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Extensive investigations in lattice theory [2—5] and logic [6—8] regarding 
the quantum logic of G . BIRKHOFF and J . VON NEUMANN [1] have induced many 
authors to call orthomodular lattices "generalized logic" [9]. KUNSEMULLER [6] 
¡pointed out that in quantum logic the relation of implication defined by 

a1ub = I 

s not transitive (a1- =orthocomplement of a, 7 = greatest element). The same 
holds also for orthomodular lattices in general. For example, the lattice with the 
diagram 

is orthomodular and a x u b = I, b1vc = I, but a1 uc^I in it. 
KOTAS [7] has analysed the relations of implications defined on orthocomple-

mented modular lattices and characterized quantum logic on this basis by logical 
postulates. From the point of view of quantum logic the transitivity of the above 
established "classical" relation of implication is an interesting question. We havb 
noticed that this property is characteristic to classical logic. Obviously it is the least 
we may demand of a logic L, and this we must demand [10], that L should be a 
lattice with unique orthocomplements. ROSE [11] has proved that such lattices 
coincide with orthomodular lattices. 

We will prove that a lattice with unique orthocomplements is a Boolean al-
gebra (i. e. a generalized logic is classical) if and only if the classical relation of 
implication defined in it is transitive. 

D e f i n i t i o n 1. A complemented lattice L is called orthocomplemented if the 
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complementation is an involutory dualautomorphism in L, i. e. if to every x£L 
there exists an x x 6 L, such that 

x n x - 1 = 0 , Ï U X 1 = I , X S J I ^ / S ï 1 , x x x = x. 

D e f i n i t i o n 2. An element x of an orthocomplemented lattice L is said to be 
orthogonal to y£L, in symbols x±y, if x ë j 1 . 

The relation of orthogonality is evidently symmetrical. 

D e f i n i t i o n 3. An orthocomplemented lattice L is called uniquely ortho-
complemented if each x 6 L has at most one complement orthogonal to x. 

L e m m a 1. The De Morgan laws hold in every orthocomplemented lattice L, i.e. 

( x n j i ) i = x i u i y i and (xuj>) x = x x n y 1 

for each x, y£ L. 

P r o o f , x , y ^ X U J =>• x x , y1 S (xuJ>)X => X1 ny1 & ( x u j ) 1 

and 

x1, yx S xx ny1- =>• x-1--1-, y-1--1- â (x-1 n j 1 ) 1 =• x 1 - 1 U J ) 1 1 s (xX n J-1)-1-

=>• XUJ> S (xX nj'-1-)-1- (x x n j» 1 ) - 1 1 £ (x<jy)± => Xx n j i 1 £ ( x u j ) x , 

whence ( x n j ) x = x x uy-1-. The other statement follows by duality. 

L e m m a 2. In every lattice L with unique orthocomplements we have 

a^b => a = bn(bx u a ) , a,b£L. 

P r o o f . Let a^b. Then b1- and according to Lemma 1 we get 

a n [ i n ( i i u f l ) ] i = a n [ i » i u ( i n a 1 ) ] ^ a n [ a 1 u ( b n a - 1 ) ] = a n a 1 = 0 , 

a u [b n (¿>x u a)]1- = a u [èx u (b n a1-)] = (a u b1-) u ( a x n b) 

= (a1 n b)x u (a x nb) — I, 

[fen^Ofl)]1 = 6xu(6nax) S ûxu(£>nax) = a1-. 

Hence [¿>n(6 x ua) ] x is a complement of a and also orthogonal to a, and so by 
the assumption is equal to u 1 . 

L e m m a 3. If L is a lattice with unique orthocomplements, then 

* <~>J> = y n [ ( x u y)M u x] 
for each x,y € L. 

P r o o f . Applying Lemma 2 for a = x, b = xuy, we get 

y n [(x u y ) 1 u x] = |> n (x u j)] n [(x u y)x u x] = 

— y r \ { ( x u j ) n [(xu j ) x ux]} = j n x . 
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T h e o r e m . Let L be a lattice with unique orthocomplements. If 

( 1 ) ( J I U I F = / , 7 I U Z = / ) = » - X I U Z = / , 

for each x, y, z£ L, then L is distributive (and thus is a Boolean algebra). 

P r o o f . First we prove that (1) implies 

(2) x1- 'oy — I =• x . S j for each x,y£L. 

Let x x u y = I, and 
z= (x n y) u [x-1 n (x.u 

Then 
y±vjz=y± u {(xn y)u [x-1- n ( x u y ) ] } = 

= (x n y) U {y J- u [x 1 n (x u y)]} = 

= (x n y) u {y n [x u (x u y) }X, 

by Lemma 1, hence, by Lemma 3, 

j-L u z = ( x n j ) u ( x n > ' ) J - = /. 

Thus from (1) we obtain x x u z = /, i. e. 

/ = x i u z = x i u { ( x n j i ) u [ x - L n ( x u i ) ' ) ] } = 

= ( i n j ) u {x-1- u ^ n ^ u ^ l ^ ^ n j i j u s t 1 , 
But 

( x n r f n x 1 = ( x n x - L ) n j = 0n> ' = 0, 
and 

Consequently, xny is a complement of x± and is orthogonal to it, which means that 

x n j = xJ--L = x , 
i. e. 

x^y. 
Thus (2) is proved. 

Let us take now a,b£L arbitrarily and let x = b, y = a1- u ( a n b ) . Then 

xxKjy = I, 
since 

x i u j i = J i u [a1- u (a n 6)] = (bx u a-1) u ( a n f t ) = ( a n A ) i u ( a n 6 ) = / . 

Thus, according to (2), x S j which means 

(3) i ^ s i u ( a n i > ) 

for each a,b£L. Similarly, if x = c , y = a x u ( a n c ) , where a,c£L are taken 
arbitrarily, then 

(4) c S f l J - u ^ n c). 
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By making use of (3) and (4), we get 

an(buc)San {[a-1 u ( a n 6 ) ] u [ a L u ( a n c ) ] } = 

= f l n { ( f l J - u a J - ) u [ ( a n i i ) u ( a n i ; ) ] } = 

= a r \ {a-1- u [ ( a n i ) u ( a n c ) ] } . 

Here, the last term is equal to ( a n i ) u ( a n c) by Lemma 2 (since a S ( a n i i ) u ( a n c ) ) . 
Therefore a n ( i u c ) s ( a n i ) j u ( a n c ) . 

The opposite inequality, and the converse of the Theorem is well known. Cf. 
for instance [12]. 
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