) ${ }^{1}$)

Hardy and Littlewood [2] showed that for Fourier series with monotone coefficients it is possible to connect the integrability of the function and the summability of the coefficients. We show how it is possible to get a similar theorem connecting the smoothness of the function with the summability of the coefficients.

Theorem 1. Let $0<\alpha<2,1<p<\infty, 1 \leqq q \leqq \infty$,

$$
f(x) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x, \quad a_{n+1} \leqq a_{n} .
$$

Then

$$
\left[\sum a_{n}^{q} n^{q(\alpha+1-1 / p)-1}\right]^{1 / q}
$$

is finite if and only if

$$
\begin{equation*}
\left[\int_{0}^{\pi}\left[\int_{0}^{\pi}\left|\frac{f(x+t)-2 f(x)+f(x-t)}{t^{\alpha}}\right|^{p} d x\right]^{q / p} \frac{d t}{t}\right]^{1 / q} \tag{1}
\end{equation*}
$$

is finite.
The class of functions for which (1) is finite is usually denoted by $\Lambda(\alpha, p, q)$ and has been extensively studied by Taibleson [8]. Some special cases of this theorem have been found previously; $p=q=\infty, 0<\alpha<1$ in [7], $1<p<\infty, q=\infty, 0<\alpha<1$ in [4], and a number of different cases in [6]. To simplify the exposition of this note we use two results that are implicity contained in [1]:

$$
\begin{equation*}
a_{n} \leqq A n^{-1+1 / p} \quad \inf _{\frac{\pi}{(n+1)} \leq t \leqq \frac{\pi}{n}}\left[\int_{0}^{\pi}|f(x+t)-2 f(x)+f(x-t)|^{p} d x\right]^{1 / p}, \tag{2}
\end{equation*}
$$

$$
\begin{align*}
& \sup _{0 \leqq t \leqq \pi / n}\left[\int_{0}^{\pi}|f(x+t)-2 f(x)+f(x-t)|^{p} d x\right]^{1 / p} \leqq \tag{3}\\
& \leqq A n^{-2}\left[\sum_{k=1}^{n} k^{3 p-2} a_{k}^{p}\right]^{1 / p}+B\left[\sum_{k=n}^{\infty} k^{p-2} a_{k}^{p}\right]^{1 / p}
\end{align*}
$$

(2) is also contained in [5].

[^0]Finally we need a form of Hardy's inequality and also the reverse inequality to Hardy's inequality which holds when the terms are monotone.

Theorem A. If (a) $c>1, s_{n}=a_{1}+\ldots+a_{n}$, or (b) $c<1, s_{n}=a_{n}+a_{n+1}+\ldots$, then

$$
\sum n^{-c} s_{n}^{p} \leqq K \sum n^{-c}\left(n a_{n}\right)^{p}, \quad 1<p<\infty .
$$

Theorem B. If (a) $c>1, s_{n}=a_{1}+\ldots+a_{n}$, or. (b) $c<1, s_{n}=a_{n}+a_{n+1}+\ldots$, and $n^{-k} a_{n}$ is monotone for some k, then

$$
\sum n^{-c} S_{n}^{p} \leqq K \sum n^{-c}\left(n a_{n}\right)^{p}, \quad 0<p<1
$$

Theorem A is in [3, p. 255] and Theorem B is in [5, p. 75 and p. 83].
Assume first that (1) is finite. By (2) we have

$$
\begin{gathered}
n^{(\alpha+1-1 / p) q-1} a_{n}^{q} \leqq A \inf _{\frac{\pi}{n+1} \leqq t \leqq \frac{\pi}{n}}\left[\int_{0}^{\pi}|f(x+t)-2 f(x)+f(x-t)|^{p} d x\right]^{q / p} n^{\alpha q-1} \leqq \\
\leqq A \int_{\frac{\pi}{n+1}}^{\frac{\pi}{n}}\left[\int_{0}^{\pi}|f(x+t)-2 f(x)+f(x-t)|^{p} d x\right]^{q / p} \frac{d t}{t^{\alpha q+1}}
\end{gathered}
$$

and summing we have

$$
\Sigma n^{(\alpha+1-1 / p) q-1} a_{n}^{q} \leqq A \int_{0}^{\pi}\left[\int_{0}^{\pi}|f(x+t)-2 f(x)+f(x-t)|^{p} d x\right]^{q / p} \frac{d t}{t^{\alpha q+1}}
$$

To prove the other inequality we use (3) and Theorems A and B. By (3)

$$
\begin{gathered}
\int_{0}^{\pi}\left[\int_{0}^{\pi}|f(x+t)-2 f(x)+f(x-t)|^{p} d x\right]^{q / p} \frac{d t}{t^{\alpha q+1}}= \\
=\sum_{n=1}^{\infty} \int_{\frac{\pi}{n+1}}^{\frac{\pi}{n}}\left[\int_{0}^{\pi}|f(x+t)-2 f(x)+f(x-t)|^{p} d x\right]^{q / p} \frac{d t}{t^{\alpha q+1}} \leqq \\
\leqq A \sum_{n=1}^{\infty} n^{\alpha q-1} n^{-2 q}\left[\sum_{k=1}^{n} k^{3 p-2} a_{k}^{p}\right]^{q / p}+A \sum_{n=1}^{\infty} n^{\alpha q-1}\left[\sum_{k=n}^{\infty} k^{p-2} a_{k}^{p}\right]^{q / p} .
\end{gathered}
$$

If $q / p<1$ we use Theorem B. If $q / p>1$ we use Theorem A and if $q=p$ we interchange the order of summation. Then we get
(1) $\leqq A \sum_{n=1}^{\infty} n^{\alpha q-1-2 q}\left[n^{3 p-1} a_{n}^{p}\right]^{q / p}+A \sum_{n=1}^{\infty} n^{\alpha q-1}\left[n^{p-1} a_{n}^{p}\right]^{q / p}=A \sum_{n=1}^{\infty} n^{(\alpha+1-1 / p) q-1} a_{n}^{q}$.

The conditions on the parameters that must be satisfied to use Theorems A and B are all implied by the condition $0<\alpha<2$. The proof for the case $q=\infty$ is an obvious adaptation of the above proof.

Bibliography

[1] S. Aljančić, On the integral moduli of continuity in $L_{p}(1<p<\infty)$ of Fourier series with monotone coefficients, Proc. Amer. Math. Soc., 17 (1966), 287-294.
[2] G. H. Hardy and J. E. Littlewood, Some new properties of Fourier coefficients, J. London Math. Soc., 6 (1931), 3-9.
[3] G: H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities (Cambridge, 1952).
[4] A. A. Konyushkov; On Lipschitz classes, Izv. Akad. Nauk. SSSR, ser. mat., 21 (1957), 423-448.
[5] A. A. Konyushkov, Best approximation by trigonometric polynomials and Fourier coefficients, Math. Sbornik, 44 (86) (1958), 53-84.
[6] L. Leindler, Über Strukturbedingungen für Fourierreihen, Math. Zeitschr., 88 (1965), 418-431.
[7] G. G. Lorentz, Fourierkoeffizienten und Funktionenklassen, Math. Zeitschr., 51 (1948), 135-149.
[8] M. H. Taibleson, On the theory of Lipschitz spaces of distributions on Euclidean n-space. I. Principle properties, J. Math. and Mech., 13 (1964), 407-479.

UNIVERSITY OF WISCONSIN

MADISON, WISCONSIN
(Received July 2, 1966).

[^0]: ${ }^{1}$) Supported in part by N. S. F. grant GP-3483.

