On the spectrum of unitary ϱ-dilations

By E. DURSZT in Szeged

We shall consider operators T in a Hilbert space \mathfrak{H}, which admit unitary ϱ-dilations $(\varrho>0)$, i. e. unitary operators U defined on some Hilbert space $\mathfrak{K}(\supset \mathfrak{S})$, such that

$$
\begin{equation*}
T^{n} \varphi=\varrho P U^{n} \varphi \quad(\varphi \in \mathfrak{S} ; n=1,2, \ldots) \tag{1}
\end{equation*}
$$

where P denotes the orthogonal projection of $\mathfrak{\Omega}$ onto \mathfrak{G}. Obviously, (1) implies

$$
\begin{equation*}
T^{* n} \varphi=\varrho P U^{-n} \varphi . \tag{*}
\end{equation*}
$$

B. Sz.-NAGY and C. Foiaş have characterized the operators T which have unitary o-dilations; see [4].

We shall denote by $\sigma(U)$ the spectrum of U. In the case $\varrho=1, \sigma(U)$ has been studied extensively, cf. in particular [1], [2], [3]. The purpose of this paper is to study the spectral properties of U for arbitrary $\varrho>0$.

First we recall some definitions, familiar in the case $\varrho=1$, but which extend immediately to the general case too.

The unitary ϱ-dilation U of T is minimal, if

$$
\begin{equation*}
\mathcal{S}=\bigvee_{n=-\infty}^{\infty} U^{n} \mathfrak{G} . \tag{2}
\end{equation*}
$$

In this case U is uniquely determined up to isomorphism. (The proof is similar to that given in the special case $\varrho=1$, cf. [$*$].)

Let $E_{\hat{\theta}}(0 \leqq \vartheta \leqq 2 \pi)$ be the spectral function of U. We say that the spectral measure of U is absolutely continuous if, for every vectors $\varphi, \psi \in \mathcal{F}$, the function ($E_{\theta} \varphi, \psi$) of ϑ is absolutely continuous on $0 \leqq \vartheta \leqq 2 \pi$, i. e., if there exists a function $f_{\varphi, \psi}(\vartheta) \in L(0,2 \pi)$ such that

$$
\begin{equation*}
\left(E_{\vartheta} \varphi, \psi\right)=\int_{0}^{\vartheta} f_{\varphi, \psi}(\tau) d \tau \tag{3}
\end{equation*}
$$

T is called completely non-unitary, if there exists no vector $\varphi \in \mathfrak{H}, \varphi \neq 0$, for which

$$
\ldots=\left\|T^{* 2} \varphi\right\|=\left\|T^{*} \varphi\right\|=\|\varphi\|=\|T \varphi\|=\left\|T^{2} \varphi\right\|=\ldots
$$

We shall use the following notations:

$$
\begin{gather*}
\mathfrak{L}_{n}=U^{n} \overline{(U-T) \mathfrak{S}}, \quad \mathfrak{L}_{n}^{*}=U^{* n} \overline{\left(U^{*}-T^{*}\right) \mathfrak{S}} \quad(n=0, \pm 1, \ldots), \\
\mathfrak{L}=\bigvee_{n=-\infty}^{\infty} \mathfrak{L}_{n}, \quad \mathfrak{L}^{*}=\bigvee_{n=-\infty}^{\infty} \mathfrak{Q}_{n}^{*} .
\end{gather*}
$$

We denote by Q the orthogonal projection of \mathfrak{E} onto $\bigvee_{n=1}^{\infty} \mathfrak{L}_{n}$, and by Q^{\prime} the orthogonal projection of \mathfrak{Q}^{*} onto $\bigvee_{n=1}^{\infty} \mathfrak{Q}_{n}^{*}$. Further, we set

$$
\begin{array}{ll}
\mathfrak{B}=\overline{Q \mathfrak{I}_{0}}, & \mathfrak{B}^{*}=\overline{Q^{\prime} \mathfrak{R}_{0}^{*}}, \tag{6}\\
\mathfrak{M}=\overline{(I-Q) \mathfrak{L}_{0}}, & \mathfrak{B}^{*}=\overline{\left(I-Q^{\prime}\right) \mathfrak{R}_{0}^{*}} .
\end{array}
$$

Lemma 1. $\mathfrak{L}_{n} \perp \mathfrak{L}_{k}$ and $\mathfrak{L}_{n}^{*} \perp \mathfrak{L}_{k}^{*}$ if $n-k \geqq 2$.
Proof. (4) shows that it sufficies to prove

$$
\left.\begin{array}{l}
\left(U^{m}(U-T) \varphi,(U-T) \psi\right)=0 \tag{8}\\
\left(U^{* m}\left(U^{*}-T^{*}\right) \varphi,\left(U^{*}-T^{*}\right) \psi\right)=0
\end{array}\right\} \quad \text { if } \quad m=2,3, \ldots
$$

where φ and ψ are arbitrary vectors in \mathfrak{F}.
In order to prove (8), we use (1):

$$
\left(U^{m}(U-T) \varphi,(U-T) \psi\right)=\left(U^{m} \varphi, \psi\right)-\left(U^{m-1} T \varphi, \psi\right)-\left(U^{m+1} \varphi, T \psi\right)+\left(U^{m} T \varphi, T \psi\right)=
$$

$$
=\left(\frac{1}{\varrho} T^{m} \varphi, \psi\right)-\left(\frac{1}{\varrho} T^{m-1} T \varphi, \psi\right)-\left(\frac{1}{\varrho} T^{m+1} \varphi, T \psi\right)+\left(\frac{1}{\varrho} T^{m} T \varphi, T \psi\right)=0 .
$$

Similarly, using (1^{*}) we get (8^{*}) as follows:

$$
\begin{gathered}
\left(U^{* m}\left(U^{*}-T^{*}\right) \varphi,\left(U^{*}-T^{*}\right) \psi\right)= \\
=\left(U^{-m} \varphi, \psi\right)-\left(U^{-m+1} T^{*} \varphi, \psi\right)-\left(U^{-m-1} \varphi, T^{*} \psi\right)+\left(U^{-m} T^{*} \varphi, T^{*} \psi\right)= \\
=\left(\frac{1}{\varrho} T^{* m} \varphi, \psi\right)-\left(\frac{1}{\varrho} T^{* m-1} T^{*} \varphi, \psi\right)-\left(\frac{1}{\varrho} T^{* m+1} \varphi, T^{*} \psi\right)+\left(\frac{1}{\varrho} T^{* m} T^{*} \varphi, T^{*} \psi\right)=0 .
\end{gathered}
$$

Lemma 2. $\mathfrak{B}, \mathfrak{B}^{*}, \mathfrak{W}$ and \mathfrak{B}^{*} are wandering subspaces for U. I. e., if $n \neq k$ then

$$
\begin{array}{cc}
U^{n} \mathfrak{B} \perp U^{k} \mathfrak{B}, & U^{n} \mathfrak{B}^{*} \perp U^{k} \mathfrak{B}^{*} \\
U^{n} \mathfrak{B} \perp U^{k} \mathfrak{M}, & U^{n} \mathfrak{B}^{*} \perp U^{k} \mathfrak{B}^{*}
\end{array}
$$

Proof. It suffices to prove that

$$
\begin{equation*}
U^{m} Q \mathfrak{I}_{0} \perp Q \mathfrak{Q}_{0}, \quad U^{m} Q^{\prime} \mathfrak{Q}_{0}^{*} \perp Q^{\prime} \mathfrak{Q}_{0}^{*}, \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
U^{m}(I-Q) \mathfrak{I}_{0} \perp(I-Q) \mathfrak{L}_{0}, \quad U^{m}\left(I-Q^{\prime}\right) \mathfrak{L}_{0}^{*} \perp\left(I-Q^{\prime}\right) \mathfrak{L}_{0}^{*} . \tag{10}
\end{equation*}
$$

for $m=1,2, \ldots$
In order to prove (9) choose arbitrary vectors $\varphi=Q \varphi^{\prime}$ and $\psi=Q \psi^{\prime}\left(\varphi^{\prime}, \psi^{\prime} \in \mathfrak{I}_{0}\right)$. We have

$$
\left(U^{m} \varphi, \psi\right)=\left(U^{m} Q \varphi^{\prime}, Q \psi^{\prime}\right)=\left(Q U^{m} Q \varphi^{\prime}, \psi^{\prime}\right)
$$

Now, $Q \varphi^{\prime}$ is an element of $\bigvee_{n=1}^{\infty} \mathcal{Q}_{n}$, hence $Q U^{m} Q \varphi^{\prime}$ is an element of $\bigvee_{n=m+1}^{\infty} \mathcal{L}_{n}$. Thus, by Lemma 1, the last inner product equals 0 . This implies the first part of (9), and we can prove its second part in a similar way.

Now, every vector in $(I-Q) \mathfrak{I}_{0}$ has the form $\varphi=\varphi^{\prime}-\varphi^{\prime \prime}$, where $\varphi^{\prime} \in \mathfrak{I}_{0}$ and $\varphi^{\prime \prime} \in \bigvee_{n=1}^{\infty} \mathscr{L}_{n}$, thus we have $U^{m} \varphi \in \bigvee_{n=1}^{\infty} \mathscr{L}_{n}$. This implies $U^{m} \varphi \perp_{-}(I-Q) \mathscr{Q}_{0}$. So we get the first part of (10); the second part can be proved similarly.

Lemma 3. If $\mathfrak{B}=\mathfrak{B}^{*}=\{0\}$, then T is a unitary operator and $\varrho=1$.
Proof. Let $\mathfrak{W}=\{0\}$. In this case (7) implies $\varphi=Q \varphi$ for every $\varphi=\mathfrak{E}_{0}$, consequently $\mathcal{E}_{0} \subset \bigvee_{n=1}^{\infty} \mathcal{L}_{n}$. Now we have $\mathfrak{E}_{1}=U \mathfrak{L}_{0} \subset U \bigvee_{n=1}^{\infty} \mathfrak{L}_{n}=\bigvee_{n=2}^{\infty} \mathfrak{L}_{n}$, consequently $\mathscr{E}_{0} \subset \bigvee_{n=2}^{\infty} \mathfrak{Q}_{n}$ holds too. On the other hand, Lemma 1 shows that $\mathscr{L}_{0} \perp \bigvee_{n=2}^{\infty} \mathfrak{L}_{n}$. So we
 implies $U^{*} \varphi=T^{*} \varphi$ for $\varphi \in \mathfrak{S}$. Moreover, $U \varphi=T \varphi$ implies $\|\varphi\|=\|U \varphi\|=\|T \varphi\|=$ $=\|\varrho P U \varphi\|=\varrho\|\varphi\|$ for every $\varphi \in \mathfrak{G}$, consequently $\varrho=1$ and we have finished the proof.

Theorem 1. If T is non-unitary, or if $\varrho \neq 1$, then $\sigma(U)$ is the whole unit circle of the complex plane.

Proof. Since U is unitary, $\sigma(U)$ is situated on the unite circle. On the other hand, by Lemma 3, there exists an element $\varphi \neq 0$ in \mathfrak{M} or $\mathfrak{W 3 *}$. By Lemma $2, U$ is a "bilateral shift" on $\bigvee_{n=-\infty}^{\infty} U^{n} \varphi$. Since the spectrum of the bilateral shift coincides with the unit circle C so we have a fortiori $\sigma(U) \doteq C$.

A direct proof of the last statement can be given as follows: Suppose the converse case, i. e. that there exists ε such that $|\varepsilon|=1$ and $\varepsilon \notin \sigma(U)$. In this case $(I-\varepsilon U)^{-1}$ is bounded, and using the notation $S_{n}=I+\varepsilon U+\ldots+(\varepsilon U)^{n}$, we have $S_{n}(I-\varepsilon U)=$ $=I-(\varepsilon U)^{n+1}$. Hence

$$
\left\|S_{n}\right\|=\left\|\left[I-(\varepsilon U)^{n+1}\right](I-\varepsilon U)^{-1}\right\| \leqq 2\left\|(I-\varepsilon U)^{-1}\right\| .
$$

Thus $\left\|S_{n}\right\| \leqq K$ with K independent of n. Now choosing φ as above,

$$
\left\|S_{n} \varphi\right\|^{2}=\left\|\sum_{k=0}^{n}(\varepsilon U)^{k} \varphi\right\|^{2}=\sum_{k=0}^{n}\left\|(\varepsilon U)^{k} \varphi\right\|^{2}=(n+1)\|\varphi\|^{2},
$$

and this contradicts $\left\|S_{n}\right\| \leqq K$.
Lemma 4. If T is completely non-unitary then \mathfrak{G} is a subspace of $\mathfrak{E} \vee \mathfrak{L}^{*}$.
Proof. If an element φ of \mathfrak{H} can be written as $\varphi=\left(I-T^{* n} T^{n}\right) \psi$ for some n, then we have:

$$
\begin{gathered}
\varphi=U^{-1}(U-T) \psi+U^{-2}(U-T) T \psi+\ldots+U^{-n}(U-T) T^{n-1} \psi+ \\
+U^{-n+1}\left(U^{*}-T^{*}\right) T^{n} \psi+U^{-n+2}\left(U^{*}-T^{*}\right) T^{*} T^{n} \psi+\ldots+\left(U^{*}-T^{*}\right) T^{* n-1} T^{n} \psi
\end{gathered}
$$

and, by (5) and (4) this means that $\varphi \in \mathscr{L} \vee \mathfrak{Q}^{*}$. In case $\varphi=\left(I-T^{n} T^{* n}\right) \psi$ for some n, we get the same result by changing the roles of T and T^{*}, U and U^{*}.
$\mathfrak{L} \vee \mathfrak{L}^{*}$ is closed, consequently it contains the space spanned by the ranges
of $\left(I-T^{* n} T^{n}\right)$ and $\left(I-T^{n} T^{* n}\right)$ for all positive integer n. Thus we only have to prove that if, for some $\varphi \in \mathfrak{H}$,

$$
\begin{equation*}
\varphi \perp\left(I-T^{* n} T^{n}\right) \mathfrak{S} \quad \text { and } \quad \varphi \perp\left(I-T^{n} T^{* n}\right) \mathfrak{S} \quad(n=1,2, \ldots) \tag{11}
\end{equation*}
$$

then $\varphi=0$. (11) implies

$$
\left(I-T^{* n} T^{n}\right) \varphi=0 \quad \text { and } \quad\left(I-T^{n} T^{* n}\right) \varphi=0
$$

So we have $T^{* n} T^{n} \varphi=T^{n} T^{* n} \varphi=\varphi$, hence $\left\|T^{n} \varphi\right\|^{2}=\left\|T^{* n} \varphi\right\|^{2}=\|\varphi\|^{2}$ for $n=1,2, \ldots$. This implies that $\varphi=0$, because T is completely non-unitary.

Lemma 5. If U is the minimal unitary ϱ-dilation of a completely non-unitary operator T, then $\mathfrak{R}=\mathfrak{L} \vee \mathfrak{Q}^{*}$.

Proof. Using (2), it suffices to prove that

$$
\begin{equation*}
\bigvee_{n=-\infty}^{\infty} U^{n} \mathfrak{G}=\mathfrak{L} \vee \mathscr{L}^{*} \tag{12}
\end{equation*}
$$

By Lemma 4, \mathfrak{S} is a subspace of $\mathfrak{E} \vee \mathfrak{L}^{*}$. (4) and (5) imply, that both \mathfrak{L} and \mathfrak{L}^{*} reduce U, consequently $U^{n} \mathfrak{J}$ is a subspace of $\mathfrak{E V} \mathfrak{L}^{*}$ for $n=0, \pm 1, \ldots$. So we have

$$
\bigvee_{n=-\infty}^{\infty} U^{n} \mathfrak{G} \subset \mathfrak{E} \vee \mathbb{E}^{*}
$$

On the other hand, (4) implies that both \mathfrak{L}_{k} and \mathbb{E}_{k}^{*} are contained in $\bigvee_{n=-\infty}^{\infty} U^{n} \mathfrak{G}$, for $k=0, \pm 1, \ldots$. Now (5) shows that

$$
\bigvee_{n=-\infty}^{\infty} U^{n} \mathfrak{G} \supset \mathfrak{L} \vee \mathfrak{Q}^{*}
$$

This relation and (12') prove (12).
Lemma 6. $\mathfrak{E} \vee \mathfrak{E}^{*}=\bigvee_{n=-\infty}^{\infty} U^{n}\left(\mathfrak{P} \vee \mathfrak{B} \vee \mathfrak{B}^{*} \vee \mathfrak{B} \mathfrak{B}^{*}\right)$.
Proof. (6) and (7) show that

$$
\mathfrak{B} \vee \mathfrak{B} \supset \mathfrak{Q}_{0} \quad \text { and } \quad \mathfrak{B}^{*} \vee \mathfrak{M}^{*} \supset \mathfrak{L}_{0}^{*}
$$

So, by (5) and (4)

$$
\begin{equation*}
\bigvee_{n=-\infty}^{\infty} U^{n}\left(\mathfrak{B} \vee \mathfrak{B} \vee \mathfrak{B}^{*} \vee \mathfrak{b ^ { * }}\right) \supset \mathfrak{L} \vee \mathfrak{L}^{*} \tag{13}
\end{equation*}
$$

On the other hand, (4), (5), (6) and (7) show that \mathfrak{B} and \mathfrak{W} are contained in \mathfrak{E}; similarly \mathfrak{B}^{*} and \mathfrak{W}^{*} are contained in \mathfrak{Q}^{*}. Since both \mathfrak{E} and \mathfrak{L}^{*} reduce U, this implies

$$
\bigvee_{n=-\infty}^{\infty} U^{n}\left(\mathfrak{B} \vee \mathfrak{B} \vee \mathfrak{B} * \vee \mathfrak{B}^{*}\right) \subset \mathfrak{L} \vee \mathfrak{L}^{*}
$$

This relation and its converse (13) prove the lemma.
Now, by Lemma 3 of [3], the following is true: If U is a unitary operator on
Ω and $\mathfrak{H}_{1}, \ldots, \mathfrak{Y}_{N}$ are wandering subspaces of U, and the set of the finite linear combinations $\sum_{n, k} \varphi_{n, k}\left(\varphi_{n, k} \in U^{n} \mathfrak{U}_{k}\right)$ is dense in Ω, then U has absolutely continuous spectral measure.

Thus, Lemma 6 implies
Lemma 7. The restriction of U to the reducing subspace $\mathfrak{E} \vee \mathfrak{E}^{*}$ has absolutely continuous spectral measure.

Combining this fact with Lemma 5 we get
Theorem 2. If U is the minimal unitary ϱ-dilation of a completely non-unitary operator T, then the spectral measure of U is absolutely continuous.

We shall use the following obvious
Lemma 8. If T has some unitary ϱ-dilation U with absolutely continuous spectral measure, then T^{n} converges weakly to O as $n \rightarrow \infty$.

Indeed, using (3) and the Riemann-Lebesgue lemma, we get for $\varphi, \psi \in \mathfrak{S}$

$$
\left(T^{n} \varphi, \psi\right)=\varrho\left(U^{n} \varphi, \psi\right)=\varrho \int_{0}^{2 \pi} e^{i n \vartheta} d\left(E_{0} \varphi, \psi\right)=\varrho \int_{0}^{2 \pi} e^{i n \vartheta} f_{\varphi, \psi}(\vartheta) d \vartheta \rightarrow 0
$$

Thus Theorem 2 has the following
Corollary. If T is completely non-unitary and has some unitary @-dilation, then T^{n} converges weakly to O as $n \rightarrow \infty$.

The next theorem gives a decomposition for T.
Theorem 3. If T has some unitary ϱ-dilation U, then \mathfrak{S} can be decomposed as
$\mathfrak{G}=\mathfrak{S}_{1} \oplus \mathfrak{H}_{2}$, in such a way that:
(i) \mathfrak{S}_{1} and \mathfrak{S}_{2} reduce T,
(ii) $T_{1}=T \mid \mathfrak{G}_{1}$ has a unitary @-dilation with absolutely continuous spectral measure, .
(iii) $T_{2}=T \mid \mathfrak{G}_{2}$ is unitary.

Proof. Set $\mathfrak{S}_{1}=\mathfrak{G} \cap\left(\mathscr{I} \vee \mathfrak{Q}^{*}\right)$. If $\varphi \in \mathfrak{S}_{1}$, then

$$
T \varphi=(T-U) \varphi+U \varphi \in \mathfrak{I}_{0} \vee U\left(\mathbb{E} \vee \mathfrak{L}^{*}\right) \subset \mathfrak{E} \vee \mathfrak{Q}^{*}
$$

thus $T \mathfrak{H}_{1} \subset \mathfrak{S}_{1}$. Similarly, $T * \mathfrak{H}_{1} \subset \mathfrak{G}_{1}$, so \mathfrak{G}_{1} reduces T.
Since $\mathscr{L V} \mathfrak{L}^{*}$ reduces U, the part U_{1} of U in $\mathscr{E} \mathfrak{E}^{*}$ will be a unitary ϱ-dilation of $T_{1}=T \mid \mathfrak{S}_{1}$. Now, by Lemma 7, $U_{1}=U \mid\left(\mathfrak{L} \vee \mathfrak{Q}^{*}\right)$, has absolutely continuous spectral measure.

It remains to show that if $\mathfrak{G}_{2}=\mathfrak{G} \ominus \mathfrak{S}_{1}$, then $T_{2}=T \mid \mathfrak{G}_{2}$ is unitary. Now, the relations

$$
\begin{gathered}
\left(I-T^{*} T\right) \varphi=U^{-1}(U-T) \varphi+\left(U^{*}-T^{*}\right) T \varphi \\
\left(I-T T^{*}\right) \varphi=U\left(U^{*}-T^{*}\right) \varphi+(U-T) T^{*} \varphi
\end{gathered}
$$

$(\varphi \in \mathfrak{Y})$ show that \mathfrak{S}_{1} contains the ranges of both $I-T^{*} T$ and $I-T T^{*}$. Thus $\psi \in \mathfrak{S}_{2}$ implies $\psi \perp\left(I-T^{*} T\right) \mathfrak{S}$ and $\psi \perp\left(I-T T^{*}\right) \mathfrak{H}$, hence $T^{*} T \psi=\psi$ and $T T^{*} \psi=\psi$. This means that T is unitary on \mathfrak{H}_{2}, and so we have finished the proof.

References

B. Sz.-Nagy
[*] Prolongements des transformations linéaires de l'espace de Hilbert qui sortent de cet espace. Appendice au livre "Leçons d'analyse fonctionnelle" par F. Riesz et B. Sz.-Nagy (Budapest, 1955).
B. Sz.-Nagy-C. Foias
[1] Sur les contractions de l'espace de Hilbert. III, Acta Sci. Math., 19. (1958), 26-45.
[2] Sur les contractions de l'espace de Hilbert. IV, ibidem, 21 (1960), 251-259.
[3] Sur les contractions de l'espace de Hilbert. V. Translations bilatérales, ibidem, 23 (1962), 106-129.
[4] On certain classes of power-bounded operators in Hilbert space, ibidem, 27 (1966), 17-25.

