On the index of imprimitivity of a non-negative matrix

By ŠTEFAN SCHWARZ in Bratislava (ČSSR)

1.

Let A be a non-negative $n \times n$ matrix. To study the distribution of zeros and non-zeros in the matrices of the sequence

$$
\begin{equation*}
A, A^{2}, A^{3}, \ldots \tag{1}
\end{equation*}
$$

we have introduced in [2] the following notations. Consider the set of symbols $E=\left\{e_{i j} \mid i, j=1,2, \ldots, n\right\}$ together with a zero 0 adjoined. Define in $S=\{0\} \cup E_{i}$ a multiplication by

$$
e_{i j} e_{l m}=\left\{\begin{array}{ccc}
e_{i m} & \text { for } & j=l \\
0 & \text { for } & j \neq l
\end{array}\right.
$$

the zero element having the usual properties of a multiplicative zero. Then S (with this multiplication) is a semigroup.

Let $A=\left(a_{i j}\right)$ be a non-negative $n \times n$ matrix. By the support C_{A} of A we shall: mean the subset of S containing 0 and all $e_{i j}$ for which $a_{i j}>0$.

For two non-negative $n \times n$ matrices A, B we have $C_{A B}=C_{A} C_{B}$, where the: product to the right has the usual meaning used in the theory of semigroups.

In particular the supports of the elements of the sequence (1) are

$$
\begin{equation*}
C_{A}, C_{A}^{2}, C_{A}^{3}, \ldots \tag{2}
\end{equation*}
$$

Since this sequence has only a finite number of different elements (subsets of S) it can be written in the form

$$
C_{A}, C_{A}^{2}, \ldots, C_{A}^{k-1}\left|C_{A}^{k}, \ldots, C_{A}^{k+d-1}\right| C_{A}^{k}, \ldots, C_{A}^{k+d-1} \mid \ldots
$$

Here $C_{A}^{k}, k=k(A)$, is the least power in (2) which appears more than once and d is the period with which all the following powers repeat.

Denote further $S_{i}=\{0\} \cup\left\{e_{i 1}, e_{i 2} ; \ldots e_{i n}\right\}$ and $F_{i}=F_{i}(A)=S_{i} \cap C_{A}$, so that: F_{i} is the "support" of the i-th row in A.

The sequence

$$
F_{i}, F_{i} C_{A}, F_{i} C_{A}^{2}, \ldots
$$

contains again only a finite number of different elements (subsets of S_{i}) and it is. of the form

$$
F_{i}, F_{i} C_{A}, \ldots, F_{i} C_{A}^{k_{i}-2}\left|F_{i} C_{A}^{k_{i}-1}, \ldots, F_{i} C_{A}^{k_{i}+d_{i}-2}\right| F_{i} C_{A}^{k_{i}-1}, \ldots
$$

where the integers k_{i}, d_{i} have an analogous meaning as the integers k and d above..

For details concerning these notions see [3].
In [3] and [4] we have proved:
Lemma 1. For any non-negative $n \times n$ matrix A we have:
a) $k(A)=\max \left(k_{1}, k_{2}, \ldots, k_{n}\right)$;
b) $d(A)=1 . \mathrm{c} . \mathrm{m} .\left[d_{1}, d_{2}, \ldots, d_{n}\right]$.

Lemma 2. If A is irreducible, then $d(A)=d_{1}=d_{2}=\ldots=d_{n}$.
Denote by g_{i} the number of non-zero elements in F_{i}. In the papers [3] and [4] we have found some estimates concerning the numbers k_{i} in terms of n and g_{i}. For instance we have proved $k_{i} \leqq 1+\left(n-g_{i}\right)\left(n--g_{i}+1\right)$.

It is intuitively clear that also the numbers d_{i} depend on g_{i}. It is the purpose of this paper to give an estimation concerning $d=d(A)$ in terms of n and g_{i}. For an irreducible matrix A the number d is identical with the classical notion of the index of imprimitivity of A. Our main result is formulated in the theorem below.

2.

Let M be any non-negative $n \times n$ matrix. It is well known that there is a permutation matrix P such that $P M P^{-1}$ is of the form

$$
A=\left(\begin{array}{llll}
A_{11} & & \\
A_{21} & A_{22} & \\
\vdots & & \\
A_{r 1} & A_{r 2} & \ldots & A_{r r}
\end{array}\right)
$$

where $A_{\alpha \alpha}$ are irreducible matrices (including the case that some of the $A_{\alpha \alpha}$ are zero matrices of order 1). It is easy to see that $d(A)=d(M)$. Further it can be proved (see [1], [5]) that $d(A)=$ l.c.m. $\left[d\left(A_{11}\right), d\left(A_{22}\right), \ldots, d\left(A_{r r}\right)\right]$. Hence $d(A)$ does not -depend on the rectangular matrices $A_{\alpha \beta}, \alpha \neq \beta$.

It is therefore sufficient to restrict ourselves to the case of an irreducible matrix A. In [3] we have proved:
Lemma 3. If A is irreducible (of order n), then there is an integer h_{i} such that $1 \leqq h_{i} \leqq n$ and $F_{i} \subset F_{i} C_{A}^{h_{t}}$. Here:
a) if $e_{i i} \in F_{i}$, we may choose $h_{i}=1$,
b) if F_{i} contains g_{i} non-zero elements $\in S_{i}$, we have, for the least number h_{i} .satisfying the above condition, $h_{i} \leqq n-g_{i}+1$.

Consider now the chain

$$
F_{i} \subset F_{i} C_{A}^{h_{i}} \subset F_{i} C_{A}^{2 h_{i}} \subset \ldots
$$

Since any member of this chain contains at most $n+1$ different elements (namely the elements $0, e_{i 1}, \ldots, e_{i n}$) there is an integer $\tau \geqq 1$ such that

$$
\begin{equation*}
F_{i} C_{A}^{\tau h_{i}}=F_{i} C_{A}^{\tau h_{i}+h_{i}} \tag{3}
\end{equation*}
$$

hence $d_{i} \leqq h_{i} \leqq n-g_{i}+1$. With respect to the definition of the number d_{i} we conclude from (3) that $d_{i} \mid h_{i}$. By Lemma 2 we obtain $d \mid h_{i}$ for $i=1,2, \ldots, n$.

We have proved:
Lemma 4. Let A be irreducible. Denote $\delta=\left(h_{1}, h_{2}, \ldots, h_{n}\right)$. We then have $d \mid \delta$.
Lemma 4 implies $d \leqq \delta=\left(h_{1}, \ldots, h_{n}\right) \leqq \min _{i} h_{i} \leqq n+1-\max _{i} g_{i}$. We have proved:
Theorem. Let A be an irreducible non-negative $n \times n$ matrix. Denote by g_{i} the number of positive entries in the i-th row of A. Then $d(A) \leqq n+1-\max _{i} g_{i}$.

Remark. In terms of the integers h_{i} we may state the following. If $d<\min _{i} h_{i}$, then $d \mid \min _{i} h_{i}$ implies that we certainly have $d \leqq \frac{1}{2} \min _{i} h_{i}$. If here again the equality does not hold, we have $d \leqq \frac{1}{3} \min _{i} h_{i}$. And so on.

3.

We now give some corollaries.
Suppose that $d(A)=n$. Then $n \leqq n+1-\max _{i} g_{i}$ implies $g_{i}=1$ for $i=1,2, \ldots, n$. Hence C_{A} is the support of an (irreducible) permutation matrix. This can be stated in the following forms:

Corollary i. Suppose that for an irreducible non-negative $n \times n$ matrix A we have $d(A)=n$. Then the matrix obtained by replacing the positive entries in A by the number 1 is a permutation matrix.

Cörrollary 2. Let A be a non-negative irreducible $n \times n$ matrix. Suppose that replacing all positive entries in A by the number 1 we obtain a matrix which is not a permutation matrix. Then $d(A) \leqq n-1$.

Example 1. In geueral the result of Corollary 2 cannot be sharpened. This is shown on the 4×4 matrix

$$
A=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0
\end{array}\right)
$$

Here

$$
A^{2}=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 2 & 0
\end{array}\right), \quad A^{3}=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right)
$$

and $C_{A}=C_{A}^{4}$. Therefore $d(A)=3$. In this case $h_{i}=3(i=1,2,3,4)$ and $d(A)=\min _{i} \hbar_{i}$.
Example 2. If $\underset{i}{\max } g_{i}=n-1$, our Theorem implies $d(A) \leqq 2$. This result is sharp in the following sense. To any $n \geqq 2$ there is an irreducible $n \times n$ matrix A
with $\max _{1} g_{i}=n-1$ such that $d(A)=2$. This property has for instance the matrix

$$
A=\left(\begin{array}{ccc}
0 & 1 & \ldots \\
1 \\
1 & 0 & \ldots \\
\vdots & 0 \\
1 & 0 & \ldots
\end{array}\right)
$$

Here

$$
A^{2}=\left(\begin{array}{ccc}
n-1 & 0 \ldots & 0 \\
0 & 1 \ldots & 1 \\
\vdots & & \\
0 & 1 \ldots & 1
\end{array}\right)
$$

Since $C_{A} \cup C_{A}^{2}=S$, the matrix A is irreducible (see [2], Theorem 1) and cleparly we have $d(A)=2$.

The result of our Theorem is also sharp in the following sense. To any n and any $g, 1 \leqq g \leqq n-1$, there exist numbers g_{1}, \ldots, g_{n} with $\max \left(g_{1}, \ldots, g_{n}\right)=g$ and a matrix A having g_{i} non-zero elements in the i th row of A such that $d(A)=$ $=n+1-g$. Take for this purpose the matrix A with $C_{A}=\left\{0, e_{12}, e_{23}, \ldots\right.$, $\left.e_{n-g, n-g+1}, e_{n-g+1,1}, e_{1, n-g+2}, \ldots, e_{1, n}, e_{n-g+2,3}, \ldots, e_{n, 3}\right\}$. Here $g_{1}=g, g_{2}=\ldots=$ $=g_{n}=1$. It can be shown that $C_{A}=C_{A}^{n-g+2}$ and $n-g+2$ is the least number $l \neq 1$ satisfying $C_{A}^{l}=C_{A}$. Hence $k(A)=1$ and $d(A)=n-g+1$.

If at least one of the numbers h_{i} is equal to 1 , we have $d=\delta=1$. This means that some power of A is positive. Such a matrix is called primitive. Hence:

Corollary 3. If an irreducible matrix A contains at least one row with $F_{i} \subset F_{i} C_{A}$, then A is primitive.

By Lemma 3 this is certainly the case if $e_{i i} \in F_{i}$ for some i. This implies the following well-known result which goes back to Frobenius:

Corollary 4. If A is irreducible and it contains a positive entry in the main diagonal, then A is primitive.

Remark. The condition $F_{i} \subset F_{i} C_{A}$ is weaker then the condition $e_{i i} \in F_{i}$. For instance, for a matrix A with

$$
C_{A}=\left\{\begin{array}{ccc}
e_{11} & e_{12} & 0 \\
0 & 0 & e_{23} \\
e_{31} & 0 & e_{33}
\end{array}\right\}
$$

we have $F_{2}=\left\{0, e_{23}\right\} \subset F_{2} C_{A}=\left\{0, e_{21}, e_{23}\right\}$, while $e_{22} \notin F_{2}$.
Since $d \mid \delta=\left(h_{1}, \ldots, h_{n}\right)$ we also have:
Corollary 5. If two of the numbers h_{i} are relatively prime, then A is primitive.
Example 3. The following example shows that $d<\delta$ is possible. Consider the matrix A and its powers:

$$
A=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
1 & 1 & 0
\end{array}\right), \quad A^{2}=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 1
\end{array}\right), \quad A^{3}=\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right) .
$$

For $i=1,2,3$ we have $F_{i} \nsubseteq F_{i} C_{A}$ but $F_{i} \subset F_{i} C_{A}^{2}$, so that $h_{1}=h_{2}=h_{3}=2$; hence $\delta=2$. But our matrix is primitive, i.e., $d(A)=1<\delta$.

Remark. It is worth to remark that the set $\left\{h_{i}\right\}$ is not identical with an other set of integers (denoted below by $\left\{r_{i}\right\}$), which can be associated to any irreducible (and some reducible) non-negative matrices. Let A be irreducible. Denote by r_{i} the least integer $\geqq 1$ such that $e_{i i} \in F_{i} C_{A}^{r_{i}-1}$ and define $F_{i} C_{A}^{0}=F_{i}$. For an irreducible matrix r_{i} always exists and we have $r_{i} \leqq n$. (In the graph-theoretical treatment of non-negative matrices the r_{i} 's are the lengths of elementary circuits.) Since $e_{i i} \in F_{i} C_{A_{i}{ }^{-1}}$ implies $F_{i}=e_{i i} C_{A} \subset F_{i} C_{A}^{r_{i}}$, we have $h_{i} \leqq r_{i} \leqq n$. It is known that $d=\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ in contradistinction to $d \leqq\left(h_{1}, h_{2}, \ldots, h_{n}\right)$.

References

[1]Ю. И. Любич, Оценка для оптимальной детерминизации недетерминованных автономных автоматов, Сибирский Матем. Ж., 5 (1964), 337-355.
[2] S. Schwarz, A semigroup treatment of some theorems on non-negative matrices, Czechoslovak Math. J.; 15 (90) (1965), 212-229.
[3] S. Schwarz, A new approach to some problems in the theory of non-negative matrices, Czechoslovak Math. J., 16 (91) (1966), 274-284.
[4] S. Schwarz, Some estimates in the theory of non-negative matrices, Czechoslovak Math. J., 17 (92) (1967). To appear.
[5] Ш. Шварц, Заметка к теории неотрицательных матриц, Сибирский Матем. Ж., 6 (1965), 207-211.

