A note on the preceding paper by J. B. Miller

By RICHARD J. LOY in Clayton (Victoria, Australia)*)

1. Introduction

Let \mathfrak{A} be an associative algebra over a field K of zero characteristic, $\mathfrak{A}_k[t]$, the algebra, over \mathfrak{A} , of polynomials of degree $\leq k$ in a commutative indeterminate t with the usual multiplication modulo the principal ideal (t^{k+1}) . We consider (algebra) homomorphisms of \mathfrak{A} into $\mathfrak{A}_k[t]$. Much of the definitions and notation of [1] will be used, without further explanation.

Suppose H is a homomorphism of \mathfrak{A} into $\mathfrak{A}_{k}[t]$ so that, if $a \in \mathfrak{A}$,

$$H(a) = a_0 + ta_1 + t^2 a_2 + \ldots + t^k a_k.$$

Writing $a_0 = \varphi(a)$, $a_i = F_i(a)$ (i = 1, 2, ..., k) it is clear that the maps φ , F_i are linear transformations over \mathfrak{A} . Furthermore, since H is a homomorphism it follows, if $a, b \in \mathfrak{A}$, that

$$\varphi(ab) = \varphi(a)\varphi(b),$$

(ii)

(i)

$$F_i(ab) = \sum_{j=0}^{r} F_j(a) F_{i-j}(b),$$

where $F_0 = \varphi$.

The problem is to obtain a representation for H in terms of transformations on \mathfrak{A} of some given type. This has been done in [1] under the supposition that φ is the identity endomorphism, I, on \mathfrak{A} . For completely general endomorphisms the problem appears intractible but under suitable restrictions a solution can be obtained.

To be more specific, let φ be an endomorphism in $\mathfrak{B}(\mathfrak{A})$. A homomorphism H of \mathfrak{A} into $\mathfrak{A}_k[t]$ will be called a φ -homomorphism if

(a) φ is the endomorphism determined from H by $a_0 = \varphi(a)$.

(b) $\varphi(F_n(a)) = F_n(\varphi(a)) \ (n = 1, 2, ..., k).$

Thus the ε -homomorphisms of [1] are *I*-homomorphisms in this nomenclature...

*) The author is a General Motors-Holden's Limited Research Fellow.

R. J. Loy

An operator $D \in \mathfrak{B}(\mathfrak{A})$ will be called a φ -derivation if it commutes with φ and satisfies

$$D(ab) = D(a)\varphi(b) + \varphi(a)D(b) \qquad (a, b \in \mathfrak{A}).$$

Thus F_1 of (ii) is a φ -derivation if H is a φ -homomorphism.

Finally, the endomorphism φ will be called averaging if

$$\varphi(a\varphi(b)) = \varphi(a)\varphi(b) = \varphi(\varphi(a)b) \qquad (a, b \in \mathfrak{A}).$$

Clearly any idempotent endomorphism is averaging and, conversely, if \mathfrak{A} has an identity, or if the range of φ contains an element which is not a left (or right) divisor of zero, then φ is idempotent.

The results of [1] are extended to φ -homomorphisms for φ an idempotent endomorphism and for φ an averaging endomorphism.

The author wishes to express his thanks to Professor J. B. MILLER for suggesting the possibility of extending the results of [1] and for his constant encouragement and guidance in preparation of this paper.

2. Representations of φ -homomorphisms

Lemma. Let $\varphi \in \mathfrak{B}(\mathfrak{A})$ be an averaging endomorphism and $D \in \mathfrak{B}(\mathfrak{A})$ a φ -deriv-,ation. Then for $a, b \in \mathfrak{A}$, n = 1, 2, ...,

$$\varphi(D^{n}(ab)) = \varphi\left\{\sum_{i=0}^{n} \binom{n}{i} D^{i}(a) D^{n-i}(b)\right\}.$$

Proof. The result is clear for n=1. For n=2 we have, if $a, b \in \mathfrak{N}$,

$$\varphi(D^{2}(ab)) = \varphi(D(D(a)\varphi(b) + \varphi(a)D(b))) =$$

$$= \varphi(D^{2}(a)\varphi^{2}(b) + \varphi(D(a))\varphi(D(b)) + \varphi(D(a))\varphi(D(b)) + \varphi^{2}(a)D^{2}(b)) =$$

$$= \varphi(D^{2}(a)b + 2D(a)D(b) + aD^{2}(b))$$
since
$$\varphi(D^{2}(a)b + 2D(a)D(b) + aD^{2}(b)) = \varphi(D^{2}(a)b + 2D(a)D(b) + aD^{2}(b)) =$$

$$\varphi(\varphi(x)y) = \varphi(x\varphi(y)) = \varphi(x)\varphi(y) = \varphi(xy)$$

if x, $y \in \mathfrak{A}$. An inductive argument gives the general case.

Corollary. With φ , D as in the lemma define $\varphi \exp D$ as the (formal) sum $\sum_{n=0}^{\infty} \frac{1}{n!} \varphi D^n$. If $\varphi \exp D$ defines an operator in $\mathfrak{B}(\mathfrak{A})$, in particular if D is nilpotent, then this operator is an endomorphism.

Proof. Follows from the lemma in the obvious manner.

Theorem. Let $\varphi \in \mathfrak{B}(\mathfrak{A})$ be a given averaging endomorphism and D_1, D_2, \ldots , ..., $D_k \in \mathfrak{B}(\mathfrak{A})$ given φ -derivations. Let φ be the operator in $\mathfrak{T}_{k+1}(\mathfrak{B})$ with φ along the leading diagonal and zero elsewhere. Then $\varphi \exp(D_{k+1})$, as defined above, is the matrix in $\mathfrak{T}_{k+1}(\mathfrak{B})$ of a φ -homomorphism of \mathfrak{A} into $\mathfrak{A}_{k}[t]$ with $F_{1} = \varphi D_{1}$.

Note on the preceding paper

Conversely, given a φ -homomorphism H of \mathfrak{A} into $\mathfrak{A}_k[t]$, with φ idempotent, its matrix \mathbf{F}_{k+1} satisfies

$$\varphi F_{k+1} = \varphi \exp\left(D_{k+1}\right)$$

where $D_1, D_2, ..., D_k \in \mathfrak{B}(\mathfrak{A})$ are φ -derivations and D_1 can be taken as F_1 . Furthermore the φD_i are uniquely determined.

Proof. The proof of the first part is exactly as in [1]. For the partial converse, note that if H is a φ -homomorphism of \mathfrak{A} into $\mathfrak{A}_k[t]$, with φ idempotent, then $H\varphi$ is a *l*-homomorphism of $\varphi(\mathfrak{A})$ into $\varphi(\mathfrak{A})_k[t]$. Thus by [1] the matrix $F_{k+1}\varphi$ of $H\varphi$ satisfies

$$F_{k+1}\varphi = \exp\left(\Delta_{k+1}\right)$$

where F_{k+1} is the matrix of *H*, and the operators $\Delta_1, \Delta_2, ..., \Delta_k$ of Δ_{k+1} are derivations on $\varphi(\mathfrak{A})$. For i=1, 2, ..., k define D_i by

$$D_i(a) = \begin{cases} 0 & \text{if } a \in \ker(\varphi), \\ \Delta_i(a) & \text{if } a \in \operatorname{im}(\varphi) \end{cases}$$

and extend D_i linearly to the whole of \mathfrak{A} . The resulting operator is well defined since $\mathfrak{A} = \ker(\varphi) \oplus \operatorname{im}(\varphi)$ (see § 3 below). But then if $a_j = x_j + y_j$, $x_j \in \ker(\varphi)$, $y_i \in \operatorname{im}(\varphi)$ for j = 1, 2,

$$D_i(a_1a_2) = D_i(x_1x_2 + y_1x_2 + x_1y_2 + y_1y_2) = D_i(y_1y_2)$$

since ker (φ) is a two-sided ideal. Since im (φ) is a subalgebra

$$D_i(a_1a_2) = \Delta_i(y_1y_2) =$$

$$= \Delta_i(y_1)y_2 + y_1\Delta_i(y_2) = D_i(a_1)\varphi(a_2) + \varphi(a_1)D_i(y_2);$$

moreover, $D_i = D_i \varphi = \varphi D_i$ and so D_i is a φ -derivation on \mathfrak{A} , i = 1, 2, ..., k. Also, if $a \in \mathfrak{A}$, $D_i(a) = \Delta_i(\varphi(a))$, so $\Delta_i \varphi = D_i$. By (iii) then, since $\varphi^2 = \varphi$ and $\Delta_i \varphi = \varphi \Delta_i \varphi$ for each i,

$$F_{k+1}\varphi = \exp((\Delta_{k+1})\varphi) = \varphi \exp((\Delta_{k+1}\varphi)) = \varphi \exp((D_{k+1}))$$

and the result follows.

(iii)

Remarks. 1. The above result remains valid if the base field D has nonzero characteristic p, provided k < p. This restriction ensures that $\varphi \exp D_{k+1}$ is defined.

2. If it is supposed that $\varphi F_n = F_n \varphi = F_n$ (n = 1, 2, ..., k) then 'the process P' of [1] can be applied to give results analogous to those in [1] with φ -derivations in place of derivations.

3. The result for $k = \infty$ generalizes in the same manner.

R. J. Loy: Note on the preceding paper

3. Existence of φ -derivations

Lemma. An algebra \mathfrak{A} admits an idempotent endomorphism if and only if it admits a (vector space) direct sum representation $\mathfrak{A} = \mathfrak{I} \oplus \mathfrak{B}$ where \mathfrak{I} is a two-sided ideal and \mathfrak{B} is a subalgebra.

Proof. If φ is an idempotent endomorphism, let $\Im = \ker(\varphi)$, $\mathfrak{B} = \operatorname{im}(\varphi)$. Then \mathfrak{I} is a two sided ideal and \mathfrak{B} is a subalgebra. If $a \in \mathfrak{A}$, $a = (a - \varphi(a)) + \varphi(a)$ so $\mathfrak{A} = \mathfrak{I} + \mathfrak{B}$. Since φ is zero on \mathfrak{I} and is the identity on \mathfrak{B} it follows that the sum is direct.

Conversely, if $\mathfrak{A} = \mathfrak{I} \oplus \mathfrak{B}$ for some two-sided ideal \mathfrak{I} and subalgebra \mathfrak{B} , define a transformation φ on \mathfrak{A} as follows. If a = x + y, $x \in \mathfrak{I}$, $y \in \mathfrak{B}$, set $\varphi(a) = y$. Then φ is clearly idempotent and linear. Also, if $a_1 = x_1 + y_1$, $a_2 = x_2 + y_2$

$$\varphi(a_1a_2) = \varphi(x_1x_2 + y_1x_2 + x_1y_2 + y_1y_2) =$$

= $\varphi(y_1y_2) = y_1y_2 = \varphi(a_1)\varphi(a_2).$

Thus φ is an idempotent endomorphism.

Theorem. Let \mathfrak{A} be an associative algebra which has a direct sum representation $\mathfrak{A} = \mathfrak{I} \oplus \mathfrak{B}$ as in the lemma, with \mathfrak{B} non-commutative. Then \mathfrak{A} admits a non-zero φ -derivation D such that $\varphi D = D\varphi = D$, φ being defined as in the lemma.

Proof. Let $a \in \mathfrak{A}$ be any element such that $\varphi(a)$ is not in the centre of \mathfrak{B} . Straightforward calculation shows that the operator D defined by

 $D(x) = \varphi(ax - xa), \qquad x \in \mathfrak{A}, \dots$

has the desired properties.

Corollary. Let $\Delta_1, \Delta_2, \ldots$ be inner derivations of $\mathfrak{A}, D_1, D_2, \ldots$ the corresponding φ -derivations as defined in the preceding theorem, that is, $D_i = \varphi \Delta_i$, $i = 1, 2, \ldots$. Then $\varphi \exp(\mathbf{D}) = \varphi \Gamma$ where Γ is an inner endomorphism in $\mathfrak{T}_{\infty}(\mathfrak{A})$ determined by the $\Delta_1, \Delta_2, \ldots$ as in [1].

Proof. By §4 of [1],

$$xp(\Delta)A = exp(C)A exp(-C), \qquad A \in \mathfrak{T}_{m}(\mathfrak{A}),$$

whence

$$(\boldsymbol{\varphi} \exp (\boldsymbol{\Delta}))\boldsymbol{A} = (\boldsymbol{\varphi}\boldsymbol{\Gamma})\boldsymbol{A}.$$

But

$$\varphi \exp(D) = \varphi \exp(\varphi \Delta) = \varphi \exp \Delta$$
,

and the result follows.

Bibliography

 J. B. MILLER, Homomorphisms, higher derivations, and derivations of associative algebras, Acta Sci. Math. 28 (1967), 221-232.

(Received September 21, 1966)