A note on the preceding paper by J. B. Miller

By RICHARD J. LOY in Clayton (Victoria, Australia)*)

1. Introduction

Let \mathfrak{H} be an associative algebra over a field K of zero characteristic, $\mathscr{A}_{k}[t]$ the algebra, over \mathfrak{H}, of polynomials of degree $\leq k$ in a commutative indeterminate t with the usual multiplication modulo the principal ideal $\left(t^{k+1}\right)$. We consider (algebra) homomorphisms of \mathfrak{H} into $\mathfrak{N}_{k}[t]$. Much of the definitions and notation of [1] will be used, without further explanation.

Suppose H is a homomorphism of \mathfrak{N} into $\mathfrak{N}_{k}[t]$ so that, if $a \in \mathfrak{H}$,

$$
H(a)=a_{0}+t a_{1}+t^{2} a_{2}+\ldots+t^{k} a_{k} .
$$

Writing $a_{0}=\varphi(a), a_{i}=F_{i}(a)(i=1,2, \ldots, k)$ it is clear that the maps φ, F_{i} are linear transformations' over $\mathfrak{A l}$. Furthermore, since H is a homomorphism it follows, if $a, b \in \mathfrak{P}$, that

$$
\begin{equation*}
\varphi(a b)=\varphi(a) \varphi(b) \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
F_{i}(a b)=\sum_{j=0}^{i} F_{j}(a) F_{i-j}(b) \tag{ii}
\end{equation*}
$$

where $F_{0}=\varphi$.
The problem is to obtain a representation for H in terms of transformations. on \mathfrak{A} of some given type. This has been done in [1] under the supposition that φ. is the identity endomorphism, I, on \mathfrak{N}. For completely general endomorphisms. the problem appears intractible but under suitable restrictions a solution can beobtained.

To be more specific, let φ be an endomorphism in $\mathfrak{B}(\mathfrak{A})$. A homomorphism. H of $\mathfrak{Q l}$ into $\mathfrak{V}_{k}[t]$ will be called a φ-homomorphism if
(a) φ is the endomorphism determined from H by $a_{0}=\varphi(a)$.
(b) $\quad \varphi\left(F_{n}(a)\right)=F_{n}(\varphi(a))(n=1,2, \ldots, k)$.

Thus the ε-homomorphisms of [1] are I-homomorphisms in this nomenclature.

[^0]An operator $D \in \mathfrak{B}(\mathfrak{N})$ will be called a φ-derivation if it commutes with φ and satisfies

$$
D(a b)=D(a) \varphi(b)+\varphi(a) D(b) \quad(a, b \in \mathfrak{P})
$$

Thus F_{1} of (ii) is a φ-derivation if H is a φ-homomorphism.
Finally, the endomorphism φ will be called averaging if

$$
\varphi(a \varphi(b))=\varphi(a) \varphi(b)=\varphi(\varphi(a) b) \quad(a, b \in \mathfrak{Q})
$$

Clearly any idempotent endomorphism is averaging and, conversely, if \mathfrak{G} has an identity, or if the range of φ contains an element which is not a left (or right) divisor of zero, then φ is idempotent.

The results of [1] are extended to φ-homomorphisms for φ an idempotent endomorphism and for φ an averaging endomorphism.

The author wishes to express his thanks to Professor J. B. Miller for suggesting the possibility of extending the results of [1] and for his constant encouragement and guidance in preparation of this paper.

2. Representations of φ-homomorphisms

Lemma. Let $\varphi \in \mathfrak{B}(\mathfrak{H})$ be an averaging endomorphism and $D \in \mathfrak{B}(\mathfrak{Y})$ a φ-deriv,ation. Then for $a, b \in \mathfrak{Y l}, n=1,2, \ldots$,

$$
\varphi\left(D^{n}(a b)\right)=\varphi\left\{\sum_{i=0}^{n}\binom{n}{i} D^{i}(a) D^{n-i}(b)\right\} .
$$

Proof. The result is clear for $n=1$. For $n=2$ we have, if $a, b \in \mathfrak{P}$,

$$
\begin{aligned}
\varphi\left(D^{2}(a b)\right) & =\varphi(D(D(a) \varphi(b)+\varphi(a) D(b)))= \\
& =\varphi\left(D^{2}(a) \varphi^{2}(b)+\varphi(D(a)) \varphi(D(b))+\varphi(D(a)) \varphi(D(b))+\varphi^{2}(a) D^{2}(b)\right)= \\
& =\varphi\left(D^{2}(a) b+2 D(a) D(b)+a D^{2}(b)\right)
\end{aligned}
$$

:since

$$
\varphi(\varphi(x) y)=\varphi(x \varphi(y))=\varphi(x) \varphi(y)=\varphi(x y)
$$

if $x, y \in \mathfrak{N}$. An inductive argument gives the geineral case.
Corollary. With φ, D as in the lemma define $\varphi \exp D$ as the (formal) sum $\sum_{. n=0}^{\infty} \frac{1}{n!} \varphi D^{n}$. If $\varphi \exp D$ defines an operator in $\mathfrak{B}(\mathfrak{N})$, in particular if D is nilpotent, then this operator is an endomorphism.

Proof. Follows from the lemma in the obvious manner.
Theorem. Let $\varphi \in \mathfrak{B}(\mathfrak{P})$ be a given averaging endomorphism and D_{1}, D_{2}, \ldots, $\ldots, D_{k} \in \mathfrak{B}(\mathfrak{H})$ given φ-derivations. Let φ be the operator in $\mathfrak{T}_{k+1}(\mathfrak{B})$ with φ along the leading diagonal and zero elsewhere. Then $\varphi \exp \left(\boldsymbol{D}_{k+1}\right)$, as defined above, is the matrix in $\mathfrak{T}_{k+1}(\mathfrak{B})$ of a φ-homomorphism of $\mathfrak{\mathfrak { I }}$ into $\mathfrak{Q}_{k}[t]$ with $F_{1}=\varphi D_{1}$.

Conversely, given a φ-homomorphism H of \mathfrak{A} into $\mathfrak{U}_{k}[t]$, with φ idempotent, its matrix \boldsymbol{F}_{k+1} satisfies

$$
\boldsymbol{q} \boldsymbol{F}_{k+1}=\boldsymbol{q} \exp \left(D_{k+1}\right)
$$

where $D_{1}, D_{2}, \ldots, D_{k} \in \mathfrak{B}(\mathfrak{N l})$ are φ-derivations and D_{1} can be taken as F_{1}. , Furthermore the φD_{i} are uniquely deternined.

Proof. The proof of the first part is exactly as in [1]. For the partial converse, note that if H is a φ-homomorphism of \mathfrak{Q} into $\mathfrak{A}_{k}[t]$, with φ idempotent, then $H \varphi$ is a I-homomorphism of $\varphi(\mathfrak{H l})$ into $\varphi(\mathfrak{2 l})_{k}[t]$. Thus by [1] the matrix $\boldsymbol{F}_{k+1} \boldsymbol{\varphi}$ of $H \varphi$ satisfies

$$
\begin{equation*}
\boldsymbol{F}_{k+1} \varphi=\exp \left(\boldsymbol{\Delta}_{k+1}\right) \tag{iii}
\end{equation*}
$$

where \boldsymbol{F}_{k+1} is the matrix of H, and the operators $\Delta_{1}, \Delta_{2}, \ldots, \Delta_{k}$ of Δ_{k+1} are derivations on $\varphi(\mathfrak{H})$. For $i=1,2, \ldots, k$ define D_{i} by

$$
D_{i}(a)=\left\{\begin{array}{ccc}
0 & \text { if } & a \in \operatorname{ker}(\varphi) \\
\Delta_{i}(a) & \text { if } & a \in \operatorname{im}(\varphi)
\end{array}\right.
$$

and extend D_{i} limearly to the whole of \mathfrak{N}. The resulting operator is well defined since $\mathfrak{H}=\operatorname{ker}(\varphi) \oplus \operatorname{im}(\varphi)$ (see $\S 3$ below). But then if $a_{j}=x_{j}+y_{j}, x_{j} \in \operatorname{ker}(\varphi)$, $y_{j} \in \operatorname{im}(\varphi)$ for $j=1,2$,

$$
D_{i}\left(a_{1} a_{2}\right)=D_{i}\left(x_{1} x_{2}+y_{1} x_{2}+x_{1} y_{2}+y_{1} y_{2}\right)=D_{i}\left(y_{1} y_{2}\right)
$$

since $\operatorname{ker}(\varphi)$ is a two-sided ideal. Since im (φ) is a subalgebra

$$
\begin{gathered}
D_{i}\left(a_{1} a_{2}\right)=\Delta_{i}\left(y_{1} y_{2}\right)= \\
=\Delta_{i}\left(y_{1}\right) y_{2}+y_{1} \Delta_{i}\left(y_{2}\right)=D_{i}\left(a_{1}\right) \varphi\left(a_{2}\right)+\varphi\left(a_{i}\right) D_{i}\left(y_{2}\right)
\end{gathered}
$$

moreover, $D_{i}=D_{i} \varphi=\varphi D_{i}$ and so D_{i} is a φ-derivation on $\mathfrak{V}, i=1,2, \ldots, k$.
Also, if $a \in \mathfrak{Y K}, D_{i}(a)=\Delta_{i}(\varphi(a))$, so $\dot{\Delta}_{i} \varphi=D_{i}$. By (iii) then, since $\boldsymbol{\rho}^{2}=\varphi$ and $\Delta_{i} \varphi=\varphi \Delta_{i} \varphi$ for each i,

$$
\boldsymbol{F}_{k+1} \varphi=\exp \left(\Delta_{k+1}\right) \varphi=\varphi \exp \left(\Delta_{k+1} \varphi\right)=\varphi \exp \left(D_{k+1}\right)
$$

and the result follows.
Remarks. 1. The above result remains valid if the base field D has nonzero characteristic p, provided $k<p$. This restriction ensures that $\varphi \exp D_{k+1}$ is defined.
2. If it is supposed that $\varphi F_{n}=F_{n} \varphi=F_{n}(n=1,2, \ldots, k)$ then 'the process P ' of [1] can be applied to give results analogous to those in [1] with φ-derivations in place of derivations.
3. The result for $k=\infty$ generalizes in the same manner.

3. Existence of φ-derivations

Lemma. An algebra \mathfrak{N} admits an idempotent endomorphism if and only if it admits a (vector space) direct sum representation $\mathfrak{Y}=\mathfrak{J} \oplus \mathfrak{B}$ where \mathfrak{J} is a two-sided ideal and \mathfrak{B} is a subalgebra.

Proof. If φ is an idempotent endomorphism, let $\mathfrak{J}=\operatorname{ker}(\varphi), \mathfrak{B}=\operatorname{im}(\varphi)$. Then \mathfrak{J} is a two sided ideal and \mathfrak{B} is a subalgebra. If $a \in \mathfrak{Y}, a=(a-\varphi(a))+\varphi(a)$ so $\mathfrak{Y}=\mathfrak{T}+\mathfrak{B}$. Since φ is zero on \mathfrak{J} and is the identity on \mathfrak{B} it follows that the sum is direct.

Conversely, if $\mathfrak{A}=\mathfrak{J} \oplus \mathfrak{B}$ for some two-sided ideal \mathfrak{J} and subalgebra \mathfrak{B}, define a transformation φ on \mathfrak{Y} as follows. If $a=x+y, x \in \mathfrak{J}, y \in \mathfrak{B}$, set $\varphi(a)=y$. Then φ is clearly idempotent and linear. Also, if $a_{1}=x_{1}+y_{1}, a_{2}=x_{2}+y_{2}$

$$
\begin{gathered}
\varphi\left(a_{1} a_{2}\right)=\varphi\left(x_{1} x_{2}+y_{1} x_{2}+x_{1} y_{2}+y_{1} y_{2}\right)= \\
=\varphi\left(y_{1} y_{2}\right)=y_{1} y_{2}=\varphi\left(a_{1}\right) \varphi\left(a_{2}\right)
\end{gathered}
$$

Thus φ is an idempotent endomorphism.
Theorem. Let $\mathfrak{G l}$ be an associative algebra which has a direct sum representation $\mathfrak{H}=\mathfrak{I} \oplus \mathfrak{B}$ as in the lemma, with \mathfrak{B} non-commutative. Then \mathfrak{H} admits a non-zero φ-derivation D such that $\varphi D=D \varphi=D, \varphi$ being defined as in the lemma.

Proof. Let $a \in \mathfrak{P}$ be any element such that $\varphi(a)$ is not in the centre of \mathfrak{B}. Straightforward calculation shows that the operator D defined by

$$
D(x)=\varphi(a x-x a), \quad x \in \mathfrak{P},
$$

has the desired properties.
Corollary. Let $\Delta_{i}, \Delta_{2}, \ldots$ be inner derivations of $\mathfrak{A}, D_{1}, D_{2}, \ldots$ the corresponding p-derivations as defined in the preceding theorem, that is, $D_{i}=\varphi \Delta_{i}$, $i=1,2, \ldots$. Then $\varphi \exp (\boldsymbol{D})=\varphi \Gamma$ where Γ is an inner endomorphism in $\mathfrak{T}_{\infty}(\mathfrak{A})$ determined by the $\Delta_{1}, \Delta_{2}, \ldots$ as in [1].

Proof. By § 4 of [1],

$$
\exp (\Delta) \dot{A}=\exp (\boldsymbol{C}) \boldsymbol{A} \exp (-\boldsymbol{C}), \quad \boldsymbol{A} \in \mathfrak{I}_{\infty}(\mathfrak{Q})
$$

whence

$$
(\varphi \exp (\boldsymbol{\Delta})) A=(\boldsymbol{\varphi} \Gamma) A
$$

But

$$
\varphi \exp (\boldsymbol{D})=\varphi \exp (\varphi \boldsymbol{\Delta})=\varphi \exp \boldsymbol{\Delta},
$$

and the result follows.

Bibliography

[1] J. B. Muler, Homomorphisms, higher derivations, and derivations of associative algebras, Acta Sci. Math. 28 (1967), 221-232.

[^0]: *) The author is a General Motors-Holden's Limited Research Fellow.

