On a process concerning inaccessible cardinals. III

By G. FODOR in Szeged

This paper is a continuation of references I and II (see [1] and [2]), in which a process concerning inaccessible cardinals has been defined. In this paper we freely make use of the notations and theorems of [2].

In [1] the process was described by a sequence of functions

$$f_0(\alpha^{(0)}), f_1(\alpha^{(0)}, \alpha^{(1)}), ..., f_n(\alpha^{(0)}, \alpha^{(1)}, ..., \alpha^{(n)}), ...$$

where the variables η and $\alpha^{(\eta)}$ run over all ordinal numbers and for given η the functions $f_{\eta}(\alpha^{(0)}, \alpha^{(1)}, ..., \alpha^{(\eta)})$ are defined for such arguments $(\alpha^{(0)}, \alpha^{(1)}, ..., \alpha^{(\eta)})$ in which only a finite number of terms is distinct from 0.

In this paper we are going to describe the process in another manner which is much simpler than the above one.

Let S be a subclass of the class C of all ordinal numbers which is confinal to C. If the elements of S are arranged by magnitude then we say that $S = {\sigma_{\xi}}_{\xi \in C}$ is a confinal sequence. An element σ_{ξ} of S is called a fixed point of S if $\sigma_{\xi} = \xi$.

First we define by transfinite induction the concept of figures. We define a figure of order 0 as a confinal sequence. Let now $\beta > 0$ be a given ordinal number and suppose that the figures of order smaller than β have been already defined. We define the figures of order β as follows:

- 1) in the case of $\beta = \eta + 1$ we define a figure of order β as a sequence of type C of distinct figures of order η ;
- 2) in the case of a limit number β we define a figure of order β as a sequence of type β the ξ th element of which is a figure of order ξ .

If $F = \{F_{\tau}\}$ is a figure then we say that F and the elements F_{τ} of F are components of F, the components of any component of F are components of F, as well. If a component G of F is a figure of order τ then we say that G is a component of order τ .

We associate with every figure F an element a(F) and two figures A(F) and A(a(F)) of order 0, furthermore with every sequence $S_{\beta} = \{F_{\eta}\}_{\eta \in \beta}$ of figures F_{η} of order ξ or with every sequence $S_{\beta} = \{F_{\eta}\}_{\eta \in \beta}$ of figures of order η a figure $A(S_{\beta})$ of order 0. Now we define a(F), A(F), A(a(F)) and $A(S_{\beta})$ as follows.

- a) Let a(F) be the smallest of the elements of C which belongs to F.
- b) Let $F = \{F_{\xi}\}_{\xi \in x}$ be a figure of order β (where $\alpha = C$ or α is a limit number (and in this case $\alpha = \beta$). Let $A(\alpha(F))$ be one of the components of order 0 of F the smallest element of which is $\alpha(F)$. We define A(F) as follows:
 - β_1) if $\beta = 0$ then let A(F) = F

198 G. Fodor

b₂) if $\beta = \eta + 1$ then let A(F) be the sequence S of the distinct $a(F_{\xi})$ ($\xi \in C$) arranged according to their magnitude, provided that S is a confinal sequence; otherwise let A(F) be an arbitrary figure of order 0;

 b_3) if β is a limit number then let A(F) be the sequence of all the distinct elements, arranged in their magnitude, which belong to the intersection of all $A(F_{\xi})$ with $\xi < \beta$, provided that this is a confinal sequence; otherwise let A(F) be an arbitrary figure of order 0;

c) let $S_{\beta} = \{F_{\xi}\}_{\xi \in \beta}$ be a given sequence of type β of figures F_{ξ} of order τ or a given sequence of type β of figures F_{ξ} of order ξ . We define $A(S_{\beta})$ as follows:

 c_1) if $\beta = \eta + 1$ then let $A(S_{\beta}) = A(F_{\eta})$;

 c_2) if β is a limit number then let $A(S_{\beta})$ be the sequence of all the distinct elements, arranged in their magnitude, which belong to the intersection of all $A(F_{\xi})$ with $\xi < \beta$, provided that this is a confinal sequence; otherwise let $A(S_{\beta})$ be an arbitrary figure of order 0.

If a figure of order 0 is a stationary subclass of C then we call it a stationary figure of order 0; otherwise we call it a non-stationary figure of order 0. Similarly, if the components of order 0 of a figure F of order β are stationary then we call it a stationary figure of order β . Let $S = \{\sigma_{\xi}\}_{\xi \in C}$ be a stationary figure of order 0. If we associate with every σ_{ξ} its index ξ we obtain a strictly divergent function g on S for which $g(\gamma) \leq \gamma$ holds. Thus it follows from Theorem I that the class $\{\sigma_{\xi} \in S : \sigma_{\xi} > \xi\}$ is non-stationary.

If S is a stationary figure of order 0 then we denote by (S)' the figure of order 0 consisting of all the fixed elements of S. Clearly, S-(S)' is non-stationary.

Let $\gamma > 0$ be an arbitrary ordinal number, $S_{\gamma} = \{F_{\xi}\}_{\xi \in \gamma}$ a sequence of figures of order 0, and G a figure of order 0. We say that S, is coincident with G if, in the case of $\gamma = \eta + 1$, $(A(S_{\nu}))' = G$ and, in the case of a limit number γ , $A(S_{\nu}) = G$. Let now $\beta > 0$ be a given ordinal number, τ an arbitrary ordinal number, $0 < \tau < \beta$, and suppose that the coincidence of a sequence $S_{\gamma} = \{F_{\xi}\}_{\xi \in \gamma}$ of figures F_{ξ} of order τ , where γ is an arbitrary ordinal number (and a sequence $S_{\tau} = \{F_{\xi}\}_{\xi \in \tau}$ of figures F_{ξ} of order ξ) with a figure G of order τ has been already defined. Let $S_{\gamma} = \{F_{\xi}\}_{\xi \in \gamma}$ be a sequence of figures F_{ξ} of order β , where γ is an arbitrary ordinal number, and $R_{\beta} = \{F_{\xi}\}_{\xi \in \beta}$ a sequence of figures F_{ξ} of order ξ , furthermore G a figure of order β . We say that S_{γ} is coincident with G if, in the case of $\gamma = \eta + 1$, $(A(S_{\gamma}))' =$ =A(a(G)) and, if, in the case of a limit number γ , $A(S_{\gamma})=A(a(G))$. Similarly, R_{β} is coincident with G if, in the case of $\beta = \eta + 1$, $(A(R_{\beta}))' = A(a(G))$ and if, in the case of a limit number β , $A(R_{\beta}) = A(a(G))$. If F is a figure of order 0 or if $F = \{F_{\xi}\}_{\xi \in \kappa}$ is a figure of order $\beta > 0$ (where $\kappa = C$ or κ is a limit number (and in this case $\kappa = \beta$)) and, for every $\xi \in \kappa$, the sequence $S_{\xi} = \{F_{\xi}\}_{\xi \in \xi}$ is coincident with F_{ξ} , then we say that F is connected. If F is a figure and all its components are connected, we say that F is perfect. It is clear that A(a(F)) is uniquely determined for any perfect figure F.

Now, we define by transfinite induction the operations Γ_{β} for $\beta \in C$. The operation Γ_0 chooses a stationary figure $F^{(0)}$ of order 0. Let now $\beta > 0$ be a given ordinal number and suppose that the figures $F^{(\xi)}$ of order ξ and the operation Γ_{ξ} have been already defined for every $\xi < \beta$. If $\beta = \eta + 1$ then the operation Γ_{β} chooses a perfect stationary figure $F^{(\beta)}$ of order β such that $F^{(\eta)}$ is coincident with $F^{(\beta)}$. If β is a limit number then Γ_{β} chooses a perfect stationary figure $F^{(\beta)}$ of order β such that the figure $G^{(\beta)} = \{F^{(\xi)}\}_{\xi \in \beta}$ is coincident with $F^{(\beta)}$.

We shall prove that we have defined the figures $F^{(\xi)}$ of order ξ and the opera-

tions $\Gamma_{\mathcal{E}}$ for every $\xi \in C$.

We define the operation Φ as follows. Let $F = F^{(\beta)}$. Then $\Phi(F)$ is the figure $D^{(\beta)}$ of order β obtained in the following way: We omit the fixed elements from every component of order 0 of F, furthermore if $0 \le \tau < \beta$ and G is any component of order $\tau + 1$ of F then we omit the fixed elements of A(G).

Now we prove the following

Theorem A. The class of all the elements of C belonging to $D^{(\beta)} = \Phi(F^{(\beta)})$ is non-stationary; β is an arbitrary element of C.

Proof. Let $H = \{h_{\xi}\}_{\xi \in C}$ any component of order 0 of $D^{(\beta)}$. By definition $\xi < h_{\xi}$ for every $\xi \in C$. We define a function g on H by writing $g(h_{\xi}) = \xi$. Since g is strictly divergent and regressive, Theorem I implies that H is non-stationary. Thus, every component of order 0 of $D^{(\beta)}$ is non-stationary. Let now $0 < \gamma \le \beta$ and suppose that the class of all elements belonging to any component $G^{(\alpha)}$ of order $\varrho < \gamma$ of $D^{(\beta)}$ is non-stationary. Let $G^{(\gamma)} = \{F_{\xi}\}_{\xi \in \tau}$ where $\tau = C$ or τ is a limit number (and in this case $\tau = \gamma$). We denote by U_{ξ} the class of all elements of C which belong to F_{ξ} . Clearly the classes U_{ξ} ($\xi \in C$) are mutually disjoint. Let $\gamma = \eta + 1$ and $A(G^{(\gamma)}) = \{\sigma_{\xi}\}_{\xi \in C}$. We split $A(G^{(\gamma)})$ into the union of two disjoint classes:

$$A(G^{(\gamma)}) = A_1 \cup A_2,$$

where $A_1 = \{\sigma_\xi \colon \xi \in C, \ \xi < \sigma_\xi\}$ and $A_2 = \{\sigma_\xi \colon \xi \in C, \ \xi = \sigma_\xi\}$. One can easily see that the smallest element of U_ξ in the case of $\sigma_\xi = \xi$ is greater than $a(F_\xi)$. Thus the class of the smallest elements of U_ξ , where $\xi = \sigma_\xi$, is non-stationary. On the other hand, the class of the smallest elements of U_ξ , where $\xi < \sigma_\xi$, is non-stationary, too. Since the classes U_ξ are mutually disjoint, Theorem II implies that the classes

$$U^{(1)} = \bigcup_{\substack{\xi \in C \\ \xi < \sigma_x}} U_{\xi} \quad \text{and} \quad U^{(2)} = \bigcup_{\substack{\xi \in C \\ \xi < \sigma_x}} U_{\xi}$$

are non-stationary. Consequently, by Theorem III, the class $U=U^{(1)}\cup U^{(2)}$ is non-stationary. If γ is a limit number then $B=\{a(F_{\xi})\}_{\xi\in\tau}$ is non-stationary, because B is not confinal to C. Thus by the hypothesis and Theorem III, the class of elements of C belonging to $G^{(\gamma)}$ is non-stationary in the case of the limit number γ , as well. The theorem is proved.

Theorem B. If $\beta \in C$ then there is a non-stationary class T_{β} such that $A(F^{(0)}) = A(F^{(\beta)}) \cup T_{\beta}$.

Proof. We use transfinite induction. The theorem is obviously true for $\beta = 0$. Let $\beta > 0$ and suppose that the theorem is true for every $\gamma < \beta$. Put $F^{(\beta)} = \{F_{\tau}\}$ and $D^{(\beta)} = \Phi(F^{(\beta)})$. Let us denote by $U^{(\beta)}$ the class of all elements of C which belong to $D^{(\beta)}$. First we consider the case of $\beta = \eta + 1$. In this case

$$A(F^{(\eta)}) = A(F^{(\beta)}) \cup U^{(\beta)} \cup [A(F^{(\eta)}) - (A(F^{(\eta)}))'].$$

By the hypothesis

$$A(F^{(0)}) = A(F^{(\eta)}) \cup U^{(\beta)} \cup \left[A(F^{(\eta)}) - \left(A(F^{(\eta)})\right)'\right] \cup T_{\eta},$$

where T_{η} is non-stationary. Since $U^{(\beta)}$ and $A(F^{(\beta)}) - (A(F^{(\beta)}))'$ are non-stationary, the theorem is true for $\beta = \eta + 1$, as well. Let now β be a limit number. Since

$$A(F^{(0)}) - A(F^{(\beta)}) = A(F^{(0)}) - \bigcap_{\gamma < \beta} A(F^{(\gamma)}) = \bigcup_{\gamma < \alpha} T_{\gamma},$$

the theorem follows from the hypothesis and Theorem III.

Theorem C. The class $A(F^{(0)}) - \{a(F^{(\beta)}): \beta \in C\}$ is non-stationary. We omit the proof.

References

[1] G. Fodor, On a process concerning inaccessible cardinals. I, Acta Sci. Math., 27 (1966), 111—124. [2] G. Fodor, On a process concerning inaccessible cardinals. II, Acta Sci. Math., 27 (1966), 120—140.

(Received December 1, 1966)