On homomorphisms of partially ordered semigroups

By R. McFADDEN in Belfast (N. Ireland)

In attempting to describe the order preserving homomorphisms of a partially ordered semigroup G onto a partially ordered semigroup G^{\prime}, it has proved necessary to impose conditions on G, on G^{\prime}, on the congruence ϱ determined by the homomorphism, or on a combination of these [7], [3], [1]. The approach used here is to assume that G / ϱ is residuated in such a way that each element of G / ϱ is both a left and a right residual of itself, and that the ϱ-class of each element of G contains a maximum element. Without assuming that G is residuated, as in [4], or even generalized residuated, [3], it is shown that if t is maximum in its ϱ-class, the residuals $t \cdot \cdot a$ and $t \cdot a$ exist for any $a \in G$, and that ϱ is determined by a subset of all such residuals.

When G / ϱ is a group the form of ϱ has been determined by Mme. DubreilJacotin [1]; since a group is residuated, her result may be deduced from those described here. As an extension of this, the condition that G / ϱ be a group is replaced by the condition that G / ϱ be an integrally closed semigroup, and the structure of ϱ is then determined.

\dot{I}

Let G be a partially ordered set. That is, a set in which is defined a relation \leqq, which is reflexive, antisymmetric and transitive. For $x, y \in G$, the greatest lower bound of x and y, if it exists, is denoted by $x \wedge y$, and the least upper bound, if it exists, is denoted by $x \vee y$. An equivalence relation ϱ on G is called an m-equivalence if ϱ satisfies the following conditions:
(i) for any $x \in G$, the ϱ-class x ϱ of x contains a maximum element t_{x},
(ii) for $x, y \in G, x \leqq y$ implies $t_{x} \leqq t_{y}$.

The following notation will be used:

$$
T(\varrho)=\{t \in G \mid t \text { is maximum in its } \varrho \text {-class }\} .
$$

For an equivalence relation ϱ satisfying (i), it is easily seen that (ii) is equivalent to:
(ii) $x, y \in G, x<y, x \neq y(\varrho), x^{\prime} \varrho x$ imply that there exists in G an element y^{\prime} such that y^{\prime} @ y and $x^{\prime}<y^{\prime}$. (Condition (ii)' is the property (S) discussed in $(2,5)$.)

When ϱ is an m-equivalence, the set $G / \varrho=\{x \varrho \mid x \in G\}$ may be partially ordered by:

$$
x \varrho \leqq y \varrho \text { in } G / \varrho \text { if and only if } t_{x} \leqq t_{y} \text { in } G .
$$

We use the same notation for the partial orders in G and G / ϱ; it is clear that G / ϱ
is the order homomorphic image of G, in the sense that $x \leqq y$ in G implies $x \varrho \leqq y \varrho$ in G / ϱ. Note that $x \varrho \leqq y \varrho$ in G / ϱ if and only if there exist $x^{\prime} \in x \varrho$ and $y^{\prime} \in y \varrho$ such that $x^{\prime} \leqq y^{\prime}$. Further, the ϱ-classes are convex, for if $x, y, z \in G$ with $x \leqq y \leqq z$ and $x \varrho z$, then $t_{x} \leqq t_{y} \leqq t_{z}=t_{x}$ implies $t_{x}=t_{y}$, or $x \varrho y$.

A partially ordered groupoid is a partially ordered set G on which is defined a binary operation, which will be written multiplicatively, such that for $a, b, x \in G$, $a \leqq b$ implies $a x \leqq b x$ and $x a \leqq x b$. If multiplication is associative, G is called a partially ordered semigroup. If for $a, b \in G$ the set of all $x \in G$ such that $a x \leqq b$ ($x a \leqq b$) is non-empty and contains a maximum element, this element is called the right (left) residual of b by a, and is written $b \cdot \cdot a(b \cdot a)$. If $b \cdot a(b \cdot a)$ exists for all $a, b \in G$, then G is called right (left) residuated, and if G is both right and left residuated, it is said to be residuated.

A congruence relation on a partially ordered groupoid G is an equivalence relation ϱ on G which satisfies:
(iii) for $x, y, z \in G, x \varrho y$ implies $x z \varrho y z$ and $z x \varrho z y$.

An m-congruence on G is an m-equivalence on G which satisfies (iii).
When ϱ is an m-congruence, G / ϱ is a groupoid, and a homomorphic image of G, if multiplication in G / ϱ is defined by $a \varrho \cdot b \varrho=(a b) \varrho$. Further, G / ϱ is a partially ordered groupoid with the partial order defined above, for if $\dot{x} \varrho, y \varrho, z \varrho \in G / \varrho$ with $x \varrho \leqq y \varrho$, then $t_{x} \leqq t_{y}$ implies $t_{z} t_{x} \leqq t_{z} t_{y}$, whence by (i) and (iii), $t_{z x} \leqq t_{z y}$; similarly for multiplication on the right.

Lemma 1. Let @ be an m-congruence on a partially ordered groupoid G. Then G / ϱ is right residuated if and only if $t \cdot a$ exists for every $t \in T(\varrho)$ and for every $a \in G$. In this case $t . \cdot a \in T(\varrho)(t \cdot \cdot a) \varrho=t \varrho \cdot \cdot a \varrho$, and $a^{\prime} \varrho$ a implies $t \cdot \cdot a=t \cdot{ }^{\prime} a^{\prime}$.

Proof. Sufficiency: Let $a \varrho, b \varrho \in G / \varrho$, and let $a \in a \varrho$. Since $a\left(t_{b} \cdot \cdot a\right) \leqq t_{b}$, it follows that $a \varrho\left(t_{b} \cdot a\right) \varrho \leqq b \varrho$; on the other hand, if $a \varrho x \varrho \leqq b \varrho$ then $a t_{x} \leqq t_{b}$, $t_{x} \leqq t_{b} \cdot \cdot a, x \varrho \leqq\left(t_{b} \cdot \cdot a\right) \varrho$. Hence $b \varrho .^{\cdot} a \varrho$ exists, equal to ($\left.t_{b} \cdot{ }^{\cdot} a\right) \varrho$.

Necessity: Let $a \in G, t \in T(\varrho)$. Consider t $\varrho \cdot a \varrho$ in G / ϱ, and let u be the maximum element in the class t $\varrho \cdot a \varrho$. Then $a \varrho(t \varrho \cdot a \varrho) \leqq t \varrho$ implies $a u \leqq t$; but if $\cdot a x \leqq t$ then $a \varrho x \varrho \leqq t \varrho, x \varrho \leqq t \varrho \cdot \cdot a \varrho, x \leqq t_{x} \leqq u$. Hence $t \cdot \cdot a$ exists, equal to u.

Since $t \cdot \cdot a$ is the maximum element in $t \varrho \cdot \cdot a \varrho$, it follows that if $a^{\prime} \varrho a$ then $t \cdot \cdot a^{\prime}=t \cdot \cdot \cdot a=u$.

Lemma 1 will be used as stated, but it may be noted that the following holds: the residual $b \varrho \cdot a \varrho$ exists in G / ϱ if and only if $t_{b} \cdot a$ exists for some (and hence all) $a \in a \varrho$.

It follows from Lemma 1 that if G / ϱ is right residuated, then for any $x \in G, t \cdot x$ exists for any right residual $t\left[=t_{b} \cdot a\right]$ of any element of $T(\varrho)$; for $t \in T(\varrho)$.

Residuals obey the following rules, quoted here without proof (see [2]); it is not necessary to assume that the groupoid G concerned is residuated, but only that the residuals concerned exist.

1. $b \leqq a \cdot \cdot(a \cdot . b)$, with equality if and only if $b=a \cdot x$ for some $x \in G$.
2. If G is a semigroup, $a \cdot \cdot b c=(a \cdot \cdot b) \cdot \cdot c$ and $a^{\cdot} \cdot b c=\left(a^{\cdot} \cdot c\right)^{\cdot} \cdot b$.
3. $a \leqq b$ implies $a \cdot{ }^{\cdot} c \leqq b \cdot{ }^{\cdot} c$ and $c . \cdot b \leqq c . \cdot a$.

The existence of an identity element e in G, together with Rule 1 , implies that $\dot{a}=a \cdot(a \cdot a)=a \cdot \cdot(a \cdot a)$ for any $a \in G$, since $a=a^{\cdot} . e=a \cdot \cdot e$. However, even
if G does not have an identity, it may still be true that $a=a^{\cdot} \cdot(a \cdot \cdot a)=a \cdot{ }^{\cdot}\left(a^{\cdot} \cdot a\right)$ for any $a \in G$; this is the case if and only if every element of G is both a left and a right residual of itself, in the sense that for every $a \in G$ there exists $x \in G$ such that $a=a \cdot x(a=a \cdot \cdot x)$. We shall call self-residuated a groupoid having this property (5).

Theorem 1. Let G be a partially ordered semigroup, and let T be a non-empty subset of G satisfying, the following conditions:
(α) For any $t \in T$ and for any $a, x \in G$ there exist:

$$
t \cdot a, \quad t \cdot a, \quad \bigwedge_{t \in T} t \cdot(t \cdot \cdot a), \quad\left(\bigwedge_{t \in T} t \cdot(t \cdot a)\right) \cdot \dot{x}, \quad\left(\bigwedge_{t \in T} t \cdot(t \cdot a)\right) \cdot x
$$

(β) For any $t \in T$ and for any $a \in G, t . \cdot a \in T$.
(γ) Each $t \in T$, and each $\bigwedge_{t \in T} t \cdot(t \cdot a)$, for $a \in G$, is both a left and a right residual of itself.

Define the relation. ϱ_{T} on G by:

$$
a \dot{\varrho}_{T} b \text { if and only if } t \cdot \cdot a=t \cdot \cdot b \text { for every } t \in T .
$$

Then ϱ_{T} is an m-congruence on G, and G / ϱ_{T} is residuated and self-residuated.
Conversely, if ϱ is an m-congruence on G such that G / ϱ is residuated and selfresiduated, then $T(\varrho)$ satisfies $(\alpha),(\beta)$ and (γ), and $\varrho=\varrho_{T(\rho)}$.

Proof. Clearly ϱ_{T} is an equivalence relation. For $a, x \in G$ and $t \in T$, $t . \cdot a \in T$ (by (β)), and this implies, by (α), that $(t \cdot \cdot a) \cdot \cdot x$ exists; by (α) again, $t \cdot \cdot a x$ exists, and then $(t \cdot a) \cdot \cdot x=t \cdot a x$, each being the maximum $z \in G$ such that $a x z \leqq t$. (It is here that we use the fact that G is a semigroup). Hence if $b \in G$ and $a \varrho_{T} b$, then

$$
\begin{gathered}
t \cdot \cdot a x=(t \cdot \cdot a) \cdot \cdot x=(t \cdot \cdot b) \cdot \cdot x=t \cdot \cdot b x \\
t \cdot x a=(t \cdot \cdot x) \cdot \cdot a=t^{\prime} \cdot \cdot a=t^{\prime} \cdot \cdot b=(t \cdot \cdot x) \cdot b=t \cdot x b
\end{gathered}
$$

where $t^{\prime}=t . \cdot x \in T$, by (β). Thus ϱ_{T} is a congruence relation. To see that ϱ_{T} is an m-congruence, we note that by Rule $1, a \leqq t \cdot(t \cdot \cdot a)$; this implies that

$$
a \leqq \bigwedge_{t \in T} t \cdot(t \cdot \cdot a) \leqq t \cdot(t \cdot \cdot a) \quad \text { for any } \quad t \in T
$$

and since (by Rule 1 again), $t \cdot \cdot\left(t^{\cdot} \cdot(t \cdot \cdot a)\right)=t \cdot \cdot a$ it follows from Rule 2 that $t . a=t \cdot\left(\bigwedge_{i \in T} t \cdot(t, \because a)\right)$. That is, $a \varrho_{T}\left(\bigwedge_{t \in T} t \cdot(t \cdot a)\right)$. Clearly $\bigwedge_{t \in T} t \cdot(t \cdot a)$ is maximum in $a \varrho_{T}$. Using Rule 3 twice, we see that $a \leqq c$ in G implies that $t \cdot(t \cdot a) \leqq t \cdot(t \cdot \cdot c)$ for any $t \in T$, and hence that $\bigwedge_{t \in T} t \cdot(t \cdot a) \leqq \bigwedge_{t \in T} t \cdot(t \cdot c)$, so that ϱ_{T} is indeed an m-congruence.

By $(\alpha), \varrho_{T}$ satisfies the conditions of Lemma 1 , and so G / ϱ_{T} is residuated. For $a \varrho_{T} \in G / \varrho_{T}$, write $t_{a}=\bigwedge_{t \in T} t \cdot(t \cdot a)$; then

$$
\begin{gathered}
a \varrho_{T} \cdot \cdot\left(a \varrho_{T} \cdot a \varrho_{T}\right)=t_{a} \varrho_{T} \cdot\left(t_{a} \varrho_{T} \cdot t_{a} \varrho_{T}\right)= \\
=\left(t_{a} \cdot \cdot\left(t_{a} \cdot t_{a}\right)\right) \varrho_{T}=t_{a} \varrho_{T} \quad(\text { using }(\gamma))=a \varrho_{\dot{T}},
\end{gathered}
$$

and similarly $a \varrho_{T}=a \varrho_{T} \cdot \cdot\left(a \varrho_{T} \cdot \cdot a \varrho_{T}\right)$, so that G / ϱ_{T}, is self-residuated.
${ }^{1} \because$. Conversély, let G and ϱ be as stated; write $T=T(\varrho)$. Lemma 1 implies the existence of $t \cdot \cdot a$ and $t \cdot a$, and that $t . \cdot a \in T$; for the rest, it is enough to show that each $t \in T$ is both a left and a right residual of itself, and that $\bigwedge_{t \in T} t \cdot(t \cdot \cdot a)=t_{a}$.

Let $a \varrho \in G / \varrho$; since G / ϱ is self-residuated, we have from Lemma 1 that

$$
a \varrho=t_{a} \varrho=t_{a} \varrho \cdot\left(t_{a} \varrho \cdot t_{a} \varrho\right)=t_{a} \varrho \cdot\left(t_{a} \cdot t_{a}\right) \varrho=\left(t_{a} \cdot\left(t_{a} \cdot t_{a}\right)\right) \varrho .
$$

Since $t_{a} \cdot\left(t_{a} \cdot t_{a}\right)$ is maximum in its ϱ-class (Lemma 1 again), we deduce $t_{a}=t_{a}$. $\cdot\left(t_{a} \cdot \cdot t_{a}\right)$; similarly $t_{a}=t_{a} \cdot \cdot\left(t_{a} \cdot \cdot t_{a}\right)$. By Rule $2, t_{a} \leqq t \cdot .\left(t \cdot \cdot t_{a}\right)$ for any $t \in T$; in particular, $t_{a}=t_{a} \cdot\left(t_{a} \cdot t_{a}\right)$. Hence $t_{a}=\bigwedge_{t \in T} t \cdot\left(t \cdot \cdot t_{a}\right)$, and since, by Lemma 1 again, $t \cdot t_{a}=t \cdot \cdot a$, it follows that $t_{a}=\bigwedge_{t \in T} t \cdot .(t \cdot a)$.
\therefore By the first part of the Theorem, we now have that ϱ_{T} is an m-congruence on G such that G / ϱ_{T} is residuated and self-residuated, and it only remains to show that $\varrho=\varrho_{T}$. By Lemma $1, \varrho$ is finer than ϱ_{T}. Let $a \equiv b\left(\varrho_{T}\right)$; then with t_{a} maximum in $a \varrho, t_{a} \cdot t_{a}=t_{a} \cdot \cdot a=t_{a} \cdot b=t_{a} \cdot t_{b}$, (using Lemma 1), implies $t_{b}\left(t_{a} \cdot \cdot t_{a}\right) \leqq t_{a}$, which in turn implies $t_{b} \leqq t_{a} \cdot\left(t_{a} \cdot t_{a}\right)=t_{a}$, using (γ) for the last equality. Similarly $t_{a} \leqq t_{b}$, whence $t_{a}=t_{b}$; that is, $a \varrho \dot{b}$. We conclude that $\varrho=\varrho_{T}$, and the theorem is proved.

Corollary 1.1. If ϱ and σ are m-congruences on a partially ordered semigroup G such that G / ϱ and G / σ are residuated and self-residuated, then ϱ is finer than σ if and only if $T(\sigma) \subseteq T(\varrho)$.
\therefore Proof. If ϱ is finer than σ, any element of \dot{G} maximum in its σ-class must be maximum in its ϱ-class. Conversely, if $T(\sigma) \subseteq T(\varrho)$, then $a \varrho b$ implies $t \cdot a=t . \cdot b$ for any $t \in T(\varrho)$, and therefore for any $t \in T(\sigma)$; by Theorem 1 , $a \sigma b$.

Definition. An element a of a partially ordered groupoid G is called equiresidual if whenever one of $a \cdot \cdot x ; a \cdot x$ exists for $x \in G$, so does the other, and $a \cdot x=a \cdot x$. We shall denote their common value by $a: x$.

Corollary 1.2. Let G, ϱ be as in Theorem. 1. Then G/e is commutative if and only if each $t \in T$.(@) is equiresidual.

Proof. Let $a \varrho, b \varrho \in G / \varrho$, and suppose that each $t \in T(\varrho)$ is equiresidual. Then $b \varrho \cdot \cdot a \varrho=\left(t_{b} \cdot \cdot a\right) \varrho=\left(t_{b} \cdot a\right) \varrho=b \varrho \cdot a \varrho$, by Lemma 1. Since G / ϱ is residuated and self-residuated, $a \varrho b \varrho \cdot a \varrho b \varrho=a \varrho b \varrho \cdot a \varrho b \varrho=(a \varrho b \varrho \cdot b \varrho) \cdot a \varrho=$ $\doteq(a \varrho b \varrho \cdot b \varrho) \cdot \cdot a \varrho=a \varrho b \varrho \cdot \cdot b \varrho a \varrho$, using Rule 2 , and so $b \varrho a \varrho(a \varrho b \varrho \cdot \cdot a \varrho b \varrho) \leqq$ $\leqq a \varrho b \varrho$. Hence $b \varrho a \varrho \leqq a \varrho b \varrho \cdot(a \varrho b \varrho \cdot a \varrho b \varrho)=a \varrho b \varrho$. Similarly $a \varrho b \varrho \leqq b \varrho a \varrho$, $\leqq b \varrho a \varrho$, whence equality.

Conversely, if G / ϱ is commutative, $\left(t_{b} \cdot \cdot a\right) \varrho=b \varrho \cdot \cdot a \varrho=b \varrho \cdot a \varrho=\left(t_{b} \cdot a\right) \varrho$. Since each of $t_{b} \cdot a, t_{b} \cdot a$ is maximum in its ϱ-class, equality follows.

It follows from the proof of Corollary 1.2 that a residuated, self-residuated semigroup G is commutative if and only if every element of G is equiresidual.

Note 1. If each $t \in T$ is equiresidual, and if G is residuated, (α) and (γ) are enough to ensure that ϱ_{T} in Theorem 1 is an m-congruence. Condition (β) was used only to show that ϱ_{T} is regular on the left with respect to multiplication; but for $a, b, x \in G$ with $a \equiv b\left(\varrho_{T}\right)$, we now have

$$
t . \cdot x a=t^{\cdot}, x a=\left(t^{\cdot}, a\right)^{\cdot}, x=\left(t^{\cdot}, b\right)^{\cdot}, x=t^{\cdot}, x b=t . \cdot x b
$$

For a discussion of the case where T consists of a single equiresidual element in a residuated semigroup with identity, and where G / ϱ_{T} is a group, see MaURY. [6].

Note 2. Condition (γ) is not necessary if G has an identity element.
Thus in a commutative, residuated semigroup G with identity, any non-empty subset T of G defines an m-congruence ϱ_{T} as in Theorem 1, provided only that for any $a \in G, \bigwedge_{t \in T} t^{\cdot} \cdot(t: a)$ exists. Then G / ϱ_{T} is a residuated semigroup with identity; the maximum element in the ϱ_{T} class of a is $\bigwedge_{t \in T} t:(t: a)$. In particular, if x is a fixed element of G, let $T=\{x\}$, and write $\varrho_{x}=\varrho_{\{x\}}$. Then

$$
a \varrho_{x} b \text { if and only if } x: a=x: b
$$

and $T\left(\varrho_{x}\right)=\left\{\bigwedge_{x \in T} x:(x: a), a \in G\right\}=\{x:(x: a), a \in G\}$, so that ϱ_{x} is Molinaro's congruence relation A_{x} (7) (see below).

Note 3. There is a difference between the two parts of Theorem 1. Given that ϱ is an m-congruence such that G / ϱ is residuated and self-residuated, it follows that $\varrho=\varrho_{T(\varrho)}$, and that for, any $a \in G, \bigwedge_{t \in T(o)} t \cdot(t \cdot a) \in T(\varrho)$., Yet given $T \subseteq G$ satisfying $(\alpha),(\beta)$ and (γ), to establish that $\varrho_{T} \in T(o)$ is an m-congruence and that G / ϱ_{T} is residuated and self-residuated, it is not necessary to assume that $t_{a}=\bigwedge_{t \in T} t^{\cdot} .(t \cdot \cdot a)$ is in T for every $a \in G$, but only that $t_{a}, t_{a} \cdot x$ and $t_{a} . x x$ exist, for any $x \in G$. Then the set of elements maximum in their ϱ_{T}-classes is $T\left(\varrho_{T}\right)=\left\{\wedge_{t \in T} t \cdot(t . \cdot a)\right.$, for $\left.a \in G\right\}$, of which T is a subset, in general a proper subset. Even the fact that $t: a \in T$ does not force the equality of T and $T\left(\varrho_{T}\right)$; in the semigroup $G=\{e, a, b, c, z\}$, with $e>a>c>z, e>b>c>z$ and $x y=x \wedge y$ for all $x, y \in G$, let $T=\{e, a, b\}$. Then G is a residuated, commutative semigroup with identity $e ; T$ satisfies $(\alpha),(\beta)$ and (γ), so Theorem 1 holds. Yet $T\left(\varrho_{T}\right)=\{e, a, b, c\}$, which properly contains T. Hence in general the representation of ϱ described in Theorem 1 is nót unique.

Note 4. Although T is closed under residuation; in the sense that (β) holds, in general T is not closed under multiplication. In the example above, $a, b \in T$ but $a b=c \notin T$.

Note 5. Given ϱ satisfying the conditions of Theorem 1, it follows by symmetry that $T(\varrho)=T$ satisfies:
$(\alpha)^{\prime}$ For any $t \in T$ and for any $a, x \in G$ there exist:

$$
t \cdot a, \quad t \cdot a, \bigwedge_{t \in T} t \cdot(t \cdot a), \quad\left(\bigwedge_{t \in T} t \cdot \cdot(t \cdot a)\right) \cdot x \text { and }\left(\bigwedge_{t \in T} t \cdot \cdot(t \cdot a)\right) \cdot{ }^{\vdots} x
$$

$(\beta)^{\prime}$ For any $t \in T$ and for any $a \in G, t . a \in T$.
$(\gamma)^{\prime}$ Each $t \in T$, and each $\bigwedge_{t \in T} t \cdot(t \cdot a)$, for $a \in G$, is both a left and a right residual of itself.
Although this argument applies to $T(\varrho)$, it does not apply to any T satisfying
$(\alpha),(\beta)$ and (γ); for example, T may satisfy (α) without satisfying $(\alpha)^{\prime}$. If T satisfies $(\alpha),(\beta)$ and (γ) as well as $(\alpha)^{\prime},(\beta)^{\prime}$ and $(\gamma)^{\prime}$, then

$$
a \varrho b, t \cdot a=t \cdot b \quad \text { for all } t \in T, t \cdot a=t \cdot b \quad \text { for all } t \in T
$$

are all equivalent.
Note 6. In [7], I. Molinaro considered equivalence relations on a residuated semigroup S. He showed that for $t \in S$, the relation $A_{t}\left({ }_{t} A\right)$ defined by $a \equiv b\left(A_{t}\right)$ $(a \equiv b(, A))$ if and only if $t \cdot \cdot a=t \cdot b\left(t^{\cdot} \cdot a=t^{\cdot} \cdot b\right)$ is an m-equivalence, regular on the right (left) with respect to multiplication.

If a subset T of a partially ordered semigroup G satisfies $(\alpha),(\beta)$ and (γ), one may still define the relation A_{t} as above, since, by (α), the residuals concerned exist; obviously A_{t} is an equivalence relation. Further, as in the proof of Theorem 1, A_{t} is regular on the right with respect to multiplication. Finally, $t \cdot \cdot x=t \cdot \cdot\{t \cdot .(t \cdot x)\}$ implies that $A_{\text {i }}$ is an m-equivalence, the maximum element in the class of $x \in G$ being $t \cdot(t \cdot x)$. By (γ), the maximum element in the class containing t is t itself. Thus an m-congruence ϱ on G, which satisfies the conditions of Theorem 1, may be expressed as the intersection of the m-equivalences $A_{t}\left({ }_{t} A\right)$ for $t \in T$, each $A_{t}\left({ }_{t} A\right)$ being regular on the right (left) with respect to multiplication.

When t is equiresidual A_{t} is a congruence relation, and several papers (cf. [4], [6], [7]) have been written about the situation where A_{i} is defined on residuated gerbiers, where by definition a gerbier is a semigroup G in which every two elements x, y have a least upper bound $x \vee y$ satisfying $a(x \vee y)=a x \vee a y,(x \vee y) a=x a \vee y a$ for all $x, y \in G$. If in addition every pair $x, y \in G$ have a greatest lower bound $x \wedge y, G$ is called a lattice semigroup.

Note 7. If x and y are equiresidual elements of a residuated lattice semigroup G, then $\varrho=A_{x} \cap A_{y}$ is an m-congruence on G, with

$$
T(\varrho)=\left\{t_{a}=x:(x: a) \wedge y:(y: a), \text { for } a \in G\right\} .
$$

For ϱ is certainly a congruence on G, while

$$
a \leqq x:(x: a) \wedge y:(y: a) \leqq x:(x: a)
$$

implies $a \equiv t_{a}\left(A_{x}\right)$, by convexity, and similarly $a \equiv t_{a}\left(A_{y}\right)$, so $a \varrho t_{a}$. Clearly $a \leqq t_{a}, t_{a}$ is maximum in its ϱ-class, and $a \leqq b$ implies $t_{a} \leqq t_{b}$.

Example. Let $S=\{x \mid x$ is a real number and $x \leqq-2\} \cup\{-1\} \cup\{0\}$, with the usual ordering. If $x \leqq-2$, define $x y=y x=-2$ for any $y \in S$, and for $x, y>-2$, define $x y=y x=\min \{x, y\}$. Then S is a partially ordered semigroup without identity element. Let Z denote the integers under addition, with the usual ordering; as an ordered group, Z is residuated, with $i: j=i-j$ for $i, j \in Z$. Let $G=S \times Z$, with co-ordinatewise multiplication and ordering. For $a, b \in S$ and $a<-2$, there is no $x \in S$ such that $b x \leqq a$, so S is not residuated. It is easy to see that the direct product of residuated semigroups is residuated if and only if each factor is residuated, so G is not residuated. Yet for $x \in S, 0: x=0,-1: 0=-1,-1: x=0$ if $x \leqq-1,-2: 0=-2,-2:-1=-2,-2: x=0$ if $x \leqq-2$. It follows that

$$
T=\{(n, i) \mid n=-2,-1 \quad \text { or } \quad 0, i \in Z\}
$$

is a subset of G satisfying the first two parts of (α), (and satisfying (β)). Consider $a=(x, j) \in G$, for $x \leqq-2$. For $t=(n, i) \in T, t:(t: a)=(n, j)$ and so $\bigwedge_{t \in T} t:(t: a)=$ $=(-2, j) \in T$. For $a=(-1, j)$ and $t=(0, i)$ or $t=(-2, i), t:(t: a)=(0, j)$, while for $t=(-1, i), t:(t: a)=(-1, j)$. Thus $\bigwedge_{t \in T} t:(t: a)=(-1, j) \in T$. Similarly, for $a=(0, j), \bigwedge_{t \in T} t:(t: a)=(0, j) \in T$. Hence T satisfies (α). Finally, for $t=(n, i) \in T$, $t:(t: t)=(n, i):(0,0)=(n, i)=t$, so T satisfies (γ). By Theorem $1, G / \varrho_{T}$ is a residuated, self-residuated semigroup. The formulae above show that the ϱ_{T}-classes consist of the points $\{(0, i)\}$ and $\{(-1, i)\}, i \in Z$, and the lines $\{(x, i) \mid x \leqq-2, i \in Z\}$. If $U=\{-2,-1,0\}$, with the usual ordering and $x y=y x=\min \{x, y\}$ for $x, y \in U$, then G / ϱ_{T} is isomorphic to the residuated, self-residuated semigroup $U \times Z$.

The formulae above also show that $A_{(n, i)}=A_{(n, j)}$ for any $i, j \in Z$, so that $\varrho_{T}=A_{(0,0)} \cap A_{(-1,0)} \cap A_{(-2,0)} ;$ since $A_{(-1,0)} \leqq A_{(0,0)}$ and $A_{(-2,0)} \leqq A_{(0,0)}$, in fact $\varrho_{T}=A_{(-2,0)} \cap A_{(-1,0)}$, though ϱ_{T} is not a congruence of the A type. Thus the representation of an m-congruence is not in general unique.

The situation illustrated in this example is typical of that in general. One may show that if $\varrho=\varrho_{T}$ and $T^{\prime} \subseteq T$ satisfies

$$
\bigwedge_{i^{\prime} \in T^{\prime}} t^{\prime} \cdot\left(t^{\prime} \cdot a\right)=\bigwedge_{t \in T}(t \cdot(t \cdot a) \quad \text { for any } a \in G
$$

then $\varrho=\varrho_{T^{\prime}}$, using the fact that $\varrho_{T^{\prime}}$ is an m-congruence such that $T\left(\varrho_{T^{\prime}}\right)=T(\varrho)$.

II

A. residuated semigroup G, with identity e, for which $a \cdot a=a \cdot a=e$ for every non-zero $a \in G$, is called integrally closed. We now investigate under what conditions a partially ordered semigroup G has an integrally closed homomorphic image, under the hypothesis that each congruence class contains a maximum element.

Let ϱ be an m-congruence on a partially ordered semigroup G such that G / ϱ is integrally closed. Then G / ϱ has an identity element $f \varrho$; let f be the element maximum in this class. Since G / ϱ is then self-residuated, Theorem 1 and its dual hold, and we have
(a) $f . \cdot a$ and $f \cdot a$ exist for any $a \in G$.

Further, f satisfies the following conditions:
(b) f is equiresidual.
(c) f is a residual of itself.
(d) $(f: a) . \cdot(f: a)=f=(f: a) \cdot(f: a)$ for any $a \in G$. In particular, $f=f: f$. For (b), $(f \cdot \cdot a) \varrho=f \varrho \cdot \cdot a \varrho$ (by Lemma 1$)=(a \varrho \cdot a \varrho) . a \varrho$ (since G / ϱ is integrally closed $)=(a \varrho \cdot \cdot a \varrho) \cdot a \varrho=f \varrho \cdot a \varrho=(f \cdot a) \varrho$; by Lemma $1, f^{\cdot} \cdot a=f \cdot \cdot a$, each being maximum in its class. The third condition follows at once from Theorem 1. Finally, for any $x \varrho \in G / \varrho, x \varrho \cdot x \varrho=f \varrho=x \varrho \cdot x \varrho$ implies that $t_{x} \cdot t_{x}=f=t_{x} \cdot, t_{x}$; then $f: a \in T(\varrho)$ implies (d). In particular, $f=(f: f) . \cdot(f: f)=(f:(f: f)) \cdot f=f: f$.

We have now proved the first part of the following Theorem.
Theorem 2. A necessary and sufficient condition that there exist an m-con-
gruence ϱ on a partially ordered semigroup G such that G/@ is integrally closed, is that G contain an element f satisfying (a), (b), (c) and (d).

For the second part, we require the following Lemma.
Lemma 2. Let $G, \varrho, T(\varrho)$ be as in Theorem 1. Then G / ϱ has an identity element if and only if there exists $f \in G$ such that $t \cdot f=t=t \cdot f$ for every $t \in T(\varrho)$.

Proof. The necessity is obvious, so let $f \in G$ be such that $t \cdot f=t=t \cdot f$ for all $t \in T(\varrho)$. Then for $a \varrho \in G / \varrho, a \varrho \cdot f \varrho=\left(t_{a} \cdot f\right) \varrho=t_{a} \varrho=a \varrho$ implies $f \varrho a \varrho \leqq a \varrho$. On the other hand, $a \varrho \leqq(f \varrho a \varrho) \cdot f \varrho=f \varrho a \varrho$, so that $a \varrho=f \varrho a \varrho$. Similarly $f \varrho$ is a right identity for G / ϱ.

Proof of sufficiency of Theorem 2. Let $f \in G$ satisfy (a), (b), (c) and (d), and consider $T=\{t=f: a \mid a \in G\}$; we show that T satisfies the conditions of Theorem 1. First, for any $x, a \in G, f: a$ and $f: a x$ exist, and so therefore does ($f: a$). $\cdot x=t \cdot \cdot x$; similarly $t \cdot . x$ exists. Both these residuals are elements of T, so (β) is satisfied. Next, for any $y \in G$,

$$
\begin{gathered}
(f: y) \cdot \cdot((f: y) \cdot \cdot a)=(f: y) \cdot(f: y a)= \\
=(f: y) \cdot \cdot((f: a) \cdot y)=f:\left\{(f: a)^{\cdot} \cdot y\right\} y \geqq f:(f: a) .
\end{gathered}
$$

But $f=(f: f) \cdot \cdot(f: f)=(f:(f: f)) \cdot f=f: f$, so $(f: f) \cdot\{(f: f) \cdot a\}=f:(f: a)$, whence $f:(f: a)=\bigwedge_{t \in T} t \cdot(t \cdot a) \in T$. Condition (α) follows at once. For (γ), we use Rule 2 and the fact that $f=f: f$ is equiresidual to obtain

$$
t=f: a=(f: f): a=f: f a=(f: a) \cdot f=f: a f=(f: a) \cdot f .
$$

By Theorem 1, $\varrho=\varrho_{T}$ is an m-congruence on G such that G / ϱ is residuated and self-residuated. To show that G / ϱ is integrally closed, we prove that in fact G / ϱ is a group. Since $a \varrho b$ if and only if $t_{a}=t_{b}$, and since $t_{a}=f:(f: a)$ (see above), we may use Rule 1 to obtain; $a \varrho b$ if and only if $f: a=f: b$. Then for any $t \in T, t \cdot f=(f: a) \cdot f=(f: f) \cdot . a=f: a=t=t \cdot f$, and Lemma 2 shows that $f \varrho$ is the identity element of G / ϱ. Finally, $a(f: a) \equiv f(\varrho)$ for any $a \in G$, since $f: a(f: a)=(f: a) . \cdot(f: a)=f: f$, so G / ϱ is a group, and is a fortiori integrally closed. The Theorem is proved.

Since we do not require that G is a residuated semigroup, Theorem 2 generalizes the result of Madry [6]. One may deduce from Theorem 2 the result ([1], p. 107), of Mme. Dubreil-Jacotin, that any m-congruence ϱ on G resulting in a group image G / ϱ is necessarily defined by: $a \varrho b$ if and only if $\langle f: a\rangle=\langle f: b\rangle=$ $=\{x \in G \mid a x \leqq f\}$, where f is the maximum element in the identity class of G / ϱ. See also L. Fuchs [3].

Note 8. It is not necessary to assume that f is idempotent. It does follow from $f=f: f$ that $f^{2} \leqq f$, but it may happen that $f^{2}<f$. Nevertheless f is the maximum element satisfying $x^{2} \leqq x$ in G, for if $x^{2} \leqq x$ then

$$
f: x \leqq f: x^{2}=(f: x) \cdot \cdot x \text { implies }(f: x) x \leqq f: x,
$$

so $x \leqq(f: x) \cdot .(f: x)=f$.
If G has an identity element e, then $e \varrho f$ and $e \leqq f$. We note also (cf. [1],

Theorem 5), that f is the maximum element of the form $x \cdot{ }^{\cdot} x$ or $x \cdot x$ in G, for $f=f: f$, while $f=(f: x) \cdot \cdot(f: x)=(f:(f: x)) \cdot x \geqq x \cdot . x$.

In the example above, the element $f=(0,0)$ satisfies (a), (b), (c) and (d), and G / ϱ is isomorphic to Z. Here $f^{2}=f$, though G has no identity element.

Theorem 2 makes use of the fact that if a partially ordered semigroup G has an integrally closed image by means of an m-congruence ϱ, then G has a group image by means of an m-congruence. However, G may have an integrally closed image G / ϱ which is not a group. An additional condition on $T(\varrho)$ necessary (and sufficient) for G / ϱ to be integrally closed is described in the following Theorem.

Theorem 3. Let $G, \varrho, T=T(\varrho)$ be as in Theorem 1. Then G / ϱ is integrally closed if and only if
(δ) there exists $f \in T$ such that $t \cdot \cdot t=t \cdot t=f$ for any $t \in T$.
Proof. Suppose G / ϱ integrally closed, and let f be the maximum element in the identity class of G / ϱ. Then $f \varrho=t \varrho \cdot \cdot t \varrho=\left(t \cdot{ }^{\cdot} t\right) \varrho$ implies $f=t \cdot{ }^{\cdot} t$; similarly $f=t \cdot t$. Conversely, let T satisfy (δ). Then

$$
t \varrho \cdot \cdot t \varrho=(t \cdot \cdot t) \varrho=f \varrho=t \varrho \cdot t \varrho .
$$

Since G / ϱ is self-residuated,

$$
t \varrho=t \varrho \cdot \cdot(t \varrho \cdot t \varrho)=t \varrho \cdot f \varrho=t \varrho \cdot \cdot(t \varrho \cdot \cdot t \varrho)=t \varrho \cdot f \varrho \cdot
$$

By Lemma $2, f \varrho$ is the identity element of G / ϱ, whence G / ϱ is integrally closed.
In the example above, T satisfies (δ), for $f=(0,0) \in T$ is such that $t: t=f$ for any $t \in T$. The semigroup $G / \varrho=U \times Z$ is integrally closed, but is not a group.

The referee's comments on the presentation of this paper have been very helpful, and I should like to thank him for his advice.

References

[1] Mme. Dubreil-Jacotin, Sur les images homomorphes d'un demi-groupe ordonné, Bull. Soc. Math. France, 92 (1964), 101-115.
[2] M. L. Dubreil-Jacotin, L. Lesieur et R. Croisot, Théorie des treillis, des structures algébriques ordonnées et des treillis géométriques (Paris, 1953).
[3] L. Fuchs, On group homomorphic images of partially ordered semigroups, Acta Sci. Math., 25 (1964), 139-142.
[4] R. McFadden, Congruence relations on residuated semigroups, J. London Math. Soc., 37 (1962), 242-248.
[5] - $\quad 150$ Congruence relations on residuated semigroups. II, J. London Math., Soc., 39 (1964). 150-158.
[6] G. Maury, Gerbiers non cummutatifs résidués, Seminaire Dubreil—Pisot (Paris), 1959-60, Fasc. 2.
[7] I. Molinaro, Demi-groupes résidutifs, J. math. pures appl., (9) 39 (1960) 319-356.

LOUISIANA STATE UNIVERSITY, BATON ROUGE
QUEEN'S UNIVERSITY, BELFAST

