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By JOHN BORIS MILLER in Clayton (Victoria, Australia) 

1. Introduction 

Let 31 be an algebra over a field K of characteristic zero. By a derivation D 
on 91 we shall mean a mapping on 21 into-31 which is linear, that is D(Xa + fib) = 
~XD(a) + / iD(b) for all a,b£A, X, and which satisfies the law 

(1.1) D(ab) = D(a)b + aD(b) (all a, b, €31). ' 

By an endomorphism E we shall mean a linear map on 31. into 3t satisfying 

(1.2) E(ab) = E(a) E(b) (all a, b €31). 

The derivations on 31 form a Lie algebra under the product [£>,, D2] = DiD2 — 
~ D 2 D \ . The endomorphisms form a semigroup under composition. 

If 31 is a Banach algebra, and D is a given derivation, bounded, then the operator 
H defined by 
(1.3) H = exp(D) 

is a bounded endomorphism, in fact an automorphism.. Here exp (D) is defined 
by the exponential series, convergent in the uniform operator topology, and the 
proof uses the Leibniz formula 

D"(ab) = y. " D"-"'(a)D'"(b) 
m = o\>n) 

in an obvious manner. The formula (1. 3) is useful in a number of contexts, for 
example .in the proof of the Singer—Wermer theorem [7], in the theory of semi-
groups of bounded automorphisms, and also in purely algebraic settings, such 
as in aspects of the structure theory of fields, and of Lie algebras ([4], Ch. IV; [3]). 

The converse question arises, whether an arbitrary automorphism on the 
Banach algebra has a logarithm which is a derivation. If the problem is restated 
in terms of continuous groups of bounded automorphisms, the matter is straight-
forward: if the semigroup {Ex\ A>0} is continuous and Ex.-*-I as X-~ 0 in the uniform 
operator topology, then its infinitesimal generator is a bounded derivation D, Ex — 
= exp(AZ)) and the semigroup is embeddable in the group {E, \ X real}. The proof 
is an immediate consequence of the definition of the generator. (The infinitesimal 
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generator of a strongly continuous semigroup of endomorphisms is likewise a 
derivation.) Thus there is a natural one-to-one correspondence between uniformly 
continuous groups of automorphisms and bounded derivations (see G . HOCHSCHILD 
[2])-

The further question can be asked, whether a single arbitrary endomorphism 
can be represented in some fashion in terms of derivations and the exponential, 
function, even if it cannot be embedded in a semigroup. This matter is not settled 
here, though it is hoped, that the present investigation, which it prompted, may 
contribute to its solution. We consider instead certain homomorphisms on an arbitrary 
algebra 21 into algebras of polynomials and power series with coefficients in 21, 
and obtain formulae for these homomorphisms which are, formally at least, of 
the form (1. 3). These can alternatively be viewed as representation formulae for 
higher derivations in terms of derivations; they are not immediately concerned, 
with normed algebras. 

To be more specific, we need some notation and terminology. Given 21 and 
/c^O, let 2l/([i] denote the algebra of all polynomials a0+ait + a2t^ +...-\-aktk,. 
of degree ^k in an indeterminate t, with coefficients in 21. Addition and scalar 
multiplication are defined in the obvious manner; the product of two polynomials 
in 2Xk[t] is formed by multiplying the polynomials as usual, letting t commute with 
the elements of 21, and then deleting all terms containing powers of t greater than k. 
That is 2l,I[i]s=2I[i]/(/'I+1), the residue class algebra of the algebra of all polynomials 
modulo the principal ideal ( t k + 1) . We consider those homomorphisms H from 
21 into 2[t[i] which have the special property e that a0 in the image of a equals 
a, i. e. 
(1.4) H(a) = a + att+,a2t2 + ...+aktk. 

(For brevity we shall sometimes call these £-homomorphisms.) Given such H, the 
determination of ax,a2, ...,ak from a is linear; thus H determines k linear mappings 
Fx, F2, ..., Fk by an = Fn(a), n = 1, 2, ..., k, so that 

(1.5) H(a) = a + tF^a) + t2F2(a) + ... + tkFk(a). 

Substituting this form in (1.2) gives the set of identities 

(1.6) F^ab) = Fx(a)b + aFx(b), . .. 

(1.7) F2(ab) = F2{a)b + Fx(a)Fx{b) + aF2(b), 

(1. 8) F3{ab) = F3(a)b + F2{a) F, (b) + F,(a) F2(b) + aF3(b), 

and in general, for n— 1, 2, ..., k, 

(1.9) Fn(ab)= 2Fn-r(a)Fr{b) (F0 = I). 
r= 0 

A sequence of operators (/, Fis F2, ..., Fk) satisfying these equations for all 
a, ¿>£ 21 is called by JACOBSON ([4] , p. 191) a higher derivation of rank k. Equation 
(1. 5) establishes a one-to-one correspondance between homomorphisms with th^ 
property e and higher derivations. Similarly, considering homomorphisms from 
21 into the algebra 2i„[i] of all formal power series in t, we obtain higher derivations' 
{/, F , , F2, ...} of infinite rank, the F's satisfying (1. 9) for n— 1, 2, ... . 
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The result to be proved, for both finite and infinite cases, states that, under 
a suitable matrix representation, H and so the corresponding higher derivation 
can be represented uniquely by a matrix exp (D), where the matrix D has derivations-
for its elements. In §§ 5. .6 we mention some applications to the case when 91 is 
a Banach algebra, and also obtain a result on homomorphisms on commutative 
Banach algebras by related arguments. 

2. Higher derivations for Ak[t] 

Equations (1. 9) can be used to express the higher derivation {/, Fl, F2, ..., Fk} 
in terms of derivations. Clearly from (1.6), Fx is a derivation; write F l = D ] . 
Consider (1.7), with Fx=Di. One solution for F2 is F2=\Dj; moreover any 
two solutions for F2 differ by a derivation, and any solution plus a derivation is 
again a solution. We may therefore take as the most geneial solution of (1.6) 
and (1. 7) 

(2,1) F2 = ^D\ + Q 2 

where Dx and Q2 are arbitrary derivations. Turning next to equation (1. 8), supposing;. 
Fl and F2 given by (2. 1), we get as the most general solution, by similar arguments 

(2.2) / 3 = -j^-Di + Q 2 D i -f- i23 

where Q3 is an arbitrary derivation. Similarly 

(2. 3) F4 = ^D\ + ^Q2D\ + QiDi+~Ql + Q4 

and so on. Let us call this 'the process P \ The formulae which arise in this way 
become increasingly complicated. We can clarify the nature of the process and 
obtain a general formula for F„ by means of the following matrix representation. 

Let 5£*+1(2l) be the algebra of all (k +1) X (k f 1) upper-triangular matrices 
with constant diagonals and elements from 21, i. e. of the form 

(2.4) 
«0 

a2 

ax 

where a, €21 for / = 0, 1, ..., k. Let £>t +,(21) be the subalgebra of %k +,(21) consist-
ing of all diagonal matrices; clearly 2i is isomorphic to T) t+1(2i), and 

(2.5) — 
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is a faithful representation of 21 in By mapping t to 

[ 0 1 0 • • • 01 

(2. 6) 

0 
0 

0 1 
0 

we extend this representation to an isomorphism between +(k[t] and ( M 
by which a 0 + a , t + ••• +a k t k is mapped to Ak+{ of (2.4). 

Let 23 =93(21) be the algebra of all linear operators on 21. We map 93 to 
D t + 1 ( © ) as in (2. 5); and letting the matrices of 3^+1(93) operate on those 
of i l t + i (2 i ) in the obvious fashion (that is, by formal application of matrix multipli-

cation), we obtain a representation 

(2. 7) H - F k + 1 = 

/ F, 

1 
F-, Fk 

of the e-homomorphism H:21 — 2t t[i] in3; k + 1 (S) . Clearly Fk+1 is a homomoiphism 
on £^+,(21) into 2; t+1(2l). One can verify further that these elements of i f c + i(23) 
give the matrix representations of all the endomorphisms H on 2lft[A:] of the form 

H(a + al t + a2t2 + ... -\-aktk) = a + b{ t + b2t2 +... + bktk. 

In fact, the matrices of linear operators mapping %k + ,(2t) into Xk+ t(2l) (i. e. preserv-
ing leading diagonals) are precisely the elements of i£k+1(23), and the e-endomor-
phisms on 2 f c + 1(2t) are precisely the matrices Fk+l with elements F„ satis-
fying (1.9). (By an E-endomorphism we mean an endomorphism which preserves 
leading diagonals.) 

Letting Di, D2, ..., Dk be derivations on 2i, write 

'(2.8) Dk 

0 Dx D2 

0 D, 
0 

Dk 

0 

•Then our principal result in the finite case is the second half of: 

T h e o r e m (k finite). The derivations D , , D2, ..., Dk in 93(2i) being given, 
,ex 'p(D t + 1) is the matrix in ,(93) of an e-homomorphism on 21 into 2t,.[i]> w'<h 
Fv—Dl \ that is, exp(D f [ + 1) is an e-endomorphism on 3Vh l(2t). 
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Conversely, given an e-homomorphism H on 21 into 2ifc[f ], its matrix Fk+l can be 
written 
(2.9) " F t + 1 = e x p ( D f c + t ) 

where Dx = Fy, D2, .:., Dk are derivations in 23(2f). This representation of H is 
unique. 

Thus the e-endomorphisms on £ fc+1(2l) are precisely the matrices of the form 
exp(D*+1). 

P r o o f . Suppose that the derivations are given. It is not difficult to show that 
Dk +, is then a derivation on Zk+i(2I). Moreover Dk+, is nilpotent, so that exp (Dk+,) 
is well defined in iXk+1(93). Moreover it is an e-endomorphism on £fc + 1(2t): 
the proof of this fact is algebraically the same as for the Banach-algebra case men-
tioned in § 1, while questions of convergence do not arise. If exp (Dk + 1) is written 
in the form (2.7), it is easily verified that F l =Z> 1 . This proves the first part. 
(We also find 

(2. 10) F2 = F3 = ~Dl + ~(D1D2+D2D1) + D3, ... . 

Thus the process P generates the derivations D2, D.3, ... explicitly only if the added 
arbitrary derivations Q are given suitable forms, that is, if we write 

(2.11) Q2 = D2, Q3 — ~(D1D2 — D2D1) + D3, ...; 

note that the first term in Q3 here is a derivation.) 
We prove the second part of the theorem by induction. The truth of the assertion 

for small values of k can be verified using (2. 10). Let / be an integer S 2 , and assume 
the converse statement in the theorem for k — /—1. Let Fl+1 be the matrix of 
an e-homomorphism, its elements I, Fx, ..., F{ forming the corresponding higher 
derivation. Then the submatrix F, is a e-endomorphism on £¡(21), and so by hypo-
thesis there exist derivations D1 = F1, D2, ..., D / _ l making up a matrix D, such 
that F, = exp (D,). Partition F,+ t into blocks as 

where / is / X 1 and o' is 1 X I. Let A be an arbitrary derivation, and write 
/ 0 

= 

Di 

0 
Di 

0 

A-i 
A - 2 

o 

A 
A - 1 

D, 
0 

Then A ( + 1 is a derivation in S , + 1(23), and therefore 

fexp ( - D , ) 

15 A 
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is an e-endomorphism in 2 i + 1(93). (The forms of / , co and g are not important 
to the argument.) Consider the product exp ( —A ( + 1 )F ( + 1 ; its blocked form is 

' , h 
' I 

and since it belongs to 2 , + 1 (S ) and has constant diagonals, its elements are those 
of /,+ , except possibly for its ( 1 , / + 1 ) element, which is an unknown operator, 
!P say. But exp ( —A i + 1)F i + 1 is a homomorphism on D, + I(2l) into 2 i + i (2l ) - . 
by writing out the corresponding form of (1. 2) we find that T. is a derivation. 
Let be the ( / + 1 ) X ( / + 1 ) matrix having !P in the (1 , /+1 ) position and all other 
elements 0. Then we have 

Fl+1 = exp (A,+1) (Z, + 1 + *F, + 1) = exp(A, + 1)exp(«P, + 1) = exp (A1 + 1 + * , _ , ) 

since A i + i and ,P; + 1 clearly commute. Thus we have 

Fi+i = exp (Di+ 1) 
with D, — A + V, a derivation. The result follows by induction. 

It remains to prove uniqueness. Given H and so Fy, F2, ..., Fk, we see that 
D j is determined, and D2 also by (2. 10). Suppose that for some j, 
D,, D2, ..., Dj-i are determined. Now 

Fj — (1,7+1) element of I+Dk+1 + 1 + ...;. 

the term +D} appears once on the right hand side, as the contribution of Dk+l. 
and the other powers of Dk+1 contribute expressions containing only Dj_t. 
D J - 2 , Therefore Dj is determined. Uniqueness follows. 

C o r o l l a r y . The endomorphisms on Zk + , (2t) are all automorphisms; they 
form a group under composition. 

We remark that the process P gives a certain prominence among the derivations 
to Z>,. It is possible in fact to prove an alternative formula Fk+, =exp ( f l / [ + , ) G k + , , 
with 

.. DkJk\' 

Gk+1 

/ D! 7)?/2! 
7 Dx 

I exp 

and 

1 — 

J 

0 Q2 Q3 

0 0 Q2 

0 0 
0 

0 £>, 0 
0 7), 

0 

01 

Qt 
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The proof is similar to that of the theorem. In geneial we have exp (£2t + 1 ) G t + 1 ^ 
5^G t + 1-exp (£2 t+1), and the £3's, though derivations, are again not those most 
obviously generated by the process P. 

3. Higher derivations for 2l„[/] 

From the previous theorem we deduce the corresponding result for the infinite 
case, which we shall designate i = Here 21 is represented by the diagonal 
matrices in £„(21), the algebra of upper triangular matrices with constant diagonals 
and order co. Taking the obvious definitions of sum, scalar multiple and product, 
we remark first that the product of two matrices in £„(21) is always well defined: 
no element in the product involves more than finitely many non-zero elements 
from the factors. Thus £«,(21) is indeed an algebra. Again, if D has the form corres-
ponding to (2. 8) for k = a», then although D may not be nilpotent, nevertheless 
exp (D) is well defined since each element of this matrix involves the sum of only 
finitely many elements in 21. 

We consider e-endomorphisms on £„(2t); properties of s-homomorphisms 
on 21 into 2I„[/] come by restriction to £>„(21). 

T h e o r e m (k = °°), The sequence Di,D2,... of derivations in 93(21) being 
given, exp (D) is the matrix in £„(93) of an z-homomorphism on 21 into 2I„[i], 
with F1=D1. Conversely, given an E-homomorphism on 21 into 2l,„[/], its matrix 
F has the form 

(3.1) F = exp(D) 

where = Ft, D2, ... are derivations. This representation is unique. 
Thus the E-endomorphisms on £„,(21) are precisely the matrices of the form 

exp (D). 

P r o o f . For a matrix X in £ t (k ^ let [X]y when j = k denote the element 
of the jth superdiagonal, counting the leading diagonal as first; and let Xj denote 
the leading j X j block in X, so that Xj^Xj. Suppose D given, and A, B ££„(21). 
Then for positive integral /', 

[exp(D)(AB)]j = 2 ' (exp (D))ltt(AB)^ = 
. a = l 

= i (exp ( D j ^ i A j B j X j = [exp (D;) O W L " 
a = l 

By the theorem for k finite, exp (Dj) is an endomorphism. Thus [exp (D)(AB)]j — 
~=[exp (D)A-exp (D)B]j. So exp (D) is an endomorphism, clearly with the property s.; 

Conversely, let F be an e-endomorphism in £„(93). Then 

[F (A)]j = 2 (F)ix(A)xJ = 2 (Fj)>«(AJXJ = " 

From this it follows that Fj is a e-endomorphism in £ /93) and so FJ = exp(D /) . 
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It is easily seen that ( D j ) j = D j for / '</; thus there is determined a unique D £2„(23) 
such that 

[F(A)]j = [exp (Dj)Aj]j = [exp (D)A]j 

for 7 = 1 , 2 That is, F = exp(D). 

4. Inner derivations 

The inner derivations on non-commutative are the operators Dc of the form 

Dc(a) = ca — ac (a, c£2(). 

They form an ideal in the Lie algebra of derivations. Some algebras are known 
to admit no derivations except inner derivations. (For a recent summary of such 
results see [6]. To this can be added that S . SAKAI and R . KADISON have separately 
found proofs that every von Neumann algebra admits no derivations except inner 
derivations. I must thank J . R . RINGROSE for this information.) 

If D, , £>2, ... in the theorem of §§2, 3 (take k = for definiteness) are all 
inner derivations, say 

D„(a) = c„a - ac„ (all a 6 91; n = 1, 2, ...), 

then it is easily seen that D is an inner derivation in £„(93). In fact, write C for the 
matrix in 2^(21) having 0 in the leading diagonal and c„_, in the /7th diagonal, 
for n —2, 3, ...; then we find 

D(A) = CA — AC (al t (91)). 

and the Campbell—Hausdorff formula for 2^(21) gives 

exp (D) (A) — exp (C) A exp (— C). 

Thus in the case where 91 admits only inner derivations we have the corollary that 
all fi-endomorphisms in 2«,(23) are inner endomorphisms. (T is an inner endomor-
phism in 93(91) if and only if for some regular «€91, Ta = iiau~x for all r/£9f.) 

5. Applications to Banach algebras 

Let 91 now be a complex Banach algebra, and 93(21) the Banach algebra of 
all bounded linear operators on 91 into 9f. 

5. 1. For £?>0, write Ug for the disc {A: ¡AlSg} in the complex plane, and let 
3rc denote the algebra of all functions on (JQ into 21 which are continuous on Ue 
and holomorphic on the interior of Uc. Each / in 5„ is representable uniquely 
by its Taylor series about 0, 

f(X) = a0+al/. + a2?* + ... (a„£2t for / /= 0, 1, ...). 

3r„ becomes a Banach algebra if it is normed by writing 

(5.1) \\f\l = max ||/(A)|| = max ||/(A)||. 
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An endomorphism H on clearly has the algebraic properties of an endomor-
phism on 2L[t], so that the theory of § 3 is relevant. If H is also a closed operator, 
then it is bounded. Suppose that this is the case, and that H has the property e, so 
that (if we specify functions by their Taylor series) then 

(5.2) N(a0 + alX + a2X2 + ...) = b0 + btl + b2l2 +... 

implies b0 — a0. The property s can alternatively be put in the form: 

(Hf )(0)=f(0) for all / £ 3 « . 

We consider the question of bounds. Suppose that {/, F1, 'F2, ...} is the higher 
derivation of infinite rank corresponding to H and making up F, and DX,D2, ... 
is the sequence of derivations which occur inD in the formula (3. 1). The boundedness 
of H implies that of the F's and the D's. To prove this, apply H to the constant 
function f(X) = a, getting H{a)—g where 

g ( A ) = a + c1l + c2l2 + ... (|A|Se), 
say. Now the familiar Cauchy estimates for the coefficients of such a power series 
extend from the classical to the vector-function case ([1], p. 97), so we have, for 
h = l , 2 , ... 

P-,(«)ll - Ik J ^ ¿ rmax | |g ( l ) | | = <r"||s| |e = Q-"\\H (a)!^ S ¡ r l ^ H M , 
6 UNe 

whence || F„|| s Q~"\\ H\\. Thus the F's are bounded. Since Dn — Fn + a polynomial 
in Dx, D2, ..., Z)„_ t , it follows easily that the D's are bounded. 

Note that non-trivial e-endomorphisms on exist if 21 admits a non-zero 
derivation D\ we have only to take Dt= D, D2 = Di = ...=0 inD and form exp (D). 

5. 2. Consider the restriction of H to 21 (which we also write H). Let x be an 
arbitrary point of the disc UQ, and ax the evaluation map on into 21 at x, that 
is, a j f ) = f(y.) for / € 5 e . Since ay is a homomorphism, axH is an endomorphism 
on 21, bounded if H is bounded; it clearly has a simple representation in terms of 
derivations, deducible from the formula (3. 1). It would therefore be interesting 

• to have a characterization of the endomorphisms which can be factorized in the 
form aKH for some % and H, and to know for what 21, if any, all endomorphisms 
in 93(21) have this property. 

5. 3. It is known that some algebras are sparingly supplied with derivations. 
Thus, if 21 is a semisimple commutative Banach algebra, the Singer—Wermer 
theorem [7] shows that 21 admits no bounded derivations other than 0. It follows 
from the theorem of § 3 and the discussion in § 5. 1 that for such 21 the only 
bounded e-homomorphisms on 21 into and on into a r e the injection 
mapping H(a)=f with f(X) = a, and the identity mapping H ( f ) = f , respectively. 

6. A related result 

Some interesting and more general tesults can be obtained for Banach algebras 
by adapting the process P to the point derivations introduced by SINGER and WERMER. 

Let 21 be a commutative Banach algebra over the complex field. Given a 
multiplicative linear functional <p on 21, a point derivation associated with q> is 
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a linear functional satisfying 

(6.5) Sv(ab) = »¿aWQ + vWS^b) (all a, b<iil). 
We prove 

T h e o r e m . If the complex commutative Banach algebra 91 admits no non-zero 
point derivations, then the only homomorphisms on 21 into §„, the algebra of all 
complex-valued functions continuous on the disc UB and holomorphic on its interior, 
are the mappings to constants, that is, the multiplicative linear functionals on 91. 

(Note that the homomorphisms in the statement of the theorem are not required 
to have the property e.) 

P r o o f . Let H be a homomorphism on 91 into $>e. Then if H(a)=f, with 

(6.2) f(X) = a0 + a,X + a2X2 + ... ( |A |So; a0,a},... complex), 

there is determined a sequence of linear functionals </>0, <pt, ... by 

A„ = <P:,(A) ( « = 0 , 1 , . . . ) . 

Substituting the form (6. 2) in (1. 2), we obtain a set of identities for the <p's like 
(1.6)—(1.9), namely 

(6. 3) <p0(ab) = (p0(a)<p0(b), 

(6.4) <pt (ab) = (pi(a)cp0(b) + (p0(a) <p, (b), 

(6. 5) cp2(ab) = q>2(a)<p0(b) + cp ,(a) <p ¡(b) + (pja)cp2(b), 

aoid in general for /; = 1,2, ... 
n 

<P»(AB) = 2' (P„~JA)<PJB)-
' a = 0 

Thus (p0 is a multiplicative linear functional on 91. Since <p, by (6. 4) is a point 
derivation on 91 associated with <p0, the assumption of the theorem implies that. 
<p, =0 . But then (p2 by (6. 5) is a point derivation, so (p2=0. By induction we find 
that (pt =<p2... = 0 , so that H(a) = q>0(a). 

SINGER and WERMER give the following necessary and sufficient condition for 
the existence of point derivations in a commutative Banach algebra 9t with identity. 
Given the multiplicative linear functional (p, write Mip = {a: (p(a)= 0} for the cor-
responding maximal ideal in 9t, and for the set of all linear combinations of 
squares of elements of Mv, so that M ^ ^ M ^ . Then non-zero point derivations 
associated with (p exist if and only if 

C o r o l l a r y . The only homomorphisms from the algebra C(X) of all complex-
valued continuous functions on a compact Hausdorjf space X into §te are the multipli-
cative linear functionals. 

P r o o f . For every <p, M^—M^: for the details, see [7]. 

N o t e a d d e d in p r o o f . R.J . LOY has extended the results of this paper 
under a weaker hypothesis than the £ property; See the following paper [8]. 
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