Norm relations and skew dilations

By C. A. BERGER and J. G. STAMPELI in New York (N. Y., U.S/A.)%)

An operator T on a Hilbert space H possesses a skew dilation if there exists:
a Hilbert space KD H, a constant >0, and a unitary operator U on K, such that
T"=oPU"P for n=1,2; ..., wherc P is the self-adjoint projection of K on H. If
T"=gpPU"P, then following the notation of [5], we say T'€ C,. Note that C, is the
class of all contractions and C, is the set of all operators with numerical range.
in the unit disc. Sz.-NAGy and Foiag [S] have characterized C, for general ¢ >0.

In the first part of this paper, we obtain bounds on [|T”x{ for T€C,. These:
bounds should be useful in constructing a matrix dilation for T¢C, similar to
the Schiffer dilation for contractions. The rest of the paper is devoted to general

results on C,.
It is conVement to write 7" == g PU"P or 6T"=PU"P depending on the context..

For the rest of the paper it is assumed that 6 = =0 -1

Lemma 1. Let 6TV =PU!P for j=1,2,.... Then PU*[I—P)U"P=a,T"**
Jor k,n=1,2, ..., where o, is independent of k

Proof. E)\pand [—PYUT'P formally: Then all terms are either of the form.
al™ or bUFT"I, after simplifications via the relation PU™P=46T". But PU*aT"=
=6aT"** and PU*HU'T"~J =06bT"**. Thus, PU[(I-P)UTP=3, ¢, T"*¥, where:
- the constants Cim do not depend on k, but only upon the coefficients arising in the-
formal expansion of [(/— P)UT'P, and the subsequent conversion of U’s to T’s

Corollary. Let 61'=PU'P fo; j=1,2,.... Then PU*[(I-P)UIU"P=
=o, T*+"*" where o, is independent of k and m. ‘ :

Proof. Same as above.
Theorem 1. PU[(I P)U]"P 6(1—5)"T""1 , ‘
Proof. We assume that the relation is true for n» and check it for n+1.
(It obviously holds for n=1.)
- PU[(I—-P)UI*'P = PU*[(I-P)UI"P—-PU{PU[(I—-P)UI'P} =
— 5(1_5n)Tn+2__5T[5(1 __5)nTn+1] = (1 _5)n+1Tn+2'

To convert the first term on the right, we have made use of Lemma 1 and the:
induction hypothesis. :

*) Both authors gratefully acknowledge the support of the National Science Foundation.
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Corollary. Let 6TV =PUP for j=1,2,.... Then PU*[(I—P)UTU™P =
= §(1 =T *™ for n, k=1,2, .... ‘

Proof. Same as above using the Corollary to Lemma 1.

Lemma 2. Let V be an isometry and P a self-adjoint projeciion on a Hilbert
.space. Then '

M-
Ix]2 = 2 IPVI—P)V]x|? + [({— P) VI x||2
for M=1,2, ....

Proof. By induction.

Corollary. Under the same hypothesis as above,

M-1
x> = ;(‘) IPVIUI—P)VT VEx|? +[(I—P) VM VEx|?
for M, k=1,2, ...
Proof. Replace v by VEx in Lemma 2.

Theorem 2. Let 3T =PU'P for j=1,2,.... Then

oo

82(1—38)20-D|F"x||? = ||x|2.
n=1
Proof. For M fixed, it follows from Lemma 2 and Theorem 1 that,

M= M :
xf? = =201 IPUIUI—PYUT x| = ;1 8(t —d)y=1T"x|2.

Letting M -» e completes the proof. ‘
" Corollary 1. Let STV=PUP for j=1,2,.... Then

3 52(1 = 0)20- | Totkx|2 = |x|2 for k=1,2,....
n=1 . '

Proof. Same as above, using the Corollaries to Lemma 2 and Theorem 1.
Corollary 2. If (W(T)| =1, then

2 4-" [|T"+kX||2 = ”X”2 for k=12, ....
n=1

Proof.‘ By [1], we know that |W(T)|=1 implies $TV=PU’P for j=1,2, ....
«Corollary 3. Let T =PUP for j=1,2,.... If

M
2 82(1 —38)20-0|T"x|2 = |Ix||2, then TM*+lx =0,
n=1 :
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Corollary 4. Let (W(T)|=1. If
M - . .
2 47T x||2 = ||x{|2, then TM+lx =0,
n=1 . . .

Note that Corollary 4 givés'us a much sharper form of the following result
from [2]: If |W(T)|=1 and | Tx| =2|x|, then T?x=0.

Theorem 3. Let TJ—QPUJP Jor j=1,2, ... where g>1. If liminf [T x| =
=allx,ll, then a=(2¢—1)"2.

Proof. Assume a>(20——1)”2 for xq < H. Then for some fixed k, | T"**x,| >
=20 — )¥||xo|l for n=1,2, .... Thus,

ol = 3 521 P DTk x>

>(2¢ — 1) fxql? _Z 02(1-9) = (20— 1)8|Ixol1*/(20 — 82) = |Ixoll2,

which is 1mpossxble

Corollary. If IW(T),SI and hm mfl|T"x0l| =af xoll, then aSV_

pProof. For |W(T)|=1, it follows from [1] that 7%= oPU’P, whete g=2.

In [2] an example was given of an operator T where |W(T) =1 and lim || T"x,|| =
=V2|x,|. This raises the question of the best possible constant K, such that
a) [W(T)|=1 and b) liminf||T"x,| =Klxel|. The Corollary to Theorem 3
does not give a sharp answer to this question, but it does reduce the upper bound

~ on K from 2 to V3.
Note that if ¢ <1, then | T"x,) SQ X0l ~0. However, it is still possnble ‘to
obtain a weak form of Theorem 3.

Theorem 4. Let TV =oPU'P Jor j=1, 2 . where g < 1. If | T"x,|| = ag"|| x,|
Jor all n, then oz«[g(Z—o)]”2 '

‘Proof. Assume a>[o(2—9)]"/* for xo€H. Then

lxol2 = 2°° 52(1— 8)20-1) T x| 2 =

. HV

& IIYoII2 Z (1-98)*¢ 2">@(2 2) Ixoll? 2 (I—)* = |Ix,l?
which is 1mposs1ble

Lemma 3. Let TV=9PUP for j=1,2, ..., and let f(z).be analytic for |z|<1
and continuous on the boundary. Then rlil;ﬂ_ SOT) exists, and equals (1 —)f(0) I+

+ 0 Pf(U)P, where convergence is in the norm topology.
Proof. Since |TV|=¢ for j=1,2,..., it is clear that fenH=2 a,j"T"
. . ‘ <

converges absolutely, for r<1. Indeed, ||Z'a,,r"T"]|§Z|a,,]r"Q and |a,|=M since -
: 0] 0 .

13 A
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. [ is continuous. Thus,

fT) = j’-a,,r”T" = agl+oP D a,r"U"P =
n=0 n=1 '
= (1~ Q)aol+oP 3 a,r" [ e dE@)P =
. . (4]
= (—0aol+oP [[ 3 armem] dE@)P =
. [V} .

= (1—)aoI+ ¢P [f(reé)dE()P, for r=R<l.

Since f(z) is continuous in |2!§ I, it follows that
lim f(rT) = (1—g)apl+ ngf(e"')dE(t)P =(1—-0)f(0O)I+0 Pf(U)P.
ot , . . :

Theorem 5. Let T¢€ Cel. Let f(z) be analytic in |z| <1 and contiﬁuous on the
boundary, where f(0)=0 and |f(z)|=1 for |z|=1. Then f(T)€C,.

Proof. Let g(z)=[f(2)]". Then it follows from Lemma 3 that [f(T)])"=
=g(T)= QPg(U)P oP[f(U)]"P for n=1,2,.... Since U is unitary, it follows
that, -while f(U) is not necessarily unitary, it is a contraction. Hence f(U) has a
unitary dilation, which completes the proof.

This theorem appeared in [5] under the additional assumption that j(z) have
an absolutely convergent Taylor series.

A little thought about Theorem 4 reveals that if 7 is normal and [[T|=0<1,
then T¢ C,. This leads one to ask how large a normal operator can be. and still
be a successful candidate for membership in C,.

While preparing the manuscript, we learned that this question had been answered
.independently by E. DuUrszT [6]. Our results are slightly more general, and for that
reason we include the statements of Lemmas 4 and 5 and Theorem 6. Since ‘the
proofs are implicitly contained in DurszT’s paper, we omit them. (The observation
.that all-points in the boundary of the spectrum of an operator lie in the approximate
point spectrum is relevant to Lemma 5.)

Lemma 4. If T =0/2— Q) and ¢ <1, then TEC(,. If \T| =1, then TeC,
for p=1. .

Lemma 5. If TEC, for o-=1, then R.,p(T)ég/(Z'—Q). If TECL, Sfor Q:Z—l,
then Rg,,(T)—l

Theorem 6. Let T be norma101d For¢=1, TEC, if and only if |T| ..Q/(2 0).
For ¢=1,TEC, if and only if |T|=1.

Note that hyponormal, subnormal, normal self adjoint and unitary operators
ar¢ all normaloid.

In [5], there is an example of a power bounded operator “which is not in C,
for any. ¢.-We will now present a simpler example which does sllghtlv more than
‘theirs.
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First we need the following

Theorem B. (Sz.-NAGYy—Fo1As) For 9=2, T€C, if and only if

1) o(T)c{z: |z| =1},

2) =T M=d-D)"" for l<|z|=(e—1/(e—2)

Theorem 7. Given a=0, there exists an operator T such that

D i7" =1+a for n=12,..

2) T4¢C, forany o.

Proof. Given a=>0, our operator T is defined as follows: To,=¢, +ap,,
Tq)z = —,, where {¢,, (pz} is an orthonormal basis for the space H. Since =T,
it is clear that |T"|=1-+a for n=1,2,.... However,

=Ty o, = (z—1)"[o, +a(1 +2z)"tp,l for z#+1.
Since |(zI—T) o, l= Iz—lI“ il +a?/}1 +z}*]Y2, T does not satisfy condition 2

‘of Theorem B for any g¢g=>2; as may be seen by taking z real with 1<z=

=(¢—1)(e—2)"". However, C,c C; for «<f (see [5]) which implies T'¢ C, for
any ¢ >0 as promised.

Added in proof: Recently we recexved a preprint “Remarks on the numerical
radius” from Tosio Kato. Combining an idea from that paper with the existing
results and techniques of this one, it is possible to obtain a remarkable sharpening
of Theorem 2 and its Corollaries.

Theorem 2. Let {k,} be any strictly increasing sequence of positive integers.
Ler 6TV =PUIP.. Then

S 81— 5D TR x| = x|

n=1

The proof involves a fairly simple modification of the argument with particular
emphasis on Lemma 2. : _

In Theorem 3, Iliminf may now be replaced by limsup, and we obtain
the following: :

Corollary. If [W(T)| =1, then lim sup ||T"x||= V3(ix].
This sharpens KATo’s bound of 4/}5 for this lim sup.
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