On a process concerning inaccessible cardinals. III

By G. FODOR 'in Szeged

This. paper is a continuation of references | and I (see [1] and [2]), in which
a process concerning inaccessible cardinals has been defined. In thls paper we
freely make use of the notations and theorems of [2].-

In [1] the process was described by a sequence of functions

So@®), f1(@@, a®), ., f(a®, oD, ..., am), .

where the variables # and o/ run over all ordinal numbers and for given 5 the
functions f, («®, a(“ ..., ™) are defined. for such arguments (@@, 'V, ..., a?)
in which only a finite number of terms is distinct from 0. ’

In this paper we are going to describe the process in another manner which
is much simpler than the above one.

Let S be a subclass of the class C of all ordinal numbers which.is conﬁnal
to C. If the elements of S are arranged by magnitude then we say that S= {oe)ecc
is a confinal sequence. An element g, of S is called a fixed point of S if o, =¢.

First we define by transfirité induction the concept of figures. We define a
figure of order 0 as a confinal sequence. Let now =0 be a given ordinal number
and suppose that the figures of order smaller than f have been already defined.
We define the figures of order f as follows:

"1) in the case of f=y+1 we define a figure of order f§ as a sequence of type
C of distinct figures of order n;

2) in the case of a limit number f we define a ﬁgure of order /3 as a sequence

. of type f§ the Eth element of which is a figure of order &. .

If F={F,}is a figure then we say that Fand the elements F, of Fare components’
of F, the components of any component of F are components of F, as well. If a
component G of F is a figure of order 7 then we say that G is a component of order 7.

We associate with every figure F an element a(F) and two figures A(F) and
A(a(F)) of order 0, furthermore with every ﬂequence Sp={F,},ep of figures F,
of order ¢ or with every sequence S;={F,},c, of figures of order # a figure A(S,,)
of order 0. Now we define a(F), A(F), A(a(b)) and A(S,) as follows.

a) Let a(F) be the smallest of the elements of C which belongs to F.

b) Let F={F}sc, be a figure of order f (where »=C or x is a limit number
(and in this case » =f)). Let A(J(F)) be one of the components of order 0 of F
the smallest element of which is a(F). We define A(F) as follows:

b,) if =0 then let A(F)=F .
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b,) if B=yn-+1 then let A(F) be the sequence S of the distinct a(Fy) ((€C)
arranged according to their magnitude, provided that S is a confinal sequence;
otherwise let A(F) be an arbitrary figure of order 0;

b,) if B is a limit number then let A(F) be the sequence of all the distinct
elements, arranged in their magnitude, which belong to the intersection of all A(Fy)
with & < 5, provided that this is a confinal sequence; otherwise let A(F) be an arbit-
rary figure of order 0;

c) let Sp={F;}:c; be a given sequence of type f§ of figures F; of order t or
a given sequence of type f of figures F; of order £. We define A(S;) as follows:

c) if f=n-+1 then let A(Sy)=A(F);

c,) it B is a limit number then let A(S;) be the sequence of all the distinct
elements, arranged in their magnitude, which belong to the intersection of all A(f%)
with ¢ <f, provided that this is a confinal sequence; otherwise let 4(S;) be an
arbitrary figure of order 0. -

If a figure of order O is a stationary subclass of C then we call it a stationary
figure of order 0; otherwise we call it a non-stationary figure of order 0. Similarly,
if the components of order 0 of a figure F of order f§ are stationary then we call it a
stationary figure of order ff. Let S={o;}¢cc be a stationary figure of order 0. If we
associate with every o, its index ¢ we obtain a strictly divergent function g on §
for which g(y) == y holds. Thus it follows from Theorem I that the class {6. € S: g, >¢}
is non-stationary. - '

If Sis a stationary figure of order 0 then we denote by (S)” the figure of order 0
consisting of all the fixed elements of S. Clearly, §—(S) is ncon-stationary.

Let y=>0 be an arbitrary ordinal number, S,={F;}:¢c, a sequence of figures
of order 0, and G a figure of order 0. We say that S, is coincident with G if, in the
case of y=uy+1,(A4(S,))=G and, in the case of a limit number y, 4(S,}=G.
Let now =0 be a given ordinal number, t an arbitrary ordinal number, 0 <7 <f3,
and suppose that the coincidence of a sequence S, = {F;}.¢, of figures F, of order 1,
where y is an arbitrary ordinal number (and a sequence S,={F;};c,. of figures
Fy of order &) with a figure G of order t has been already defined. Let S, = {F;}sc,
be a sequence of figures F; of order fi, where y is an arbitrary ordinal number,
and Rp={F;}:cy a sequence of figures F, of order ¢, furthermore G a figure of
order . We say that S, is coincident with G if, in the case of y=n+1, (A(S,)) =
=A(a(G)) and, if, in the case of a limit number y, 4(S,)= A(a(G)). Similarly,
R; is coincident with G if, in the case of f=n+1, (A(Rp)) =A(a(G)) and if, in the
case of a limit number B, A(Ry) = A(a(G)). If Fis a figure of order 0 or if F={Fy}sc,
is a figure of order >0 (where » = C or  is a limit number (and in this case x = f§))
and, for every £€x, the scquence S;={F )¢, is coincident with Fy, then we say
that F is connected. If F is a figure and all its components are connected, we say
that F is perfect. 1t is clear that A(a(F)) is uniquely determined for any perfect -
figure F.

Now, we define by transfinite induction the operations I'; for € C. The opera-
tion I, chooses d stationary figure F'® of order 0. Let now =0 be a given ordinal
number and suppose that the figures F© 'of order ¢ and the operation I'; have
been already defined for every &< f. If f=n+1 then the operation I'; chooses
a perfect stationary figure F'® of order f such that F™ is coincident with F'®_ 1f f§
is a limit number then Iy chooses a perfect stationary figure F’ of order f such
tict the figure GP = {F©® ).y is coincident with F®#. ' :
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We shall prove that we have defined the ﬁgures F@ of order & and the opera-
tions, I'y for every £€C.

We define the operation (D as follows. Let F= F(”) Then ®(F) is the ﬁgure
D® of order f8 obtained in the following way: We omit the fixed elements from
every component of order 0 of F, furthermore if 0=7 < and G is any component
of order 7+ 1 of F then we omit the fixed elements of 4(G).

Now we prove the following

Theorem A. The class of all rhe elemem‘s of C belonging to D(”)—(D(F(ﬂ))
is non-stationary; B is an arbitrary element of C.

Proof. Let H={h:}:cc any component of order 0 of D®. By deﬁnition E<hy
for every €€ C. We define a function.g on H by wrltmg g(hg)={¢. Since g is strictly
dlvergent and.regressive, Theorem I implies that H is non-stationary. Thus, every
component of order 0 of D® is non-stationary. Let now O0<y=pf and suppose
that the class of all elements belonging to any component G@ of order g<7 of
D® is non-stationary. Let G ={F,},c, where 1=C or 7 is a limit number (and
in this case 7==y). We denote by U, the class of all elements of C which belong
to Fy. Clearly the classes Ue (£ € C) are mutually disjoint. Let y=#+1 and AG)=
={0oe}scc. We split 4(GP) into the union of two disjoint classes:

AGP)=4,Ud,,

where A, ={g,: £€C, f<au ‘and A,={o:: £€C, é—ag, One can easily see that
the smallest element of U in the case of o, = f is greater than a(Fy). Thus the class
of the smallest elements of U,, where £ =g, is non-stationary. On the other hand,
the class of the smallest elements of Uy, where £ <o, is non-stationary, too. Since
the classes U, are mutually disjoint, Theorem II implies that the classes

UD = U and UP = |J U;

sec gec

{<or - $<og
are non-stationary. Consequently, by Theorem III, the class U=U® U UP is
non-stationary. If y is a limit number then B= {a(F)}éeT 1s non-stationary, because
B is not confinal to C. Thus by the hvpothesns and Theorem III, the class of elements
of C belonging to G is non-staticnary in the case of the limit number y, as well.
The theorem is proved.

Theorem B. If < C then there is a non-stationary class Ty such that A(F©®)=
=A(FO)UT,.

Proof. We use transfinite induction. The theorem is obviously true for f=0..
Let >0 and suppose. that the theorem is true for every y<f. Put F® ={F } and
D® =®(F®). Let usdenote by U® the class of all elements of C Wthh belong
to D®_ First we consider the case of f=7x+1. In this case

AF®) = A(FOYY U®Y [A (Fm)y — (A (F(n)))’],
By the hypothesis ' '
' A(F@) = A(F@)JU®U[AF®)—(4A(FD)]UT,,
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where T, is non-stationary. Since' U® and A(F®)—(A(F®)) are non-stationary,
the theorem is true for f=n+-1, as well. Let now § be a limit number. Since

A(F(o))__A(F(ﬂ)) — A(F(O)).__ nA(F(Y)) = UTV’
. y<B

y<a
the theorem follows from the hypothesis and Theorem 1II.
‘Theorem C. The class A(F®)—{a(F®): B C} is non-stationary.
~We omit the proof. - '
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