On homomorphisms of partially ordered semigroups

By R. McFADDEN in Belfast (N. Ireland)

In attempting to describe the order preserving homomorphisms of a partially ordered semigroup G onto a partially ordered semigroup G', it has proved necessary to impose conditions on G, on G', on the congruence ϱ determined by the homomorphism, or on a combination of these [7], [3], [1]. The approach used here is to assume that G/ϱ is residuated in such a way that each element of G/ϱ is both a left and a right residual of itself, and that the ϱ -class of each element of G contains a maximum element. Without assuming that G is residuated, as in [4], or even generalized residuated, [3], it is shown that if t is maximum in its ϱ -class, the residuals $t \cdot a$ and $t \cdot a$ exist for any $a \in G$, and that ϱ is determined by a subset of all such residuals.

When G/ϱ is a group the form of ϱ has been determined by Mme. DUBREIL-JACOTIN [1]; since a group is residuated, her result may be deduced from those described here. As an extension of this, the condition that G/ϱ be a group is replaced by the condition that G/ϱ be an integrally closed semigroup, and the structure of ϱ is then determined.

Ļ

Let G be a partially ordered set. That is, a set in which is defined a relation \leq , which is reflexive, antisymmetric and transitive. For x, $y \in G$, the greatest lower bound of x and y, if it exists, is denoted by $x \land y$, and the *least upper bound*, if it exists, is denoted by $x \lor y$. An equivalence relation ρ on G is called an *m*-equivalence if ρ satisfies the following conditions:

(i) for any $x \in G$, the ϱ -class $x \varrho$ of x contains a maximum element t_x ,

(ii) for $x, y \in G$, $x \leq y$ implies $t_x \leq t_y$.

The following notation will be used:

 $T(\varrho) = \{t \in G \mid t \text{ is maximum in its } \varrho\text{-class}\}.$

For an equivalence relation ρ satisfying (i), it is easily seen that (ii) is equivalent to:

(ii)' $x, y \in G, x < y, x \neq y(\varrho), x' \varrho x$ imply that there exists in G an element y' such that y' ϱy and x' < y'. (Condition (ii)' is the property (S) discussed in (2, 5).)

When ϱ is an *m*-equivalence, the set $G/\varrho = \{x\varrho | x \in G\}$ may be partially ordered by:

 $x\varrho \le y\varrho$ in G/ϱ if and only if $t_x \le t_y$ in G.

We use the same notation for the partial orders in G and G/ϱ ; it is clear that G/ϱ

16 A

is the order homomorphic image of G, in the sense that $x \le y$ in G implies $x\varrho \le y\varrho$ in G/ϱ . Note that $x\varrho \le y\varrho$ in G/ϱ if and only if there exist $x' \in x\varrho$ and $y' \in y\varrho$ such that $x' \le y'$. Further, the ϱ -classes are convex, for if x, y, $z \in G$ with $x \le y \le z$ and $x\varrho z$, then $t_x \le t_y \le t_z = t_x$ implies $t_x = t_y$, or $x\varrho y$.

A partially ordered groupoid is a partially ordered set G on which is defined a binary operation, which will be written multiplicatively, such that for $a, b, x \in G$, $a \leq b$ implies $ax \leq bx$ and $xa \leq xb$. If multiplication is associative, G is called a partially ordered semigroup. If for $a, b \in G$ the set of all $x \in G$ such that $ax \leq b$ $(xa \leq b)$ is non-empty and contains a maximum element, this element is called the right (left) residual of b by a, and is written $b \cdot a$ ($b \cdot a$). If $b \cdot a$ ($b \cdot a$) exists for all $a, b \in G$, then G is called right (left) residuated, and if G is both right and left residuated, it is said to be residuated.

A congruence relation on a partially ordered groupoid G is an equivalence relation g on G which satisfies:

(iii) for $x, y, z \in G$, $x \varrho y$ implies $xz \varrho yz$ and $zx \varrho zy$.

An *m*-congruence on G is an *m*-equivalence on G which satisfies (iii).

When ϱ is an *m*-congruence, G/ϱ is a groupoid, and a homomorphic image of G, if multiplication in G/ϱ is defined by $a\varrho \cdot b\varrho = (ab)\varrho$. Further, G/ϱ is a partially ordered groupoid with the partial order defined above, for if $x\varrho$, $y\varrho$, $z\varrho \in G/\varrho$ with $x\varrho \leq y\varrho$, then $t_x \leq t_y$ implies $t_z t_x \leq t_z t_y$, whence by (i) and (iii), $t_{zx} \leq t_{zy}$; similarly for multiplication on the right.

Lemma 1. Let ϱ be an m-congruence on a partially ordered groupoid G. Then $G|\varrho$ is right residuated if and only if $t \cdot a$ exists for every $t \in T(\varrho)$ and for every $a \in G$. In this case $t \cdot a \in T(\varrho)$ $(t \cdot a)\varrho = t\varrho \cdot a\varrho$, and $a' \varrho a$ implies $t \cdot a = t \cdot a'$.

Proof. Sufficiency: Let $a\varrho$, $b\varrho \in G/\varrho$, and let $a \in a\varrho$. Since $a(t_b \cdot a) \leq t_b$, it follows that $a\varrho(t_b \cdot a)\varrho \leq b\varrho$; on the other hand, if $a\varrho x\varrho \leq b\varrho$ then $at_x \leq t_b$, $t_x \leq t_b \cdot a, x\varrho \leq (t_b \cdot a)\varrho$. Hence $b\varrho \cdot a\varrho$ exists, equal to $(t_b \cdot a)\varrho$.

Necessity: Let $a \in G$, $t \in T(\varrho)$. Consider $t\varrho \cdot a\varrho$ in G/ϱ , and let u be the maximum element in the class $t\varrho \cdot a\varrho$. Then $a\varrho(t\varrho \cdot a\varrho) \leq t\varrho$ implies $au \leq t$; but if $ax \leq t$ then $a\varrho x \varrho \leq t\varrho$, $x\varrho \leq t\varrho \cdot a\varrho$, $x \leq t_x \leq u$. Hence $t \cdot a$ exists, equal to u.

Since $t \cdot a$ is the maximum element in $t\varrho \cdot a\varrho$, it follows that if $a'\varrho a$ then $t \cdot a' = t \cdot a = u$.

Lemma 1 will be used as stated, but it may be noted that the following holds: the residual $b\varrho \cdot a\varrho$ exists in G/ϱ if and only if $t_b \cdot a$ exists for some (and hence all) $a \in a\varrho$.

It follows from Lemma 1 that if G/ϱ is right residuated, then for any $x \in G$, $t \cdot x$ exists for any right residual $t[=t_b \cdot a]$ of any element of $T(\varrho)$; for $t \in T(\varrho)$.

Residuals obey the following rules, quoted here without proof (see [2]); it is not necessary to assume that the groupoid G concerned is residuated, but only that the residuals concerned exist.

1. $b \leq a$. $(a \cdot b)$, with equality if and only if $b = a \cdot x$ for some $x \in G$.

2. If G is a semigroup, $a \cdot bc = (a \cdot b) \cdot c$ and $a \cdot bc = (a \cdot c) \cdot b$.

3. $a \leq b$ implies $a \leq c \leq b \leq c$ and $c \leq b \leq c \leq a$.

The existence of an identity element e in G, together with Rule 1, implies that $a=a \cdot (a \cdot a) = a \cdot (a \cdot a)$ for any $a \in G$, since $a=a \cdot e = a \cdot e$. However, even

242

30

if G does not have an identity, it may still be true that $a = a \cdot (a \cdot a) = a \cdot (a \cdot a)$ for any $a \in G$; this is the case if and only if every element of G is both a left and a right residual of itself, in the sense that for every $a \in G$ there exists $x \in G$ such that $a = a^{-1} \cdot x(a = a, x)$. We shall call self-residuated a groupoid having this property (5).

Theorem 1. Let G be a partially ordered semigroup, and let T be a non-empty subset of G satisfying, the following conditions:

(a) For any $t \in T$ and for any $a, x \in G$ there exist:

$$t \cdot a, \quad t \cdot a, \quad \bigwedge_{t \in T} t \cdot (t \cdot a), \quad \left(\bigwedge_{t \in T} t \cdot (t \cdot a)\right) \cdot x, \qquad \left(\bigwedge_{t \in T} t \cdot (t \cdot a)\right) \cdot x.$$

(β) For any $t \in T$ and for any $a \in G$, $t : a \in T$.

(y) Each $t \in T$, and each $\bigwedge_{t \in T} t^{-} . (t^{-}a)$, for $a \in G$, is both a left and a right residual of itself.

Define the relation ϱ_T on G by:

 $a o_T b$ if and only if $t \cdot a = t \cdot b$ for every $t \in T$.

Then ϱ_T is an m-congruence on G, and G/ϱ_T is residuated and self-residuated.

Conversely, if ρ is an m-congruence on G such that $G|\rho$ is residuated and selfresiduated, then $T(\varrho)$ satisfies (α), (β) and (γ), and $\varrho = \varrho_{T(\varrho)}$.

Proof. Clearly ϱ_T is an equivalence relation. For $a, x \in G$ and $t \in T$, $t \cdot a \in T$ (by (β)), and this implies, by (α), that ($t \cdot a$). x exists; by (α) again, $t \cdot ax$ exists, and then (t, a). $x = t \cdot ax$, each being the maximum $z \in G$ such that $a \times z \leq t$. (It is here that we use the fact that G is a semigroup). Hence if $b \in G$ and $a \varrho_T b$, then

$$t \cdot ax = (t \cdot a) \cdot x = (t \cdot b) \cdot x = t \cdot bx,$$

$$t \cdot xa = (t \cdot x) \cdot a = t' \cdot a = t' \cdot b = (t \cdot x) \cdot b = t \cdot xb,$$

where t' = t. $x \in T$, by (β). Thus ϱ_T is a congruence relation. To see that ϱ_T is an *m*-congruence, we note that by Rule 1, $a \leq t \cdot (t \cdot a)$; this implies that

$$a \leq \bigwedge_{t \in T} t \cdot .(t \cdot a) \leq t \cdot .(t \cdot a)$$
 for any $t \in T$,

and since (by Rule 1 again), $t \cdot (t \cdot .(t \cdot a)) = t \cdot a$ it follows from Rule 2 that $t \cdot a = t \cdot (\bigwedge_{t \in T} t \cdot .(t \cdot a))$. That is, $a \varrho_T (\bigwedge_{t \in T} t \cdot .(t \cdot a))$. Clearly $\bigwedge_{t \in T} t \cdot .(t \cdot a)$ is maximum in $a \varrho_T$. Using Rule 3 twice, we see that $a \leq c$ in G implies that $t \cdot (t \cdot a) \leq t \cdot (t \cdot c)$ for any $t \in T$, and hence that $\bigwedge_{t \in T} t \cdot (t \cdot a) \leq \bigwedge_{t \in T} t \cdot (t \cdot c)$,

so that ϱ_T is indeed an *m*-congruence.

By (α), ϱ_T satisfies the conditions of Lemma 1, and so G/ϱ_T is residuated. For $a\varrho_T \in G/\varrho_T$, write $t_a = \bigwedge_{t \in T} t \cdot .(t \cdot a)$; then

$$a\varrho_T \cdot .(a\varrho_T \cdot a\varrho_T) = t_a \varrho_T \cdot .(t_a \varrho_T \cdot t_a \varrho_T) =$$

$$=(t_a \cdot (t_a \cdot t_a))\varrho_T = t_a \varrho_T \quad (\text{using } (\gamma)) = a \varrho_T,$$

and similarly $a\varrho_T = a\varrho_T$. $(a\varrho_T \cdot a\varrho_T)$, so that G/ϱ_T is self-residuated.

Conversely, let G and ϱ be as stated; write $T = T(\varrho)$. Lemma 1 implies the existence of $t \cdot a$ and $t \cdot a$, and that $t \cdot a \in T$; for the rest, it is enough to show that each $t \in T$ is both a left and a right residual of itself, and that $\bigwedge_{t \in T} t \cdot (t \cdot a) = t_a$. Let $a\varrho \in G/\varrho$; since G/ϱ is self-residuated, we have from Lemma 1 that

$$a\varrho = t_a \varrho = t_a \varrho \cdot (t_a \varrho \cdot t_a \varrho) = t_a \varrho \cdot (t_a \cdot t_a) \varrho = (t_a \cdot (t_a \cdot t_a)) \varrho.$$

Since $t_a \cdot (t_a \cdot t_a)$ is maximum in its *q*-class (Lemma 1 again), we deduce $t_a = t_a \cdot (t_a \cdot t_a)$; similarly $t_a = t_a \cdot (t_a \cdot t_a)$. By Rule 2, $t_a \le t \cdot (t \cdot t_a)$ for any $t \in T$; in particular, $t_a = t_a \cdot (t_a \cdot t_a)$. Hence $t_a = \bigwedge_{t \in T} t \cdot (t \cdot t_a)$, and since, by Lemma 1 again, $t \cdot t_a = t \cdot a$, it follows that $t_a = \bigwedge_{t \in T} t \cdot (t \cdot a)$.

By the first part of the Theorem, we now have that ϱ_T is an *m*-congruence on G such that G/ϱ_T is residuated and self-residuated, and it only remains to show that $\varrho = \varrho_T$. By Lemma 1, ϱ is finer than ϱ_T . Let $a \equiv b(\varrho_T)$; then with t_a maximum in $a\varrho$, $t_a \cdot t_a = t_a \cdot a = t_a \cdot b = t_a \cdot t_b$, (using Lemma 1), implies $t_b(t_a \cdot t_a) \leq t_a$, which in turn implies $t_b \leq t_a \cdot (t_a \cdot t_a) = t_a$, using (γ) for the last equality. Similarly $t_a \leq t_b$, whence $t_a = t_b$; that is, $a \varrho b$. We conclude that $\varrho = \varrho_T$, and the theorem is proved.

Corollary 1.1. If ρ and σ are m-congruences on a partially ordered semigroup G such that $G|\rho$ and $G|\sigma$ are residuated and self-residuated, then ρ is finer than σ if and only if $T(\sigma) \subseteq T(\rho)$.

Proof. If ρ is finer than σ , any element of G maximum in its σ -class must be maximum in its ρ -class. Conversely, if $T(\sigma) \subseteq T(\rho)$, then $a \rho b$ implies $t \cdot a = t \cdot b$ for any $t \in T(\rho)$, and therefore for any $t \in T(\sigma)$; by Theorem 1, $a \sigma b$.

Definition. An element a of a partially ordered groupoid G is called *equiresidual* if whenever one of a. x, a. x exists for $x \in G$, so does the other, and a. x = a. x. We shall denote their common value by a:x.

Corollary 1.2. Let G, ϱ be as in Theorem 1. Then G/ϱ is commutative if and only if each $t \in T(\varrho)$ is equiresidual.

Proof. Let $a\varrho, b\varrho \in G/\varrho$, and suppose that each $t \in T(\varrho)$ is equiresidual. Then $b\varrho \cdot a\varrho = (t_b \cdot a)\varrho = (t_b \cdot a)\varrho = b\varrho \cdot a\varrho$, by Lemma 1. Since G/ϱ is residuated and self-residuated, $a\varrho b\varrho \cdot a\varrho b\varrho = a\varrho b\varrho \cdot a\varrho b\varrho = (a\varrho b\varrho \cdot b\varrho) \cdot a\varrho =$ $= (a\varrho b\varrho \cdot b\varrho) \cdot a\varrho = a\varrho b\varrho \cdot b\varrho a\varrho$, using Rule 2, and so $b\varrho a\varrho (a\varrho b\varrho \cdot a\varrho b\varrho) \leq$ $\leq a\varrho b\varrho$. Hence $b\varrho a\varrho \leq a\varrho b\varrho \cdot (a\varrho b\varrho \cdot a\varrho b\varrho) = a\varrho b\varrho$. Similarly $a\varrho b\varrho \leq b\varrho a\varrho$, $\leq b\varrho a\varrho$, whence equality.

Conversely, if G/ϱ is commutative, $(t_b \cdot a)\varrho = b\varrho \cdot a\varrho = b\varrho \cdot a\varrho = (t_b \cdot a)\varrho$. Since each of $t_b \cdot a$, $t_b \cdot a$ is maximum in its ϱ -class, equality follows.

It follows from the proof of Corollary 1.2 that a residuated, self-residuated semigroup G is commutative if and only if every element of G is equiresidual.

Note 1. If each $t \in T$ is equiresidual, and if G is residuated, (α) and (γ) are enough to ensure that ϱ_T in Theorem 1 is an *m*-congruence. Condition (β) was used only to show that ϱ_T is regular on the left with respect to multiplication; but for $a, b, x \in G$ with $a \equiv b(\varrho_T)$, we now have

$$t, xa = t, xa = (t, a), x = (t, b), x = t, xb = t, xb.$$

gtelt er el

Homomorphisms of partially ordered semigroups

For a discussion of the case where T consists of a single equiresidual element in a residuated semigroup with identity, and where G/ρ_T is a group, see MAURY [6].

Note 2. Condition (γ) is not necessary if G has an identity element.

Thus in a commutative, residuated semigroup G with identity, any non-empty subset T of G defines an m-congruence ϱ_T as in Theorem 1, provided only that for any $a \in G$, $\bigwedge_{t \in T} t^{-}$. (t:a) exists. Then G/ϱ_T is a residuated semigroup with identity; the maximum element in the ϱ_T class of a is $\bigwedge_{t \in T} t:(t:a)$. In particular, if x is a fixed element of G, let $T = \{x\}$, and write $\varrho_x = \varrho_{\{x\}}$. Then

$$a\varrho_x b$$
 if and only if $x:a=x:b$,

and $T(\varrho_x) = \{\bigwedge_{x \in T} x : (x : a), a \in G\} = \{x : (x : a), a \in G\}$, so that ϱ_x is MOLINARO's congruence relation A_x (7) (see below).

Note 3. There is a difference between the two parts of Theorem 1. Given that q is an *m*-congruence such that G/q is residuated and self-residuated, it follows that $\varrho = \varrho_{T(\varrho)}$, and that for any $a \in G$, $\bigwedge_{t \in T(\varrho)} t \cdot (t \cdot a) \in T(\varrho)$. Yet given $T \subseteq G$ satisfying (α) , (β) and (γ) , to establish that ϱ_T is an *m*-congruence and that G/ϱ_T is residuated and self-residuated, it is not necessary to assume that $t_a = \bigwedge_{t \in T} t \cdot (t \cdot a)$ is in T for every $a \in G$, but only that t_a , $t_a \cdot x$ and $t_a \cdot x$ exist, for any $x \in G$. Then the set of elements maximum in their ϱ_T -classes is $T(\varrho_T) = \{\bigwedge_{t \in T} t \cdot (t \cdot a), \text{ for } a \in G\}$, of which T is a subset, in general a proper subset. Even the fact that $t : a \in T$ does not force the equality of T and $T(\varrho_T)$; in the semigroup $G = \{e, a, b, c, z\}$, with e > a > c > z, e > b > c > z and $xy = x \land y$ for all $x, y \in G$, let $T = \{e, a, b\}$. Then G is a residuated, commutative semigroup with identity e; T satisfies (α), (β)

and (y), so Theorem 1 holds. Yet $T(\varrho_T) = \{e, a, b, c\}$, which properly contains T. Hence in general the representation of ρ described in Theorem 1 is not unique.

Note 4. Although T is closed under residuation; in the sense that (β) holds, in general T is not closed under multiplication. In the example above, $a, b \in T$ but $ab = c \notin T$.

Note 5. Given ρ satisfying the conditions of Theorem 1, it follows by symmetry that $T(\varrho) = T$ satisfies:

(a)' For any $t \in T$ and for any $a, x \in G$ there exist:

$$t \cdot a, \quad t \cdot a, \quad \bigwedge_{t \in T} t \cdot (t \cdot a), \quad \left(\bigwedge_{t \in T} t \cdot (t \cdot a)\right) \cdot x \text{ and } \left(\bigwedge_{t \in T} t \cdot (t \cdot a)\right) \cdot x.$$

- (β)' For any $t \in T$ and for any $a \in G$, t^{\cdot} , $a \in T$.
- $(\gamma)'$ Each $t \in T$, and each $\bigwedge_{t \in T} t$. $(t \cdot a)$, for $a \in G$, is both a left and a right residual of itself.

Although this argument applies to $T(\varrho)$, it does not apply to any T satisfying

(α), (β) and (γ); for example, T may satisfy (α) without satisfying (α)'. If T satisfies (α), (β) and (γ) as well as (α)', (β)' and (γ)', then

$$a \rho b, t \cdot a = t \cdot b$$
 for all $t \in T, t \cdot a = t \cdot b$ for all $t \in T$,

are all equivalent.

Note 6. In [7], I. MOLINARO considered equivalence relations on a residuated semigroup S. He showed that for $t \in S$, the relation $A_t(A)$ defined by $a \equiv b(A_t)$ $(a \equiv b(A_t))$ if and only if $t \cdot a = t \cdot b$ $(t \cdot a = t \cdot b)$ is an *m*-equivalence, regular on the right (left) with respect to multiplication.

If a subset T of a partially ordered semigroup G satisfies (α) , (β) and (γ) , one may still define the relation A_t as above, since, by (α) , the residuals concerned exist; obviously A_t is an equivalence relation. Further, as in the proof of Theorem 1, A_t is regular on the right with respect to multiplication. Finally, $t \cdot x = t \cdot \{t \cdot (t \cdot x)\}$ implies that A_t is an *m*-equivalence, the maximum element in the class of $x \in G$ being $t \cdot (t \cdot x)$. By (γ) , the maximum element in the class containing t is t itself. Thus an *m*-congruence ρ on G, which satisfies the conditions of Theorem 1, may be expressed as the intersection of the *m*-equivalences A_t (tA) for $t \in T$, each A_t (tA) being regular on the right (left) with respect to multiplication.

When t is equiresidual A_t is a congruence relation, and several papers (cf. [4], [6], [7]) have been written about the situation where A_t is defined on residuated gerbiers, where by definition a gerbier is a semigroup G in which every two elements x, y have a least upper bound $x \lor y$ satisfying $a(x \lor y) = ax \lor ay$, $(x \lor y)a = xa \lor ya$ for all $x, y \in G$. If in addition every pair $x, y \in G$ have a greatest lower bound $x \land y$, G is called a lattice semigroup.

Note 7. If x and y are equiresidual elements of a residuated lattice semigroup G, then $\rho = A_x \cap A_y$ is an m-congruence on G, with

$$T(\varrho) = \{t_a = x : (x : a) \land y : (y : a), \text{ for } a \in G\}.$$

For ϱ is certainly a congruence on G, while

$$a \leq x : (x:a) \land y : (y:a) \leq x : (x:a)$$

implies $a \equiv t_a(A_x)$, by convexity, and similarly $a \equiv t_a(A_y)$, so $a \varrho t_a$. Clearly $a \leq t_a$, t_a is maximum in its ϱ -class, and $a \leq b$ implies $t_a \leq t_b$.

Example. Let $S = \{x | x \text{ is a real number and } x \leq -2\} \cup \{-1\} \cup \{0\}$, with the usual ordering. If $x \leq -2$, define xy = yx = -2 for any $y \in S$, and for x, y > -2, define $xy = yx = \min \{x, y\}$. Then S is a partially ordered semigroup without identity element. Let Z denote the integers under addition, with the usual ordering; as an ordered group, Z is residuated, with i: j=i-j for $i, j \in Z$. Let $G = S \times Z$, with co-ordinatewise multiplication and ordering. For $a, b \in S$ and a < -2, there is no $x \in S$ such that $bx \leq a$, so S is not residuated. It is easy to see that the direct product of residuated semigroups is residuated if and only if each factor is residuated, so G is not residuated. Yet for $x \in S$, 0: x=0, -1: 0 = -1, -1: x=0 if $x \leq -1, -2: 0 = -2, -2: -1 = -2, -2: x=0$ if $x \leq -2$. It follows that

$$T = \{(n, i) \mid n = -2, -1 \text{ or } 0, i \in Z\}$$

is a subset of G satisfying the first two parts of (α), (and satisfying (β)). Consider $a = (x, j) \in G$, for $x \leq -2$. For $t = (n, i) \in T$, t : (t : a) = (n, j) and so $\bigwedge t : (t : a) = (-2, j) \in T$. For a = (-1, j) and t = (0, i) or t = (-2, i), t : (t : a) = (0, j), while for t = (-1, i), t : (t : a) = (-1, j). Thus $\bigwedge t : (t : a) = (-1, j) \in T$. Similarly, for a = (0, j), $\bigwedge t : (t : a) = (0, j) \in T$. Hence T satisfies (α). Finally, for $t = (n, i) \in T$, t : (t : t) = (n, i) : (0, 0) = (n, i) = t, so T satisfies (γ). By Theorem 1, G/ϱ_T is a residuated, self-residuated semigroup. The formulae above show that the ϱ_T -classes consist of the points $\{(0, i)\}$ and $\{(-1, i)\}, i \in Z$, and the lines $\{(x, i)|x \leq -2, i \in Z\}$. If $U = \{-2, -1, 0\}$, with the usual ordering and $xy = yx = \min\{x, y\}$ for $x, y \in U$, then G/ϱ_T is isomorphic to the residuated, self-residuated semigroup $U \times Z$.

The formulae above also show that $A_{(n,i)} = A_{(n,j)}$ for any $i, j \in \mathbb{Z}$, so that $\varrho_T = A_{(0,0)} \cap A_{(-1,0)} \cap A_{(-2,0)}$; since $A_{(-1,0)} \leq A_{(0,0)}$ and $A_{(-2,0)} \leq A_{(0,0)}$, in fact $\varrho_T = A_{(-2,0)} \cap A_{(-1,0)}$, though ϱ_T is not a congruence of the A type. Thus the representation of an *m*-congruence is not in general unique.

The situation illustrated in this example is typical of that in general. One may show that if $\varrho = \varrho_T$ and $T' \subseteq T$ satisfies

$$\bigwedge_{t'\in T'} t' \cdot (t' \cdot a) = \bigwedge_{t\in T} (t \cdot (t \cdot a) \text{ for any } a \in G,$$

then $\varrho = \varrho_{T'}$, using the fact that $\varrho_{T'}$ is an *m*-congruence such that $T(\varrho_{T'}) = T(\varrho)$.

Π

A residuated semigroup G, with identity e, for which $a \cdot a = a \cdot a = e$ for every non-zero $a \in G$, is called *integrally closed*. We now investigate under what conditions a partially ordered semigroup G has an integrally closed homomorphic image, under the hypothesis that each congruence class contains a maximum element.

Let ϱ be an *m*-congruence on a partially ordered semigroup G such that G/ϱ is integrally closed. Then G/ϱ has an identity element $f\varrho$; let f be the element maximum in this class. Since G/ϱ is then self-residuated, Theorem 1 and its dual hold, and we have

(a) $f \cdot a$ and $f \cdot a$ exist for any $a \in G$.

Further, f satisfies the following conditions:

(b) f is equiresidual.

(c) f is a residual of itself.

(d) $(f:a) \cdot (f:a) = f = (f:a) \cdot (f:a)$ for any $a \in G$. In particular, f = f:f. For (b), $(f \cdot a)\varrho = f\varrho \cdot a\varrho$ (by Lemma 1) = $(a\varrho \cdot a\varrho) \cdot a\varrho$ (since G/ϱ is integrally closed) = $(a\varrho \cdot a\varrho) \cdot a\varrho = f\varrho \cdot a\varrho = (f \cdot a)\varrho$; by Lemma 1, $f \cdot a = f \cdot a$, each being maximum in its class. The third condition follows at once from Theorem 1. Finally, for any $x\varrho \in G/\varrho$, $x\varrho \cdot x\varrho = f\varrho = x\varrho \cdot x\varrho$ implies that $t_x \cdot t_x = f = t_x \cdot t_x$; then $f: a \in T(\varrho)$ implies (d). In particular, $f = (f:f) \cdot (f:f) = (f:(f:f)) \cdot f = f:f$.

We have now proved the first part of the following Theorem.

Theorem 2. A necessary and sufficient condition that there exist an m-con-

gruence ϱ on a partially ordered semigroup G such that $G|\varrho$ is integrally closed, is that G contain an element f satisfying (a), (b), (c) and (d).

For the second part, we require the following Lemma.

Lemma 2. Let G, ϱ , $T(\varrho)$ be as in Theorem 1. Then G/ϱ has an identity element if and only if there exists $f \in G$ such that $t \cdot f = t = t \cdot f$ for every $t \in T(\varrho)$.

Proof. The necessity is obvious, so let $f \in G$ be such that $t \cdot f = t = t \cdot f$ for all $t \in T(\varrho)$. Then for $a\varrho \in G/\varrho$, $a\varrho \cdot f\varrho = (t_a \cdot f)\varrho = t_a\varrho = a\varrho$ implies $f\varrho \ a\varrho \leq a\varrho$. On the other hand, $a\varrho \leq (f\varrho \ a\varrho) \cdot f\varrho = f\varrho \ a\varrho$, so that $a\varrho = f\varrho \ a\varrho$. Similarly $f\varrho$ is a right identity for G/ϱ .

Proof of sufficiency of Theorem 2. Let $f \in G$ satisfy (a), (b), (c) and (d), and consider $T = \{t = f : a | a \in G\}$; we show that T satisfies the conditions of Theorem 1. First, for any $x, a \in G$, f : a and f : ax exist, and so therefore does $(f : a) \cdot x = t \cdot x$; similarly $t \cdot x$ exists. Both these residuals are elements of T, so (β) is satisfied. Next, for any $y \in G$,

$$(f:y) \cdot .((f:y) \cdot a) = (f:y) \cdot .(f:ya) =$$

= (f:y) \cdot .((f:a) \cdot y) = f: {(f:a) \cdot y} y \ge f: (f:a).

But $f = (f:f) \cdot (f:f) = (f:(f:f)) \cdot f = f:f$, so $(f:f) \cdot \{(f:f) \cdot a\} = f:(f:a)$, whence $f:(f:a) = \bigwedge_{t \in T} t \cdot (t \cdot a) \in T$. Condition (a) follows at once. For (y), we use Rule 2 and the fact that f = f:f is equiresidual to obtain

$$t = f : a = (f : f) : a = f : fa = (f : a) \cdot f = f : af = (f : a) \cdot f.$$

By Theorem 1, $\varrho = \varrho_T$ is an *m*-congruence on *G* such that G/ϱ is residuated and self-residuated. To show that G/ϱ is integrally closed, we prove that in fact G/ϱ is a group. Since $a \varrho b$ if and only if $t_a = t_b$, and since $t_a = f: (f:a)$ (see above), we may use Rule 1 to obtain; $a \varrho b$ if and only if f: a = f:b. Then for any $t \in T$, $t \cdot f = (f:a) \cdot f = (f:f) \cdot a = f:a = t = t \cdot f$, and Lemma 2 shows that $f\varrho$ is the identity element of G/ϱ . Finally, $a(f:a) \equiv f(\varrho)$ for any $a \in G$, since $f:a(f:a) = (f:a) \cdot (f:a) = f:f$, so G/ϱ is a group, and is a fortiori integrally closed. The Theorem is proved.

Since we do not require that G is a residuated semigroup, Theorem 2 generalizes the result of MAURY [6]. One may deduce from Theorem 2 the result ([1], p. 107), of Mme. DUBREIL-JACOTIN, that any *m*-congruence ϱ on G resulting in a group image G/ϱ is necessarily defined by: $a \varrho b$ if and only if $\langle f:a \rangle = \langle f:b \rangle =$ $= \{x \in G | ax \leq f\}$, where f is the maximum element in the identity class of G/ϱ . See also L. FUCHS [3].

Note 8. It is not necessary to assume that f is idempotent. It does follow from f=f:f that $f^2 \leq f$, but it may happen that $f^2 < f$. Nevertheless f is the maximum element satisfying $x^2 \leq x$ in G, for if $x^2 \leq x$ then

$$f: x \leq f: x^2 = (f:x) \cdot x \text{ implies } (f:x)x \leq f:x,$$

so $x \le (f:x)$. (f:x) = f.

If G has an identity element e, then $e \rho f$ and $e \leq f$. We note also (cf. [1],

248

Theorem 5), that f is the maximum element of the form x. x or x x in G, for f=f:f, while f=(f:x). (f:x)=(f:(f:x)). $x \ge x$.

In the example above, the element f=(0, 0) satisfies (a), (b), (c) and (d), and G/ϱ is isomorphic to Z. Here $f^2 = f$, though G has no identity element.

Theorem 2 makes use of the fact that if a partially ordered semigroup G has an integrally closed image by means of an m-congruence ϱ , then G has a group image by means of an m-congruence. However, G may have an integrally closed image G/ϱ which is not a group. An additional condition on $T(\varrho)$ necessary (and sufficient) for G/ϱ to be integrally closed is described in the following Theorem.

Theorem 3. Let G, ρ , $T = T(\rho)$ be as in Theorem 1. Then G/ρ is integrally closed if and only if

(δ) there exists $f \in T$ such that $t \cdot t = t \cdot t = f$ for any $t \in T$.

Proof. Suppose G/ϱ integrally closed, and let f be the maximum element in the identity class of G/ϱ . Then $f\varrho = t\varrho \cdot t\varrho = (t \cdot t)\varrho$ implies $f = t \cdot t$; similarly $f = t \cdot t$. Conversely, let T satisfy (δ) . Then

$$t\varrho \cdot t\varrho = (t \cdot t)\varrho = f\varrho = t\varrho \cdot t\varrho.$$

Since G/ϱ is self-residuated,

$$t\varrho = t\varrho \cdot (t\varrho \cdot t\varrho) = t\varrho \cdot f\varrho = t\varrho \cdot (t\varrho \cdot t\varrho) = t\varrho \cdot f\varrho$$

By Lemma 2, $f\varrho$ is the identity element of G/ϱ , whence G/ϱ is integrally closed. In the example above, T satisfies (δ), for $f=(0, 0) \in T$ is such that t: t=f

for any $t \in T$. The semigroup $G/\varrho = U \times Z$ is integrally closed, but is not a group.

The referee's comments on the presentation of this paper have been very helpful, and I should like to thank him for his advice.

References

- MME. DUBREIL-JACOTIN, Sur les images homomorphes d'un demi-groupe ordonné, Bull. Soc. Math. France, 92 (1964), 101-115.
- [2] M. L. DUBREIL-JACOTIN, L. LESIEUR et R. CROISOT, Théorie des treillis, des structures algébriques ordonnées et des treillis géométriques (Paris, 1953).
- [3] L. FUCHS, On group homomorphic images of partially ordered semigroups, Acta Sci. Math., 25 (1964), 139-142.
- [4] R. MCFADDEN, Congruence relations on residuated semigroups, J. London Math. Soc., 37 (1962), 242-248.
- [5] ——— Congruence relations on residuated semigroups. II, J. London Math., Soc., 39 (1964). 150—158.
- [6] G. MAURY, Gerbiers non cummutatifs résidués, Seminaire Dubreil—Pisot (Paris), 1959—60, Fasc. 2.

[7] I. MOLINARO, Demi-groupes résidutifs, J. math. pures appl., (9) 39 (1960) 319-356.

LOUISIANA STATE UNIVERSITY, BATON ROUGE QUEEN'S UNIVERSITY, BELFAST

(Received July 4, 1966)