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Introduction 

In this paper we will discuss two separate yet related problems. In § 1 we aisk 
under what conditions would the minimal unitary dilations of a positive definite 
contraction valued function on the LCA groups be unitary equivalent to the sum 
of many copies of the regular representation of the group. In § 2 we study the 
relationships between positive definiteness, von Neumann condition and Heinz 
condition for certain contraction valued functions in case of ordered groups. We are 
only interested in complex Hilbert spaces. We denote them by H, K, etc.; B(H) 
(or B(K)) will be the algebra of bounded linear operators on H (or K). All topolo-
gical spaces will be Hausdorff, and the notation LP(X, Q, /<, C) for the set X, 
field Q of subsets of X, measure fi and the complex field C will be as on p. 121 of [2]. 

§ 1 

To study the first problem we make use of a new construction of the minimal 
unitary dilation of positive definite contraction valued function on LCA groups. 
For this purpose we need the following notations. 

1. 1. D e f i n i t i o n . Let E(-) be a bounded additive positive 5(//)-valued set 
function defined on a field of subsets of a set X. If 

r m n 

2h,XDl and V(X)= Zh'jXD-
i=i ¡ = I j= I 1 

are simple functions where a ; 's are complex numbers, hh hj are in H and Xa> denotes 
the characteristic function of the set co in Q, and At, Dt, D) are in £2, then we 
define 

Jf(x)(E(dx)<P(x), <*>'(*)) = 2 «i(£(« H fl Z>; fl D'j)hi, hj) 
CO J* I 

whenever co is in Q. It is easily verified that this is independent of the representations 
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of / , <P, Now suppose / is a bounded measurable complex Valued function 
and <P' are bounded measurable functions on X with values in a finite-dimensional 
subspace Hi of H, choose a sequence f„ of simple complex valued functions con-
verging to / uniformly on X, and sequences i>„, 4>'„ of simple measurable -valued 
functions converging uniformly on X to 0 and <P' respectively. For co in Q we then 
define 

j'f(x)(E(dx)<P(x), <P'(x)) = lim ffn(x)(£(dx)<P„(x), <P'n(x)). 
(a aj 

With standard argument it can be shown that this is independent of the choices 
of H<P„, <P'„. Furthermore, 

• Jf(x)(E(dx)$(x), = f (E(dx)f(x)4>(x), 4>'(x)) = 
CO CO 

= f(E(dx)$(x),M *'(*))• 
CO 

If we denote f (E(dx)<P(x), (P'ix)) by (4>, <?') then is a positive definite 
x 

Hermitian form. 
Using the above notations we now give a new proof for LCA groups, to a 

theorem of SZ.-NAGY which we need later. 

1. 2. T h e o r e m . Every weakly continuous positive definite B(H)-valued function 
{Ty} on a LCA group r with T0 = I (0 is the identity of F) has a minimal unitary 
dilation {Uy, K}. 

P r o o f . Let G be the dual group of f and E{-) the l?(//)-valued set function on 
the Borel sets of G such that Ty=f (x, y)E(dx) [9]. Let D be the set of all //-valued 

G 

bounded measurable functions with finite-dimensional range. If ¥ are in D, 
define (<t>, V) to be f (E(dx)$(x), ¥(x)). Thus D is a linear manifold with (<P, V) 

G 
as a positive definite scalar product (see Definition 1. 1). Denote by N the linear 
subspace of D consisting of those <P for which <P) = 0. Denote DjN by K0 and 
the coset Q + N in K0 by [0]. Then <[<Z>], [¥]) = ( $ , V) is well-defined on K0 so 
that K0 is an inner product space and its completion K is a Hilbert space. Define 
IJy on K0 by Uy[<P] = [,//] where ¥{x) = (x, y')<P(x). It is easily verified that the map 
is independent of the choice of coset representatives and is in fact an isometry of 
K0 onto itself. Thus Uy extends by continuity to a unitary transformation of K 
(which we also denote by Uy). Evidently {Uy} is a unitary representation of F. 
Given any two elements V in D let Ht be the finite-dimensional subspace of 
H generated, by the ranges of <P and '/' and let {e,, ..., e„} be an orthonormal basis 
of H\. Since (E(-)ei, ej) is a finite regular Borel measure, so we have 

f (x, y)(E(dx)0(x), >F(xj) = 1 J(x, y)(<Hx), et)(\F(x), ej){E(dx)ei, 
g ¡>^'=1 a 



Positive definite contraction valued functions 291 

which is a continuous function of y for [<P], [ f ] in K 0 . By the uniform boundedness 
of {Uy}, {Uy} is weakly continuous on f . Embed H in K by mapping h in H to 

in K0 where = h for all x in G. Obviously this is a linear and isometric 
embedding. For arbitrary h, h' in H we have 

(tM<PJ, [*»<]) = / (*> y){E(dx)Kh') = (Tyh, K) 
a 

so PUyP=Ty where P is the projection from K onto H. Finally a standard argument 
would show that the elements of the form Uy[<P^ where h in H generate K, so 
{Uy, K) is a minimal unitary dilation. 

For the remainder of this section we shall assume H is separable. If f is 
cr-compact (in particular if l~ is the integer group or the group of real numbers) this 
is only a slight restriction since in this case H is an orthogonal direct sum of separable 
subspaces each of which is invariant under Ty for all y in T as we shall see later 
(Remark 1. 8). 

Suppose that H is separable. Denote the dual group of T by G and the Haar 
measure of G by a. Suppose there exists a positive B(H)-\alued function M(-) 
on G such that for any Borel set co of G and any. h, h' in H we have 

(E(co)h,h')= f(M(x)h, h')a(dx). 

Set H(x) = M(x)H=M(xyi2H. Then x^H(x) is a field of Hilbert spaces on G. 
Define the unitary operator Sy on the direct integral space 

® 

H = J H(x)a(dx) 

by (Sy£)(x) = (x, where £ is in H. We first establish 

1. 3. T h e o r e m . {H, Sy} is unitarily equivalent to the minimal unitary dilation 
{Uy, K} of {Ty, H}. 

P r o o f . We use the same notations as in the proof of theorem 1.2. Define 
W0 on D into H by (fV0<P)(x) = M(x)ll2<P(x) for in D. It is easy to verify 
that 

f ||M(xy'2<P(x)\[2o(dx) = (<Z>, 
G 

so W0 is a linear isometry map from D into H. We claim that the range of W0 is 
dense in H. Let {gf(-)| / = 1, 2, ...} be a measurable field of orthonormal bases, so 

mi 
8i(x) = 2c)(x){M(xyi2ej) 

j= i 
where c'j(x) are complex valued measurable functions. Suppose £ in H and e > 0 

k 
are given. Then £(*)= 2 ai(x)gi(x) where a ;(x) = (£(x), gi(x)) is measurable. 
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By the monotone convergence theorem we can find an integer k such that if we 
OO 

define £l(x)= 2 at (*)& (*) then 
¡ = i 

or ||£ — < e / 2 . A similar argument shows that there is a positive constant C 
such that if we define £,2{x) = £,l{x) whenever |cj(x)| S C and |oc;(x)|^C for j^mi 
and i ^ k and we define ¿;2(x) = 0 otherwise, then \\^2 — ¿IJ <e /2 so — 

k mi 
jttfow define rj (x) = 2 (X) • 2 c j (x) ei if and t] (x) = 0 if £2(x) = 0. It 

¡ = i j=I 
follows easily that t\ is in D and fV0t] = £2 so W0D is dense in H. Now W0 induces 
an isometry of K0 onto a dense subspace of H which extends by continuity to a 
unitary map W of K onto H and clearly WUy = Sy W so W is a unitary equivalence 
between two representations of T. 

Now we are going to answer partly the first problem mentioned earlier. 

1.4. T h e o r e m . Under the hypotheses of 1.3, the minimal unitary dilation 
of {Ty, H} is unitarily equivalent to the sum of d0 copies of the regular representation 
of t i f f dim (H{x)) — d0 for almost all x with respect to a. 

P r o o f . Assume that dim (//(x)) = d0 for almost all x. Without loss of generality 
we may assume dim (H(x)) = d0 for all x. Let {¿-¡(Ol « = 1, 2, ...} be a measurable 
field of orthonormal bases for H{x). We map £ in H to the element (a l s a 2 , ...) 
in the direct sum of d0 copies of L2(G, Q, a, C) such that <xi(x)=(£(x), gi(x)). It can 
be verified that this gives a unitary equivalence between {H, Sy} and the sum of 
d0 copies of regular representation of T. By 1. 3 it now follows that the minimal 
unitary dilation of {T y , H} is unitarily equivalent to the sum of d0 copies of regular 
representation of r . For the converse now assume that the minimal unitary dilation 
of {Ty, H} is unitarily equivalent to the sum of d0 copies of the regular representation 
of r. Since H is assumed to be separable, if {Uy, K) denotes the minimal unitary 
dilation it follows that K is countably generated. That is there is a countable subset 
of K such that the closed subspace invariant under all Uy generated by this countable 
set is the whole K. Therefore the regular representation of f is countably generated 
and thus G is c-compact and its Haar measure a is tr-finite. For a measurable set 
co in G define A(co) on H by A(co)£(x) = x01(x)£(x). (y_<a is the characteristic function 
of to.) It is readily seen that A{-) is the spectral family given by STONE'S theorem 
for the representation {£,,} of f , so A(co) is in the weakly closed algebra of operators 
generated by the {S1,,}. Now G may be decomposed into disjoint measurable sets 
cop for /? = 1,2, ... such that d i m ( H ( x ) ) =p if x is in cop. Denote A(cop) by Ap. 
Define the representation {Vy p) as follows: Vy p acts in the space L2(cop, QP, <r, C) 
(where Qp is the c-field of Borel subsets of OJP) and is such that (V7P0(x) = (x, y)C(x). 
The argument used in the first part of the proof will also show that the representation 
{ApSyAp} on the range o f i s unitarily equivalent to the sum of p copies of the regular 
representation {Vy p}. Now since G is c-finite, so is <op, hence there exists a nowhere 
vanishing L2 function on cop and we conclude that the representation {Vy,p} is 
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cyclic, and thus locally simple (see p. 42 of [3]). Thus corresponding to the decom-
position 

l=-A„ + Ax+A2 + ... 
we obtain a decomposition 

{ ^ } = ~ { F ^ } + l { F y , 1 } + 2 { F V ; 2 } + . . . . 

Since the ^¡'s are in the weak closure of the {5"y}, they are in the center of the algebra 
of intertwining operators, so this decomposition is the unique decomposition 
of {£,,} (see p. 40 of [3]). It follows that {Sy} is unitarily equivalent to the sum of 
d0 copies of a locally simple representation only if the only non-trivial' term in this 
decomposition is the one for p = d0. Thus dim (H(x)) = d0 for almost all x. 

The following results are the applications of this theorem to some special 
cases. The first is a result of SZ.-NAGY and FOIA§ (see p. 125 of [8]) but we give 
a different proof here. 

1.5. T h e o r e m . Let T be a completely non-unitary contraction of H and suppose 
the intersection of the spectrum of T with the unit circle is a set of measure zero. 
Define T„ = T" for HSO and Tn = T*(-~n) for n<0 and let {£/„} be its minimal unitary 
dilation. Then {£/„} is unitarily equivalent to the sum of d0 copies of the regular repre-
sentation of the integer group where d0 = dim ( / - T*T)H= dim ( I - TT*)H. 

P r o o f . Denote the intersection of the spectrum of T with the unit circle by 
COQ . Since co0 has Lebesgue measure zero, by Theorem 2 of [7] we have E(co0) = 0 
where E(•) is the 3(//)-valued set function on the circle such that 

2 71 

T„ = f ein9E(dO). 
o 

For z = re'9 (r < 1) define 

M(z)= 2 rMe-imeTm = Re[(I+zT)(I-zT)-1]. 
m= — «« 

It is obvious that ( M ( z ) h , h') is the Poisson integral of the measure (E(-)h , h') for 
h, h' in H. If F is any closed interval on the unit circle which does not intersect co0, 
we notice that M(z) has a harmonic extension Re [(/ + zT)(I—zT)~'] to a neigh-
borhood of F, denote this extension by M(z). Using FATOU'S theorem it then follows 
that if co is any measurable subset of F, 

(E((o)h,h')= f(M(z)h, h')a(dz) for h, h' in H. 
a} 

If we extend ]H(z) to the whole circle by defining M(z) = O if z is in co0, then from 
the fact that E(co0) = 0 it follows that [E{m)h, h')= J(M(z)h, h')x(dz) for any 

03 

measurable set co on the circle. Now for z on the circle but not in co0, we have 

M(z) = (/—zT1*)-1 (/— T*T)(I— zT)-1 = (/— zT)~l(J— 7T*)(/—zT*)_ 1 . 

Thus dim M(zjH=dim ( I - T*T)H=dim (I-TT*)H=d0 for almost all z in 
the circle group. Using theorem 1. 4 we then have the desired conclusion. 
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1. 6. T h e o r e m . Let T be the group of real numbers and {Tt} a weakly conti-
nuous positive definite B(H)-valued function on r with T0=I. Assume that 
lim sup ||2^111/4 < 1 - Then the minimal unitary dilation {£/,} of {r,} is unitarily equiv-

alent to the sum of d0 copies of the regular representation of T where d0 S dim H. 

P r o o f . Define M(z) by 

(M(z)h,h') = J (e~iz'Tth, h') dt. 

Then for 
| Imz| < — log(lim sup Hr,!!"') 

R-> + OO 

M(z) exists and is a bounded operator, a positive operator if z is a real number 
and (M(z)h , h') is an analytic function for every h, h' in H. If G is the dual group 
of r (that is G is the group of real numbers) and if £ ( • ) is the 5(//)-valued set 

oo 

function on G such that T,= Jeis'E(ds), from the inversion theorem on Fourier 
— oo 

transform we have (E((o)h, h') — J ( M(s)li, h')ds for any Borel set a of G 

and h, h' in H. We claim that dim M{s)H is a constant for almost all real numbers 
with respect to Lebesgue measure. In fact let s0 be a real number and n an integer 
such that dim M(s0)H^n. Select elements /z,, h2, ..., hn in H so that M(s0)h{, 
M(s0)h2, ...,M(s0)h„ are linearly independent vectors. Consider the Gram deter-
minant of M(s)h{ , M{s)h2, ...,M{s)h„. This is a real analytic function of s which 
does not vanish at s0, hence it vanishes for at most a countable set. Thus M(s)ht, ... 
...,M(s)h„ are linearly independent except for at most countably many values 
of s. From the separability of H it follows that dim M(s)H is constant almost every-
where, and the conclusion follows from Theorem 1.4. 

Instead of analytic functions on the real line we may consider analytic functions 
on the circle. So we get 

1. 7: T h e o r e m . Let f be the group of integers and {Tn} a positive definite 
B{H)-valued function on T such that T0=I. Assume that lim sup || 7 J "" < 1. Then 
the unitary dilation of {T„} is unitarily equivalent to the sum of d0 copies of the regular 
representation of the integer group. 

1. 8. R e m a r k . If f is (7-compact, many of above discussions can be applied 
for non-separable H. If {T,,} is positive definite with {C/y} its minimal unitary 
dilation, observe that since {Uy} is strongly continuous, so is {Ty}. Thus if h is 
an element of H, the set of {Tyh\ y£T} is a c-compact subset of the metric space 
H, hence separable and so generate a separable subspace. From this we conclude by a 
standard argument that the smallest subspace containing h and invariant under 
all Ty is separable. Using ZORN'S Lemma and standard argument we can show 
that H may be written as a direct sum of subspaces Hx each of which is separable 
and invariant under all Ty. If TytX denotes the restriction of Ty to Ha and if {U./ a} 
is the minimal unitary dilation of {Ty a}, it is easily verified that the minimal uni-
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tary dilation of {Ty} is the direct sum of {£/,,_,}. Thus the results obtained in. sepa-
rable case are also true for general H provided that r is <r-compact. In particular, 
1.5, 1.6, 1. 7 can be extended to the non-separable case in this manner. 

§2 

In 1951 VON NEUMANN proved that if T is a contraction, and for every analytic 

function f(z)= 2 anZn such that 2 k l < C X 5 and | / ( z ) | S l for | z | S l , we define 
n=0 «=o 

f(T) to be 2 anT", then we have | | / ( R ) | | S i . Later E . HEINZ proved that if instead 
n — 0 

of | / ( z ) | s l , we require that R e / ( z ) £ 0 for | z | s l , then for any h in H we have 
Re (f(T)h, From this result HEINZ could give an easy proof of the von 
Neumann theorem. In [6] SZ.-NAGY showed that the von Neumann and Heinz 
theorems follow easily from the existence of unitary dilations. Here we shall exhibit 
the relationship between the positive definiteness, the von Neumann theorem and 
the Heinz theorem in a more general setting. As both theorems depend on positive 
elements of the integer group, we shall only consider ordered LCA groups from 
now on. If r is an ordered group, f + will denote the set of all non-negative elements 
of r , I the cr-field of Borel sets of f and n the Haar measure of T. 

2. 1. D e f i n i t i o n . Let At denote the set of all functions ^ in I , q, C) 
such that £(y) = 0 for y <0 . With the L'-norm and the convolution as multiplication 
A1 is a Banach algebra. (See p. 380 of [1].) Define a norm ||| ||| on At by | | | i | | l '= 
= || | |U where \ is the Fourier transform of £ in A1 and || ||„ is the sup norm. Denote 
the completion of A1 in the norm ||| ||| by A0. 

2.2. D e f i n i t i o n . Let &~={Ty} be a weakly continuous contraction valued 
function on r such that T0 = I and T-y = T*. For £ in At define £({Ty}) to be 
J £ (y) Ty q (dy) where the integral is taken in the weak sense. It is clear that 

2. 3. R e m a r k . Let {ry} be the same as in 2. 2 and in addition positive definite. 
Let E(-) be the S(7/)-valued set function defined on the dual group G of r such 
that Ty = J(x, 

y)E(dx). For any bounded Borel measurable complex valued 

function <p on G, J(p(x)E(dx) defines an element of B{H) which will be denoted G 
by <P(-9~)- If {Uy, K} is the minimal unitary dilation of {Ty, H) and F(-) is the 
spectral measure of {Uy}, then the map from (p to cp(%) = J (p(x)F(dx) is ahomo-G 
morphism of the 5*-aIgebra of bounded Borel functions on G (under pointwise 
multiplication) into the 5*-algebra B(K). If P is the projection from K onto H, 
so that PUyP = Ty and PF{-)P = E{-), then <p{$-)=P<p(W)P. If £ is in At, I is 

complex valued bounded measurable (in fact continuous) so = f%(x)E(dx) 

is defined. From FUBINI'S theorem it follows that = £({Ty}). 
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2.4. D e f i n i t i o n . Let {ry} be a weakly continuous contraction valued 
function on r such that T0-I and T_y — T*. We say that {Jy} satisfies the von 
Neumann condition if { in implies ||£({ry})||js |||{||| = | | | | | . . We say that {Ty} 
satisfies the Heinz condition if £ in A, and Re for all x in G imply that 
Re (£{{Ty))h, A) s 0 for all h in H. 

2. 5. P r o p o s i t i o n . If {ry} is a B(H)-valued weakly continuous positive de-
finite function on r with T0 = I, then {ry} satisfies both the von Neumann condition 
and the Heinz condition. 

P r o o f . Let E(-) be the i?(//)-valued set function on the dual group G such 
that Ty=J(x, y)E(dx). Suppose {Uy, K} is the minimal unitary dilation of {Ty, H} 

G 

and F(-) is the spectral measure of {t/y}. For an arbitrary element £ in A j , we have 

f i ( x ) F ( d x ) ||III. (see p. 900 of [2]). Thus 

fi(x)E(dx) =£ llliu, .so | | « ({ r , } ) | | s | | | i | | | 

(see 2. 3). Hence {7"y} satisfies the von Neumann condition. Next suppose that 
Re | ( x ) ^ 0 for all x in G. For h in H we have 

Re(£({T y })h , h) = Re fl(x)(E(dx)h, h) = / R e l(x){E(dx)h, h) 
a c 

which is non-negative because R e | ( x ) ^ 0 and E(co) is a positive operator for 
every co in Q (u-field of Borel subsets of G). Thus {T"y} satisfies the Heinz condition. 

2. 6. P r o p o s i t i o n . Let {Ty} be a weakly continuous contraction valued function 
on r such that T0 = I and T_y — T*. If {Ty} satifies the Heinz condition, {ry} is 
positive definite. 

P r o o f . For £ in Ll(r, I , Q, C) define £ by ((y)=£( — y) for y in F. It is easily 
verified that ( i*£) (v) = ( C * £ ) ( - ? ) • Define £ by 

f(y) = 2(C*£)(y) if y > 0 , 
£(y) = 0 if y < 0 , and 
£(0 ) = ( £ * 0 ( 0 ) . 

It is readily seen that '<£ is in At and for x in G, Re | (x) = ((x)l(x) = \t(x)\2 ^ 0 . 
Using Heinz condition we get Re (£({Ty})h, h) S 0 for every h in H. Thus 
(Re £({Ty})h, h)^0 where 

R^({Ty}) = H2[£({Ty}) + £({Ty}y] = 

= 1/2 / { W T ) + £ ( y ) \ T y Q ( d y ) = f (£*£Ky)TyQ(dy). 
r r 

(All integrals are taken in the weak sense.) Therefore J (C^0(y)(Tyh, h) q (d.y) ^ 0, 
r 

that is the bounded continuous function (T yh, h) on F is an integral positive definite 
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function and so equal locally almost everywhere to a continuous positive definite 
function (see p. 397 of [4]). Thus from the continuity of (T yh, h) it follows that it 
is positive definite [9]. Hence {ry} is positive definite. 

2 .7 . P r o p o s i t i o n . Let {ry} be a weakly continuous contraction valued 
function on r with T0=I and T_y — T*. If {77,} satisfies the von Neumann condition, . 
{Ty} is positive definite. 

P r o o f . Denote by a the map from £ in Ax to £({Ty}). Clearly a is linear and 
norm decreasing. Since {ry} satisfies the von Neumann condition [|a(^)|| S | | |^| | | = 
= IlilU. Thus a extends by continuity to A0. For h in H we define the linear func-
tional h on A0 by HIT]) = (A(t])h, h) for T] in AQ. Since a is norm decreasing, ||/i|| S||/z||2. 
Thus by the Hahn—Banach and Riesz representation theorems there is a measure 

Hh on the Borel sets of G such that for £ in A i, h(dx) and nh has total 
G 

variation at most \\h\\2. We claim that nh(G) = \\h\\2 f rom which it will follow that 
Hh is a positive measure. Since T is ordered, it is metric (see p. 196 of [5]) and thus 
satisfies the first axiom of countability. Choose a decreasing sequence {A^} of 
compact neighborhoods of 0 in r which form a neighborhoods base at 0. Define <pk by 

<pk(y) = Ue(Nknr+) if y£Nknr+, 
<Pk(y) = 0 otherwise. 

Clearly (pk£Al and \\<pk\\ = I. Furthermore it is readily verified that (pk(x) — 1 for 
every x in G as k — Thus by the dominated convergence theorem, 

lim J Qk(x)nh(dx) = n„(G). 
G 

On the other hand, 

lim f<pk(x)nh(dx) = lim f (pk(y)(Tyh,h)e(dy) = \\h\\2. 
G R 

Thus fih is a positive measure. Since it is clear that for £ in Au 

f £(y)(Tyh, h)g(dy) = / ^y)My)Q(dy) 
r r 

so we conclude from the continuity of (T y h, h) and fih(y) that they are equal for 
y in r + . Since T_y = T* and M - y) = fl,,(y) it follows that (Tyh, h) = fih(y) for all 
y in r. Thus (Tyh, h) is the Fourier—Stieltjes transform of the positive measure 
fih, so is positive definite, that is, {Ty} itself is positive definite. 

2. 8. T h e o r e m . Let {Ty} be a weakly continuous contraction valued function 
on r such that T0 = I and T_y = T*. Then the following three statements are equiv-
alent: (1) {ry} is positive definite. (2) {Ty} satisfies the von Neumann condition. 
(3) {7^} satisfies the Heinz condition. 

P r o o f . Propositions 2 .5 , 2 .6 , 2 .7 . 
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