On a process concerning inaccessible cardinals. III

By G. FODOR in Szeged

This. paper is a continuation of references I and II (see [1] and [2]), in which a process concerning inaccessible cardinals has been defined. In this paper we freely make use of the notations and theorems of [2].

In [1] the process was described by a sequence of functions

$$
f_{0}\left(\alpha^{(0)}\right), \quad f_{1}\left(\alpha^{(0)}, \alpha^{(1)}\right), \ldots, f_{\eta}\left(\alpha^{(0)}, \alpha^{(1)}, \ldots, \alpha^{(\eta)}\right), \ldots
$$

where the variables η and $\alpha^{(\eta)}$ run over all ordinal numbers and for given η the functions $f_{\eta}\left(\alpha^{(0)}, \alpha^{(1)}, \ldots, \alpha^{(\eta)}\right)$ are defined for such arguments $\left(\alpha^{(0)}, \alpha^{(1)}, \ldots, \alpha^{(\eta)}\right)$ in which only a finite number of terms is distinct from 0 .

In this paper we are going to describe the process in another manner which is much simpler than the above one.

Let S be a subclass of the class C of all ordinal numbers which is confinal to C. If the elements of S are arranged by magnitude then we say that $S=\left\{\sigma_{\xi}\right\}_{\xi \in C}$ is a confinal sequence. An element σ_{ξ} of S is called a fixed point of S if $\sigma_{\xi}=\xi$.

First we define by transfinite induction the concept of figures. We define a figure of order 0 as a confinal sequence. Let now $\beta>0$ be a given ordinal number and suppose that the figures of order smaller than β have been already defined. We define the figures of order β as follows:

1) in the case of $\beta=\eta+1$ we define a figure of order β as a sequence of type C of distinct figures of order η;
2) in the case of a limit number β we define a figure of order β as a sequence of type β the ξ th element of which is a figure of order ξ.

If $F=\left\{F_{\tau}\right\}$ is a figure then we say that F and the elements F_{τ} of F are components ${ }^{*}$ of F, the components of any component of F are components of F, as well. If a component G of F is a figure of order τ then we say that G is a component of order τ.

We associate with every figure F an element $a(F)$ and two figures $A(F)$ and $A(a(F))$ of order 0 , furthermore with every sequence $S_{\beta}=\left\{F_{\eta}\right\}_{\eta \in \beta}$ of figures F_{η} of order ξ or with every sequence $S_{\beta}=\left\{F_{\eta}\right\}_{\eta \in \beta}$ of figures of order η a figure $A\left(S_{\beta}\right)$ of order 0. Now we define $a(F), A(F), A(a(F))$ and $A\left(S_{\beta}\right)$ as follows.
a) Let $a(F)$ be the smallest of the elements of C which belongs to F.
b) Let $F=\left\{F_{\xi}\right\}_{\xi \epsilon_{x}}$ be a figure of order β (where $\chi=C$ or x is a limit number (and in this case $\varkappa=\beta$). Let $A(a(F))$ be one of the components of order 0 of F the smallest element of which is $a(F)$. We define $A(F)$ as follows:
b_{1}) if $\beta=0$ then let $A(F)=F$
b_{2}) if $\beta=\eta+1$ then let $A(F)$ be the sequence S of the distinct $a\left(F_{\xi}\right)(\xi \in C)$ arranged according to their magnitude, provided that S is a confinal sequence; otherwise let $A(F)$ be an arbitrary figure of order 0 ;
b_{3}) if β is a limit number then let $A(F)$ be the sequence of all the distinct elements, arranged in their magnitude, which belong to the intersection of all $A\left(F_{\xi}\right)$ with $\xi<\beta$, provided that this is a confinal sequence; otherwise let $A(F)$ be an arbitrary figure of order 0 ;
c) let $S_{\beta}=\left\{F_{\xi}\right\}_{\xi \in \beta}$ be a given sequence of type β of figures F_{ξ} of order τ or a given sequence of type β of figures F_{ξ} of order ξ. We define $A\left(S_{\beta}\right)$ as follows:
c_{1}) if $\beta=\eta+1$ then let $A\left(S_{\beta}\right)=A\left(F_{\eta}\right)$;
c_{2}) if β is a limit number then let $A\left(S_{\beta}\right)$ be the sequence of all the distinct elements, arranged in their magnitude, which belong to the intersection of all $A\left(F_{\xi}\right)$ with $\xi<\beta$, provided that this is a confinal sequence; otherwise let $A\left(S_{\beta}\right)$ be an arbitrary figure of order 0 .

If a figure of order 0 is a stationary subclass of C then we call it a stationary figure of order 0; otherwise we call it a non-stationary figure of order 0. Similarly, if the components of order 0 of a figure F of order β are stationary then we call it a stationary figure of order β. Let $S=\left\{\sigma_{\xi}\right\}_{\xi \in C}$ be a stationary figure of order 0 . If we associate with every σ_{ξ} its index ξ we obtain a strictly divergent function g on S for which $g(\gamma) \leqslant \gamma$ holds. Thus it follows from Theorem I that the class $\left\{\sigma_{\xi} \in S: \sigma_{\xi}>\xi\right\}$ is non-stationary.

If S is a stationary figure of order 0 then we denote by $(S)^{\prime}$ the figure of order 0 consisting of all the fixed elements of S. Clearly, $S-(S)^{\prime}$ is non-stationary.

Let $y>0$ be an arbitrary ordinal number, $S_{\gamma}=\left\{F_{\xi}\right\}_{\xi \in y}$ a sequence of figures of order 0 , and G a figure of order 0 . We say that S_{γ} is coincident with G if, in the case of $\gamma=\eta+1,\left(A\left(S_{\gamma}\right)\right)^{\prime}=G$ and, in the case of a limit number $\gamma, A\left(S_{\gamma}\right)=G$. Let now $\beta>0$ be a given ordinal number, τ an arbitrary ordinal number, $0<\tau<\beta$, and suppose that the coincidence of a sequence $S_{\gamma}=\left\{F_{\xi}\right\}_{\xi \in \gamma}$ of figures F_{ξ} of order τ, where γ is an arbitrary ordinal number (and a sequence $S_{\tau}=\left\{F_{\xi}\right\}_{\xi \epsilon_{\tau}}$ of figures F_{ξ} of order ξ) with a figure G of order τ has been already defined. Let $S_{\gamma}=\left\{F_{\xi}\right\}_{\xi \in \gamma}$ be a sequence of figures F_{ξ} of order β, where γ is an arbitrary ordinal number, and $R_{\beta}=\left\{F_{\xi}\right\}_{\xi \in \beta}$ a sequence of figures F_{ξ} of order ξ, furthermore G a figure of order β. We say that S_{γ} is coincident with G if, in the case of $\gamma=\eta+1,\left(A\left(S_{\gamma}\right)\right)^{\prime}=$ $=A(a(G))$ and, if, in the case of a limit number $\gamma, A\left(S_{\gamma}\right)=A(a(G))$. Similarly, R_{β} is coincident with G if, in the case of $\beta=\eta+1,\left(A\left(R_{\beta}\right)\right)^{\prime}=A(a(G))$ and if, in the case of a limit number $\beta, A\left(R_{\beta}\right)=A(a(G))$. If F is a figure of order 0 or if $F=\left\{F_{\xi}\right\}_{\xi \in \kappa}$ is a figure of order $\beta>0$ (where $\chi=C$ or \varkappa is a limit number (and in this case $\varkappa=\beta$)) and, for every $\xi \in \alpha$, the sequence $S_{\xi}=\left\{F_{\zeta}\right\}_{\zeta \xi \xi}$ is coincident with F_{ξ}, then we say that F is connected. If F is a figure and all its components are connected, we say that F is perfect. It is clear that $A(a(F))$ is uniquely determined for any perfect figure F.

Now, we define by transfinite induction the operations Γ_{β} for $\beta \in C$. The operation Γ_{0} chooses a stationary figure $F^{(0)}$ of order 0 . Let now $\beta>0$ be a given ordinal number and suppose that the figures $F^{(\xi)}$ of order ξ and the operation Γ_{ξ} have been already defined for every $\xi<\beta$. If $\beta=\eta+1$ then the operation Γ_{β} chooses a perfect stationary figure $F^{(\beta)}$ of order β such that $F^{(\eta)}$ is coincident with $F^{(\beta)}$. If β is a limit number then Γ_{β} chooses a perfect stationary figure $F^{(\beta)}$ of order β such it $\therefore .$. the figure $G^{(\beta)}=\left\{F^{(\xi)}\right\}_{\xi \in \beta}$ is coincident with $F^{(\beta)}$.

We shall prove that we have defined the figures $F^{(5)}$ of order ξ_{5} and the operations $\dot{\Gamma}_{\xi}$ for every $\xi \in C$.

We define the operation $\boldsymbol{\Phi}$ as follows. Let $F=F^{(\beta)}$. Then $\boldsymbol{\Phi}(F)$ is the figure $D^{(\beta)}$ of order β obtained in the following way: We omit the fixed elements from every component of order 0 of F, furthermore if $0 \leqq \tau<\beta$ and G is any component of order $\tau+1$ of F then we omit the fixed elements of $A(G)$.

Now we prove the following
Theorem A. The class of all the elements of C belonging to $D^{(\beta)}=\boldsymbol{\Phi}\left(F^{(\beta)}\right)$ is non-stationary; β is an arbitrary element of C.

Proof. Let $H=\left\{h_{\xi}\right\}_{\xi \in C}$ any component of order 0 of $D^{(\beta)}$. By definition $\xi<h_{\xi}$ for every $\xi \in C$. We define a function g on H by writing $g\left(h_{\xi}\right)=\xi$. Since g is strictly divergent and regressive, Theorem I implies that H is non-stationary. Thus, every component of order 0 of $D^{(\beta)}$ is non-stationary. Let now $0<\gamma \leqq \beta$ and suppose that the class of all elements belonging to any component $G^{(\rho)}$ of order $\varrho<\gamma$ of $D^{(\beta)}$ is non-stationary. Let $G^{(\gamma)}=\left\{F_{\xi}\right\}_{\xi \in \tau}$ where $\tau=C$ or τ is a limit number (and in this case $\tau=\gamma$). We denote by U_{ξ} the class of all elements of C which belong to F_{ξ}. Clearly the classes $U_{\xi}(\xi \in C)$ are mutually disjoint. Let $\gamma=\eta+1$ and $A\left(G^{(\gamma)}\right)=$ $=\left\{\sigma_{\xi}\right\}_{\zeta \in C}$. We split $A\left(G^{(\gamma)}\right)$ into the union of two disjoint classes:

$$
A\left(G^{(\gamma)}\right)=A_{1} \cup A_{2},
$$

where $A_{1}=\left\{\sigma_{\xi}: \xi \in C, \xi<\sigma_{\xi}\right\}$ and $A_{2}=\left\{\sigma_{\xi}: \xi \in C, \xi=\sigma_{\xi}\right\}$. One can easily see that the smallest element of U_{ξ} in the case of $\sigma_{\xi}=\xi$ is greater than $a\left(F_{\xi}\right)$. Thus the class of the smallest elements of U_{ξ}, where $\xi=\sigma_{\xi}$, is non-stationary. On the other hand, the class of the smallest elements of U_{ξ}, where $\xi<\sigma_{\xi}$, is non-stationary, too. Since the classes U_{ξ} are mutually disjoint, Theorem II implies that the classes

$$
U^{(1)}=\bigcup_{\substack{\xi \in C \\ \xi<\sigma_{\xi}}} U_{\xi} \quad \text { and } \quad U^{(2)}=\bigcup_{\substack{\xi \in C \\ \xi<\sigma_{\xi}}} U_{\xi}
$$

are non-stationary. Consequently, by Theorem III, the class $U=U^{(1)} \cup U^{(2)}$ is non-stationary. If γ is a limit number then $B=\left\{a\left(F_{\xi}\right)\right\}_{\xi \in \tau}$ is non-stationary, because B is not confinal to C. Thus by the hypothesis and Theorem III, the class of elements of C belonging to $G^{(\gamma)}$ is non-stationary in the case of the limit number γ, as well. The theorem is proved.

Theorem $\dot{\mathrm{B}}$. If $\beta \in C$ then there is a non-stationary class T_{β} such that $A\left(F^{(0)}\right)=$ $=A\left(F^{(\beta)}\right) \cup T_{\beta}$.

Proof. We use transfinite induction. The theorem is obviously true for $\beta=0$. Let $\beta>0$ and suppose that the theorem is true for every $\gamma<\beta$. Put $F^{(\beta)}=\left\{F_{\tau}\right\}$ and $D^{(\beta)}=\Phi\left(F^{(\beta)}\right)$. Let us denote by $U^{(\beta)}$ the class of all elements of C which belong to $D^{(\beta)}$. First we consider the case of $\beta=\eta+1$. In this case

$$
A\left(F^{(\eta)}\right)=A\left(F^{(\beta)}\right) \cup U^{(\beta)} \cup\left[A\left(F^{(\eta)}\right)-\left(A\left(F^{(\eta)}\right)\right)^{\prime}\right] .
$$

By the hypothesis.

$$
A\left(F^{(0)}\right)=A\left(F^{(\eta)}\right) \cup U^{(\beta)} \cup\left[A\left(F^{(\eta)}\right)-\left(A\left(F^{(\eta)}\right)\right)^{\prime}\right] \cup T_{\eta}
$$

where T_{η} is non-stationary. Since $U^{(\beta)}$ and $A\left(F^{(\beta)}\right)-\left(A\left(F^{(\beta)}\right)\right)^{\prime}$ are non-stationary, the theorem is true for $\beta=\eta+1$, as well. Let now β be a limit number. Since

$$
A\left(F^{(0)}\right)-A\left(F^{(\beta)}\right)=A\left(F^{(0)}\right)-\bigcap_{\gamma<\beta} A\left(F^{(\gamma)}\right)=\bigcup_{\gamma<\alpha} T_{\gamma},
$$

the theorem follows from the hypothesis and Theorem III.
Theorem C. The class $A\left(F^{(0)}\right)-\left\{a\left(F^{(\beta)}\right): \beta \in C\right\}$ is non-stationary.
We omit the proof.

References

[1] G. Fodor, On a process concerning inaccessible cardinals. I, Acta Sci. Math., 27 (1966), 111-124.
[2] G. Fodor, On a process concerning inaccessible cardinals. II, Acta Sci. Math., 27 (1966), 129-140.

