On the index of imprimitivity of a non-negative matrix.
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1.

Let 4 be a non-negative n X n matrix. To study .the distribution of zeros and!
non-zeros in the matrices of the sequence

0y LA A A,
we have introduced in [2] the following notations. Consider the set .of symbols.
E={e;]i, j= ., n} together with a zerd 0 adjoined. Define in § = {0}UE;
a multlpllcatlon by ‘
_ {e‘-,,, for j=I,
Gicm =1 o for j=#l,

the zero element having the usual properties of a multiplicative zero. Then S (with
this multiplication) is a semigroup.

Let A=(a;;) be a non-negative nXn matrix. By the support Cy of A we shall
mean the subset of S containing 0 and all e;; for which a;;>0.

For two non-negative nXn matrices A B we have CAB—CA Cg, where the:
product to the right has the usual meaning used in the theory of semigroups.

In partlcular the supports of -the elements of the sequence (1) are

03] _ c,,C3 C3, ...

Since this sequence has only a finite number of different elements (subsets of S):
it can be written in the form

2 k-1 k k+d—1 k k+d—1
Cy,C2,...,CEk 1| Ck, ..., Ck+a=1 | Ck . Ck+=1| .

Here CX, k=k(A), is the least power in (2) which appears more than once and d’
is the period: with which all the following powers repeat.
Denote further §;={0}U{e;,, e;; ... e,,} and F,=F,(4)=S, ﬂCA, so that:
F; is the “support” of the i-th row in A.
The sequence
. F,Cy, F;C3, ...

contains again only a finite number of different elements (subsets of S;) and it is-
of the form
' F,FCy, ..., F,Chi~? | F,Ck™1, .., , F,Cli+di-2 | F;,Ck=1, ...

where the integers k;, di have an analogous meaning as the integers k and d above..
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For details concerning these notions see [3].
In [3] and [4] we have proved:

Lemma 1. For any non-negative nXn matrix A we have:

a) k(A)=maX (kl’k27 [Aas) kn); ‘

b) d(A)=lem. [d,,d,,...,d).

Lemma 2. If A is irreducible, then d(A)—dl—dz— -=d,. .

Denote by g; the number of non-zero elements in F;. In the papers [3] and [4]
‘we have found some estimates concerning the numbers k; in terms of n and g;.
For instance we have proved k;=1+(n—g)(n—g,+1).

It is intuitively clear that also the numbers d; depend on g;. It is the purpose
of this paper to give an estimation concerning d=d(4) in terms of n and g;. For
an irreducible matrix A the number d is identical with the classical notion of the
index of imprimitivity of 4. Our main result is formulated in the theorem. below.

2.

Let M be any non- negatrve n ><n matrix. It is well known that there isa permu—
tation matrix P such that PMP is of the form

‘Au
A = '1‘.121 Azz

"‘irl : Ar2 Arr

‘where A,, are irreducible matrices (including the case that some of the 4,, are zero
matrices of order 1). It is easy to see that d(4)=d(M). Further it can be proved
(see [1}, [5]) that d(A)=lcm.[d(4,)), d(4;;), ..., d(4,,)]. Hence d(4) does not
-depend on the rectangular matrices A, o 5 fi. )
It is therefore sufficient to restrict ourselves to the case of an irreducible matrix A.
. In [3] we have proved:

Lemma 3. If A is irreducible (of order n), then there is an integer h; such that
1=h;=n and F,C F,Cls. Here:

a) if e;€F,, we may choose h;=1,

b) if F; contains g; non-zero elements ¢S, we have, for the least number h,
.Satisfying the above condition, h;=n—g;+1. :

Consider now the chain
' FcFClcFCc...

‘Since any member of this chain contains at most #+ 1 different elements (namely
‘the elements 0, ¢;,, ..., e;,) there is an integer =1 such that

r(3) . . Fcrhi = FiC}i""H”,
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hence d;=h;=n—g,+ 1. With'respect to the definition of the number d; we conclude
from (3) that d;}h;. By Lemma 2 we obtain d|h; for i=1, 2, .
We have proved:

‘s

Lemma 4. Let A be irreducible. Denote 5—(h1, hy, ..., h). We then have d|o.

Lemma 4. imi)lies d=6=(,, ... h)= mm h; —n+ 1— max g We have proved

"Theorem. Let A be an irreducible non-negative nXn matrix. Denote by g
. the number of positive entries in the i-th row of A. Then d(A)y=n-+1—max g,.
. . i

Remark. In terms of the integers 4#; we may state the following. If d<min k;,
then d ]mm h; implies that we certainly have d=+ mm h If here again the equality
does not hold we have d=3% mmh ‘And so on.

w

We now give some corollaries. _
Suppose that d(4)=n. Then n=n+1—max g, implies g;=1 fori=1,2, ...,n

Hence C, is the support of an (irreducible) permutation matrix. This can be stated
in the following forms:

Corollary i. Suppose that for an irreducible non-negative nXn matrix A
we have d(A)=n. Then the matrix obtained by replacing the posmz,e entries in A by
the number 1 is a permutation matrix.

Corollary 2. Let A be a non-negative irreducible nXn matrix. Suppose that
replacing all positive entries in A by the number 1 we obtain a matrix which is not
a permutatton matrix. Then d(4A)=n—1. -

Example 1. In general the result of Corollary 2 cannot be sharpened. This
is. shown on the 4X4 matrix

0010

0010

A—OOOI"

1100

Here

0001 1.1 00
0001 1100

2 3 =
4 IIOO’A 0020
00 20) 0002

and C, = C4. Therefore d(4)=3. In this case h,=3 (1_1 2,3,4) and d(4) = mm fi;.
Example 2. If max gi=n—1, our Theorem 1mp11es d(A)=2. This result rs

sharp in the followmg sense To any n=2 there is an irreducible nXn matrix 4
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with max g;=n—1 such that d(4)=2. This property has for instance the matrix
: ;

0 1...1
4= ] 0...0
10..0
Here
n—10...0
| 0 1)
0 1.1

Since C,'UC% =S, the matrix 4 is irreducible (see [2], Theorem 1) and clearly we
have d(4)=2. A .

The result of our Theorem is also sharp in the following sense. To any n and
any g, l=g=n—1, there exist numbers g,, ..., g, with max(g,, ..., g,) =g and
a matrix A having g; non-zero elements in the ith row of A such that d(4)=
=n+1—g. Take for this purpose the matrix 4 with C,={0, e,,, ey, ...,
en—g,n—g+l’ en-—g+1,1, el,n—g+2’ MR el,n, en—g+2,3’ cres en,3}' Here 81=8,8:=..-=
=g,=1. It can be shown that C,=C57¢*? and n—g+2 is the least number /1
satisfying C{=C,. Hence k(4)=1 and d(A)=n—g+1.

If at least one of the numbers 4; is equal to 1, we have d=4J=1. This means
that some power of A is positive. Such a matrix is called primitive. Hence:

Corollary3. Ifan irreducible matrix A contains at least one row with F, CF,Cy,
then A is primitive. :

By Lemma 3 this is certainly the case if e;€ F; for some i. This implies the
following well-known result which goes back to Frobenius:

Corollary 4. If*A is irreducible and it contains a positive entry in the main
diagonal, then A is primitive.

Remark. The condition F;,cC F,C, is weaker then the condition e; ¢ Fy.
For instance, for a matrix 4 with
ey € 0
CA = 0 0 623
e3; 0 e33 ]
we have F2= {0, 823}CF2CA: {0, €5, 623}, Whi]e ezzéFz.
Since d|6=(h,, ..., h,) we also have:
Corollary 5. If two of the numbers h; are relatively prime, then A is primitive.

Example 3. The follbwing example shows that d<§ is possible. Consider
the matrix 4 and its powers:

001 1160 1 01
A=11 00|, 42=|001], A*=]1 10
110 ' 1 01 11
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For i=1,2,3 we have F;& F;C, but F;c F,C2, so that hy=h,=h,=2; hence
0 =2. But our matrix is primitive, i.e., d(4)=1<34.

Remark. Tt is worth to remark that the set {4} is not identical with an other
set of integers (denoted below by {r;}), which can be associated to any irreducible
. (and some reducible) non-negative matrices. Let .4 be irreducible. Denote by r,

the least integer =1 such that e;;¢ F;C5 ™' and define F;C$ = F;. For an irreducible
matrix r; always exists and we have r;=n. (In the graph-theoretical treatment of
_non-negative matrices ther,’s are the lengths of elementary circuits.) Since e;; € F;Cf~*

implies F;=¢,,C,c F,C%, we have h;=r,=n. It is known that d=(r,, r;, ..., I\y)
in contradistinction to d=(h, h,, ..., h,). :
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