
On a process concerning inaccessible cardinals. Ill 

By G. FODOR in Szeged 

This, paper is a continuation of references I and II (see [1] and [2]), in which 
a process concerning inaccessible cardinals has been defined. In this paper we 
freely make use of the notations and theorems of [2]. 

Jn [1] the process was described by a sequence of functions 

/ o ( « ( 0 ) ) , / i ( « ( 0 ) . . . . , / , ( a W a ( « } . . . ,«<?>), . . . 

where the variables r] and a(,,) run over all ordinal numbers and for given rj the 
functions 7,(a ( 0 ) , a ( 1 ) , ..., a( , , )) are defined, for such arguments (cx(0), a(1), ..., ocM) 
in which only a finite number of terms is distinct from 0. 

In this paper we are going to describe the process in another manner which 
is much simpler than the above one. 

Let S be a subclass of the class C of all ordinal numbers which is confinal 
to C. If the elements of S are arranged by magnitude then we say that S={<r?} i€C 
is a confinal sequence. An element of S is called a fixed point of S if = 

First we define by transfmite induction the concept of figures. We define a 
figure of order 0 as a confinal sequence. Let now /?>0 be a given ordinal number 
and suppose that the figures of order smaller than ft have been already defined. 
We define the figures of order fi as follows: 

1) in the case of = + 1 we define a figure of order ft as a sequence of type 
C of distinct figures of order /7; 

2) in the case of a limit number /? we define a figure of order ft as a sequence 
of type P the £th element of which is a figure of order . 

If JF= { f t } is a figure then we say that Fand the elements Fz of Fare components 
of F, the components of any component of F are components of F, as well. If a 
component G of F is a figure of order T then we say that G is a component of order T. 

We associate with every figure F an element a(F) and two figures A(F) arid 
A(a(F)) of order 0, furthermore with every sequence S0 = { } , f e o f figures Fn 
of order or with every sequence Sfi = of figures of order 17 a figure A(S#) 
of order 0. Now we define a(F), A(F), A(a(F)) and A(SP) as follows. 

a) Let a(F) be the smallest of the elements of C which belongs to F. 
b) Let F={Fi}iix be a figure of order ft (where x = C or x is a limit number 

(and in this case x =/?)). Let A(a(F)) be one of the components of order 0 of F 
the smallest element of which is a(F). We define A(F) as follows: 

b,) if p = 0 then let A(F) = F 
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b2) if /? = // + ! then let A (F) be the sequence 5 of the distinct a(F^) (ZdC) 
arranged according to their magnitude, provided that S is a confinal sequence; 
otherwise let A(F) be an arbitrary figure of order 0; 

b3) if P is a limit number then let A(F) be the sequence of ail the distinct 
elements, arranged in their magnitude, which belong to the intersection of all A(F^) 
with provided that this is a confinal sequence; otherwise let A(F) be an arbit-
rary figure of order 0; 

c) let Sp — {F^^p be a given sequence of type P of figures F{ of order x or 
a given sequence of type ft of figures F{ of order We define A'(SP) as follows: 

c,) i f / ? = ;; + I then let A(Sfi) = A(F„); 
c2) if P is a limit number then let A(Se) be the sequence of all the distinct 

elements, arranged in their magnitude, which belong to the intersection of all A(F() 
with 11<P, provided that this is a confinal sequence; otherwise let A(Sp) be an 
arbitrary figure of order 0. 

If' a figure of order 0 is a stationary subclass of C then we call it a stationary 
figure of order 0; otherwise we call it a non-stationary figure of order 0. Similarly, 
if the components of order 0 of a figure F of order p are stationary then we call it a 
stationary figure of order p. Let S= {«x^ec be a stationary figure of order 0. If we 
associate with every its index £ we obtain a strictly divergent function g on S 
for which ¿ ' (y)^ y holds. Thus it follows from Theorem I that the class £ S: a^ } 
is non-stationary. 

If S is a stationary figure of order 0 then we denote by ( S ) ' the figure of order 0 
consisting of all the fixed elements of 5. Clearly, S — (S)' is non-stationary. 

Let y > 0 be an arbitrary ordinal number, Sy. = {Fi}^£y a sequence of figures 
of order 0, and G a figure of order 0. We say that Sy is coincident with G if, in the 
case of y =)/ + 1, (/1 (»S^))' = G and, in the case of a limit number y, A(Sy) = G. 
Let now /?>0 be a given ordinal number, T an arbitrary ordinal number, 0 < T < / ? , 
and suppose that the coincidence of a sequence Sy = {F(}i£y of figures Fi of order r, 
where y is an arbitrary ordinal number (and a sequence 5 t = {F i} i € t of figures 
F^ of order £) with a figure G of order T has been already defined. Let Sy = 
be a sequence of figures of order /?, whete y is an arbitrary ordinal number, 
and Rp = a sequence of figures F^ of order furthermore G a figure of 
order p. We say that Sy is coincident with G if, in the case of y = /?+ 1, (/1(5',,))' = 
= A(a(G)) and, if, in the case of a limit number y, A(Sy) = A(a(G)). Similarly, 
Rp is coincident with G if, in the case of p = i] + 1, (A(Rp))' = A(a(G)) and if, in the 
case of a limit number p, A (Rp) = A(a(Gj). If F is a figure of order 0 or if F = 
is a figure of order p > 0 (where v. = C or * is a limit number (and in this case v. — P)) 
and, for every the sequence 5'i = {F?} i 6 i is coincident with F i ? then we say 
that F is connected. If F is a figure and all its components are connected, we say 
that F is perfect. It is clear that A(a(F)) is uniquely determined for any perfect 
figure F. 

Now, we define by transfinite induction the operations for P£C . The opera-
tion F 0 chooses a stationary figure F<0) of order 0. Let now / ?>0 be a given ordinal 
number and suppose that the figures F ( i ) of order c, and the operation have 
been already defined for every If P ~ r j + 1 then the operation Tp chooses 
a perfect stationary figure F(/i) of order P such that Fin) is coincident with Fm. If P 
is a limit number then Tp chooses a perfect stationary figure F"" of order P such 
t! r.t the figure G w = {F ( i ) is coincident with F(/i>. 
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We shall prove that we have defined the figures F '^ of order £ and the opera-
tions, f j for every < 

We define the operation ® as follows. Let F = F ( f l ) . Then ®(F) is the figure 
D<ll} of order p obtained in the following way: We omit the fixed elements from 
every component of order 0 of F, furthermore if and G is any component 
of order t + 1 of F then we omit the fixed elements of A(G). 

Now we prove the following 

T h e o r e m A. The class of all the elements of C belonging to D(it) = <D(/ri/i)) 
is non-stationary, /? is an arbitrary element of C. 

P r o o f . Let / / = { / ) i } i £ c any component of order Oof D ^ . By definition 
for every We define a function g on H by writing g(h^) — Since g is strictly 
divergent and.regressive, Theorem 1 implies that H is non-stationary. Thus, every 
component of order 0 of is non-stationary. Let n o w O < y S / ? and suppose 
that the class of all elements belonging to any component C?(e) of order of 
D<» is non-stationary. Let GM = {F,j},*et where x = C or i is a limit number (and 
in this case x — y). We denote by U^ the class of all elements of C which belong 
to Clearly the classes Uf (£ £ C) are mutually disjoint. Let 7 - / 7 + 1 and A(G(r)) = 
= {<ri}i£c. We split A(G(7)) into the union of two disjoint classes: 

A(GM) = Al\JA2, 

where and A2 = {as: i = <7{}. One can easily see that 
the smallest element of U,s in the case of is greater than a(F^). Thus the class 
of the smallest elements of U(, where £ = is non-stationary. On the other hand, 
the class of the smallest elements of £/«, where is non-stationary, too. Since 
the classes. £/* are mutually disjoint, Theorem II implies that the classes 

£/(D = (J 1/ and !/<» = U P { 

are non-stationary. Consequently, by Theorem III, the class U= Uw U i/ (2 ) is 
non-stationary. If y is a limit number then B={a(F^)}^ i x is non-stationary, because 
B is not confinal to C. Thus by the hypothesis and Theorem III, the class of elements 
of C belonging to G(v) is non-stationary in the case of the limit number y, as well. 
The theorem is proved. 

T h e o r e m B. If fi£C then there is a non-stationary class Tp such that A (F'oy) = 
= .4(f»)Ur, . 

P r o o f . We use transfinite induction. The theorem is obviously true for P — 0. 
Let / ?>0 and suppose that the theorem is true for every Put F^ '—{FZ} and 
i ) ( » = ® ( f ( » ) . Let us denote by £ / w the class of all elements of C which belong 
to First we consider the case of P = r] +1 . In this case 

A (F№) = A (F(a>) U U«» U [A (F(i>) - (A (F'")))']. 

By the hypothesis 

A (F(0)) = A (FW) U E/WU [A (FM) - (A (Ff">))'] U T„, 
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where is non-stationary. Since '£/w and A(F(fi)) — (A(FW)Y are non-stationary, 
the theorem is true for p = q + as well. Let now ft be a limit number. Since 

A (I«°>) - A ( F W ) = A - F | A (FM) = (J T y , 
y<P y < a 

the theorem follows from the hypothesis and Theorem HI. 

T h e o r e m C. The class A(Fm)~ {a(Fm)\ is non-stationary. 

We omit the proof. 
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