On the index of imprimitivity of a non-negative matrix

By ŠTEFAN SCHWARZ in Bratislava (ČSSR)

1.

Let A be a non-negative $n \times n$ matrix. To study the distribution of zeros and non-zeros in the matrices of the sequence

$$A, A^2, A^3, \dots$$

we have introduced in [2] the following notations. Consider the set of symbols $E = \{e_{ij} | i, j = 1, 2, ..., n\}$ together with a zero 0 adjoined. Define in $S = \{0\} \cup E_i$ a multiplication by

$$e_{ij}e_{lm} = \begin{cases} e_{im} & \text{for } j = l, \\ 0 & \text{for } j \neq l, \end{cases}$$

the zero element having the usual properties of a multiplicative zero. Then S (with this multiplication) is a semigroup.

Let $A = (a_{ij})$ be a non-negative $n \times n$ matrix. By the support C_A of A we shall mean the subset of S containing 0 and all e_{ij} for which $a_{ij} > 0$.

For two non-negative $n \times n$ matrices \vec{A} , \vec{B} we have $C_{AB} = C_A C_B$, where the product to the right has the usual meaning used in the theory of semigroups.

In particular the supports of the elements of the sequence (1) are

(2)

$$C_A, C_A^2, C_A^3, \dots$$

Since this sequence has only a finite number of different elements (subsets of S) it can be written in the form

$$C_A, C_A^2, ..., C_A^{k-1} | C_A^k, ..., C_A^{k+d-1} | C_A^k, ..., C_A^{k+d-1} |$$

Here C_A^k , k = k(A), is the least power in (2) which appears more than once and d is the period with which all the following powers repeat.

Denote further $S_i = \{0\} \cup \{e_{i1}, e_{i2}, \dots, e_{in}\}$ and $F_i = F_i(A) = S_i \cap C_A$, so that F_i is the "support" of the *i*-th row in A.

The sequence

$$F_i, F_i C_A, F_i C_A^2, \dots$$

contains again only a finite number of different elements (subsets of S_i) and it is of the form

$$F_i, F_i C_A, \dots, F_i C_A^{k_i-2} | F_i C_A^{k_i-1}, \dots, F_i C_A^{k_i+d_i-2} | F_i C_A^{k_i-1}, \dots$$

where the integers k_i , d_i have an analogous meaning as the integers k and d above.

For details concerning these notions see [3]. In [3] and [4] we have proved:

Lemma 1. For any non-negative $n \times n$ matrix A we have:

- a) $k(A) = \max(k_1, k_2, ..., k_n);$
- b) $d(A) = 1.c.m. [d_1, d_2, ..., d_n].$

Lemma 2. If A is irreducible, then $d(A) = d_1 = d_2 = ... = d_n$.

Denote by g_i the number of non-zero elements in F_i . In the papers [3] and [4] we have found some estimates concerning the numbers k_i in terms of n and g_i . For instance we have proved $k_i \leq 1 + (n-g_i)(n-g_i+1)$.

It is intuitively clear that also the numbers d_i depend on g_i . It is the purpose of this paper to give an estimation concerning d=d(A) in terms of *n* and g_i . For an irreducible matrix *A* the number *d* is identical with the classical notion of the index of imprimitivity of *A*. Our main result is formulated in the theorem below.

2.

Let M be any non-negative $n \times n$ matrix. It is well known that there is a permutation matrix P such that PMP^{-1} is of the form

$$A = \begin{pmatrix} A_{11} & & \\ A_{21} & A_{22} & \\ \vdots & & \\ A_{r1} & A_{r2} & \dots & A_{rr} \end{pmatrix},$$

where $A_{\alpha\alpha}$ are irreducible matrices (including the case that some of the $A_{\alpha\alpha}$ are zero matrices of order 1). It is easy to see that d(A) = d(M). Further it can be proved (see [1], [5]) that $d(A) = 1.c.m. [d(A_{11}), d(A_{22}), ..., d(A_{rr})]$. Hence d(A) does not depend on the rectangular matrices $A_{\alpha\beta}, \alpha \neq \beta$.

It is therefore sufficient to restrict ourselves to the case of an *irreducible* matrix A. In [3] we have proved:

Lemma 3. If A is irreducible (of order n), then there is an integer h_i such that $1 \le h_i \le n$ and $F_i \subset F_i C_A^{h_i}$. Here:

a) if $e_{ii} \in F_i$, we may choose $h_i = 1$,

b) if F_i contains g_i non-zero elements $\in S_i$, we have, for the least number h_i satisfying the above condition, $h_i \leq n - g_i + 1$.

Consider now the chain

$$F_i \subset F_i C_A^{h_i} \subset F_i C_A^{2h_i} \subset \dots$$

Since any member of this chain contains at most n+1 different elements (namely the elements 0, e_{i1}, \ldots, e_{in}) there is an integer $\tau \ge 1$ such that

$$r(3) F_i C_A^{\tau h_i} = F_i C_A^{\tau h_i + h_i},$$

.186

hence $d_i \leq h_i \leq n - g_i + 1$. With respect to the definition of the number d_i we conclude from (3) that $d_i | h_i$. By Lemma 2 we obtain $d | h_i$ for i = 1, 2, ..., n. We have proved:

Lemma 4. Let A be irreducible. Denote $\delta = (h_1, h_2, ..., h_n)$. We then have $d|\delta$. Lemma 4 implies $d \leq \delta = (h_1, ..., h_n) \leq \min h_i \leq n + 1 - \max g_i$. We have proved:

Theorem. Let A be an irreducible non-negative $n \times n$ matrix. Denote by g_i the number of positive entries in the i-th row of A. Then $d(A) \leq n+1-\max g_i$.

Remark. In terms of the integers h_i we may state the following. If $d < \min_i h_i$, then $d|\min_i h_i$ implies that we certainly have $d \le \frac{1}{2} \min_i h_i$. If here again the equality does not hold, we have $d \le \frac{1}{3} \min h_i$. And so on.

3.

We now give some corollaries.

Suppose that d(A) = n. Then $n \le n+1 - \max_{i} g_i$ implies $g_i = 1$ for i = 1, 2, ..., n. Hence C_A is the support of an (irreducible) permutation matrix. This can be stated in the following forms:

Corollary 1. Suppose that for an irreducible non-negative $n \times n$ matrix A we have d(A) = n. Then the matrix obtained by replacing the positive entries in A by the number 1 is a permutation matrix.

Corollary 2. Let A be a non-negative irreducible $n \times n$ matrix. Suppose that replacing all positive entries in A by the number 1 we obtain a matrix which is not a permutation matrix. Then $d(A) \leq n-1$.

Example 1. In general the result of Corollary 2 cannot be sharpened. This is shown on the 4×4 matrix

<i>A</i> =	(0	0	1	0	
	0	0	1	0	
	0	0	0	1	
	1	1	0	0)	ļ

Here

$$A^{2} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \end{pmatrix}, \quad A^{3} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

and $C_A = C_A^4$. Therefore d(A) = 3. In this case $h_i = 3$ (i = 1, 2, 3, 4) and $d(A) = \min_i h_i$. Example 2. If $\max_i g_i = n - 1$, our Theorem implies $d(A) \leq 2$. This result is

sharp in the following sense. To any $n \ge 2$ there is an irreducible $n \times n$ matrix A

with max $g_i = n - 1$ such that d(A) = 2. This property has for instance the matrix

 $A = \begin{pmatrix} 0 & 1 \dots & 1 \\ 1 & 0 \dots & 0 \\ \vdots & & \\ 1 & 0 \dots & 0 \end{pmatrix}.$ $A^{2} = \begin{pmatrix} n-1 & 0 \dots & 0 \\ 0 & 1 \dots & 1 \\ \vdots & & \\ 0 & 1 \dots & 1 \end{pmatrix}.$

Here

Since $C_A \cup C_A^2 = S$, the matrix A is irreducible (see [2], Theorem 1) and clearly we have d(A) = 2.

The result of our Theorem is also sharp in the following sense. To any n and any g, $1 \le g \le n-1$, there exist numbers g_1, \ldots, g_n with $\max(g_1, \ldots, g_n) = g$ and a matrix A having g_i non-zero elements in the *i*th row of A such that d(A) == n+1-g. Take for this purpose the matrix A with $C_A = \{0, e_{12}, e_{23}, \ldots, e_{n-g,n-g+1}, e_{n-g+1,1}, e_{1,n-g+2}, \ldots, e_{1,n}, e_{n-g+2,3}, \ldots, e_{n,3}\}$. Here $g_1 = g, g_2 = \ldots =$ $= g_n = 1$. It can be shown that $C_A = C_A^{n-g+2}$ and n-g+2 is the least number $l \ne 1$ satisfying $C_A^l = C_A$. Hence k(A) = 1 and d(A) = n-g+1.

If at least one of the numbers h_i is equal to 1, we have $d=\delta=1$. This means that some power of A is positive. Such a matrix is called *primitive*. Hence:

Corollary 3. If an irreducible matrix A contains at least one row with $F_i \subset F_i C_A$, then A is primitive.

By Lemma 3 this is certainly the case if $e_{ii} \in F_i$ for some *i*. This implies the following well-known result which goes back to Frobenius:

Corollary 4. If A is irreducible and it contains a positive entry in the main diagonal, then A is primitive.

Remark. The condition $F_i \subset F_i C_A$ is weaker then the condition $e_{ii} \in F_i$. For instance, for a matrix A with

$$C_{\mathcal{A}} = \begin{cases} e_{11} & e_{12} & 0\\ 0 & 0 & e_{23}\\ e_{31} & 0 & e_{33} \end{cases}$$

we have $F_2 = \{0, e_{23}\} \subset F_2 C_A = \{0, e_{21}, e_{23}\}$, while $e_{22} \notin F_2$. Since $d \mid \delta = (h_1, ..., h_n)$ we also have:

Corollary 5. If two of the numbers h_i are relatively prime, then A is primitive.

Example 3. The following example shows that $d < \delta$ is possible. Consider the matrix A and its powers:

$$A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}, \quad A^2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix}, \quad A^3 = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}.$$

188

Index of imprimitivity

For i=1, 2, 3 we have $F_i \oplus F_i \oplus C_A$ but $F_i \oplus F_i \oplus C_A^2$, so that $h_1 = h_2 = h_3 = 2$; hence $\delta = 2$. But our matrix is primitive, i.e., $d(A) = 1 < \delta$.

Remark. It is worth to remark that the set $\{h_i\}$ is not identical with an other set of integers (denoted below by $\{r_i\}$), which can be associated to any irreducible (and some reducible) non-negative matrices. Let A be irreducible. Denote by r_i the least integer ≥ 1 such that $e_{ii} \in F_i C_A^{r_i-1}$ and define $F_i C_A^0 = F_i$. For an irreducible matrix r_i always exists and we have $r_i \leq n$. (In the graph-theoretical treatment of non-negative matrices the r_i 's are the lengths of elementary circuits.) Since $e_{ii} \in F_i C_A^{r_i-1}$ implies $F_i = e_{ii} C_A \subset F_i C_A^{r_i}$, we have $h_i \leq r_i \leq n$. It is known that $d = (r_1, r_2, ..., r_n)$ in contradistinction to $d \leq (h_1, h_2, ..., h_n)$.

References

- [1]Ю. И. Любич, Оценка для оптимальной детерминизации недетерминованных автономных автоматов, Сибирский Матем. Ж., 5 (1964), 337—355.
- [2] Š. SCHWARZ, A semigroup treatment of some theorems on non-negative matrices, Czechoslovak Math. J., 15 (90) (1965), 212–229.
- [3] Š. SCHWARZ, A new approach to some problems in the theory of non-negative matrices, *Czecho-slovak Math. J.*, 16 (91) (1966), 274–284.

 [4] Š. SCHWARZ, Some estimates in the theory of non-negative matrices, Czechoslovak Math. J., 17 (92) (1967). To appear.

[5] Ш. Швари, Заметка к теории неотрицательных матриц, Сибирский Матем. Ж., 6 (1965), 207-211.

(Received December 20, 1966)