On the spectrum of unitary ρ -dilations

By E. DURSZT in Szeged

We shall consider operators T in a Hilbert space \mathfrak{H} , which admit unitary *q*-dilations (q > 0), i. e. unitary operators U defined on some Hilbert space $\mathfrak{R}(\supset \mathfrak{H})$, such that

(1)
$$T^{n}\varphi = \varrho P U^{n}\varphi \qquad (\varphi \in \mathfrak{H}; n = 1, 2, ...),$$

where P denotes the orthogonal projection of \Re onto \mathfrak{H} . Obviously, (1) implies (1*) $T^{*n}\varphi = \varrho P U^{-n}\varphi$.

B. Sz.-NAGY and C. FOIAŞ have characterized the operators T which have unitary g-dilations; see [4].

We shall denote by $\sigma(U)$ the spectrum of U. In the case $\varrho = 1$, $\sigma(U)$ has been studied extensively, cf. in particular [1], [2], [3]. The purpose of this paper is to study the spectral properties of U for arbitrary $\varrho > 0$.

First we recall some definitions, familiar in the case $\rho = 1$, but which extend immediately to the general case too.

The unitary ρ -dilation U of T is minimal, if

(2)
$$\Re = \bigvee_{n=-\infty}^{\vee} U^n \mathfrak{H}.$$

In this case U is uniquely determined up to isomorphism. (The proof is similar to that given in the special case $\rho = 1$, cf. [*].)

Let E_{θ} $(0 \le \vartheta \le 2\pi)$ be the spectral function of U. We say that the spectral measure of U is *absolutely continuous* if, for every vectors $\varphi, \psi \in \Re$, the function $(E_{\theta}\varphi, \psi)$ of ϑ is absolutely continuous on $0 \le \vartheta \le 2\pi$, i. e., if there exists a function $f_{\varphi,\psi}(\vartheta) \in L(0, 2\pi)$ such that

(3)
$$(E_{\theta}\varphi,\psi) = \int_{0}^{3} f_{\varphi,\psi}(\tau) d\tau.$$

T is called completely non-unitary, if there exists no vector $\varphi \in \mathfrak{H}, \varphi \neq 0$, for which

$$\dots = \|T^{*2}\varphi\| = \|T^*\varphi\| = \|\varphi\| = \|T\varphi\| = \|T^2\varphi\| = \dots$$

We shall use the following notations:

4)
$$\mathfrak{L}_n = U^n \overline{(U-T)\mathfrak{H}}, \quad \mathfrak{L}_n^* = U^{*n} \overline{(U^*-T^*)\mathfrak{H}} \quad (n = 0, \pm 1, ...),$$

(5) $\mathfrak{L} = \bigvee^{\infty} \mathfrak{L}_n, \quad \mathfrak{L}^* = \bigvee^{\infty} \mathfrak{L}_n^*.$

== - 00

E. Durszt

We denote by Q the orthogonal projection of \mathfrak{L} onto $\bigvee_{n=1}^{\vee} \mathfrak{L}_n$, and by Q' the orthogonal projection of \mathfrak{L}^* onto $\bigvee_{n=1}^{\vee} \mathfrak{L}_n^*$. Further, we set

(6)
$$\mathfrak{V} = \overline{Q\mathfrak{L}_0}, \quad \mathfrak{V}^* = \overline{Q'\mathfrak{L}_0^*},$$

(7)
$$\mathfrak{W} = \overline{(I-Q)\mathfrak{L}_0}, \quad \mathfrak{W}^* = \overline{(I-Q')\mathfrak{L}_0^*}.$$

Lemma 1. $\mathfrak{L}_n \perp \mathfrak{L}_k$ and $\mathfrak{L}_n^* \perp \mathfrak{L}_k^*$ if $n-k \ge 2$.

Proof. (4) shows that it sufficies to prove

(8)
$$\left(U^m(U-T)\varphi,(U-T)\psi\right) = 0$$
 if $m = 2, 2$

(8*)
$$(U^{*m}(U^*-T^*)\varphi, (U^*-T^*)\psi) = 0 \int_{-1}^{-1} m = 2, 3, ...,$$

where φ and ψ are arbitrary vectors in \mathfrak{H} .

In order to prove (8), we use (1):

$$\begin{pmatrix} U^m(U-T)\varphi, (U-T)\psi \end{pmatrix} = (U^m\varphi,\psi) - (U^{m-1}T\varphi,\psi) - (U^{m+1}\varphi,T\psi) + (U^mT\varphi,T\psi) = \\ = \left(\frac{1}{\varrho}T^m\varphi,\psi\right) - \left(\frac{1}{\varrho}T^{m-1}T\varphi,\psi\right) - \left(\frac{1}{\varrho}T^{m+1}\varphi,T\psi\right) + \left(\frac{1}{\varrho}T^mT\varphi,T\psi\right) = 0.$$

Similarly, using (1^*) we get (8^*) as follows:

$$\begin{pmatrix} U^{*m}(U^* - T^*)\varphi, (U^* - T^*)\psi \end{pmatrix} = \\ = (U^{-m}\varphi, \psi) - (U^{-m+1}T^*\varphi, \psi) - (U^{-m-1}\varphi, T^*\psi) + (U^{-m}T^*\varphi, T^*\psi) = \\ = \left(\frac{1}{\varrho}T^{*m}\varphi, \psi\right) - \left(\frac{1}{\varrho}T^{*m-1}T^*\varphi, \psi\right) - \left(\frac{1}{\varrho}T^{*m+1}\varphi, T^*\psi\right) + \left(\frac{1}{\varrho}T^{*m}T^*\varphi, T^*\psi\right) = 0.$$

Lemma 2. $\mathfrak{V}, \mathfrak{V}^*, \mathfrak{W}$ and \mathfrak{W}^* are wandering subspaces for U. I. e., if $n \neq k$ then

 $U^{n}\mathfrak{V} \perp U^{k}\mathfrak{V}, \quad U^{n}\mathfrak{V} \perp U^{k}\mathfrak{V}^{*},$ $U^{n}\mathfrak{W} \perp U^{k}\mathfrak{W}, \quad U^{n}\mathfrak{W} \perp U^{k}\mathfrak{W}^{*}.$

Proof. It suffices to prove that

(9)
$$U^m Q \mathfrak{L}_0 \perp Q \mathfrak{L}_0, \quad U^m Q' \mathfrak{L}_0^* \perp Q' \mathfrak{L}_0^*,$$

(10)
$$U^m(I-Q)\mathfrak{L}_0\perp (I-Q)\mathfrak{L}_0, \quad U^m(I-Q')\mathfrak{L}_0^*\perp (I-Q')\mathfrak{L}_0^*.$$

for m = 1, 2, ...

In order to prove (9) choose arbitrary vectors $\varphi = Q\varphi'$ and $\psi = Q\psi' (\varphi', \psi' \in \mathfrak{L}_0)$. We have

$$(U^m\varphi,\psi)=(U^mQ\varphi',Q\psi')=(QU^mQ\varphi',\psi').$$

Now, $Q\varphi'$ is an element of $\bigvee_{n=1}^{\infty} \mathfrak{L}_n$, hence $QU^m Q\varphi'$ is an element of $\bigvee_{n=m+1}^{\infty} \mathfrak{L}_n$. Thus, by Lemma 1, the last inner product equals 0. This implies the first part of (9), and we can prove its second part in a similar way.

Now, every vector in $(I-Q)\mathfrak{L}_0$ has the form $\varphi = \varphi' - \varphi''$, where $\varphi' \in \mathfrak{L}_0$ and $\varphi'' \in \bigvee_{n=1}^{\infty} \mathfrak{L}_n$, thus we have $U^m \varphi \in \bigvee_{n=1}^{\infty} \mathfrak{L}_n$. This implies $U^m \varphi \perp (I-Q)\mathfrak{L}_0$. So we get the first part of (10); the second part can be proved similarly.

Lemma 3. If $\mathfrak{W} = \mathfrak{W}^* = \{0\}$, then T is a unitary operator and $\varrho = 1$.

Proof. Let $\mathfrak{W} = \{0\}$. In this case (7) implies $\varphi = Q\varphi$ for every $\varphi = \mathfrak{L}_0$, consequently $\mathfrak{L}_0 \subset \bigvee_{n=1}^{\infty} \mathfrak{L}_n$. Now we have $\mathfrak{L}_1 = U\mathfrak{L}_0 \subset U\bigvee_{n=1}^{\infty} \mathfrak{L}_n = \bigvee_{n=2}^{\infty} \mathfrak{L}_n$, consequently $\mathfrak{L}_0 \subset \bigvee_{n=2}^{\infty} \mathfrak{L}_n$ holds too. On the other hand, Lemma 1 shows that $\mathfrak{L}_0 \perp \bigvee_{n=2}^{\infty} \mathfrak{L}_n$. So we get $\mathfrak{L}_0 \equiv \{0\}$. Hence, $U\varphi = T\varphi$ for $\varphi \in \mathfrak{H}$. We can similarly prove that $\mathfrak{W}^* = \{0\}$ implies $U^*\varphi = T^*\varphi$ for $\varphi \in \mathfrak{H}$. Moreover, $U\varphi = T\varphi$ implies $\|\varphi\| = \|U\varphi\| = \|T\varphi\| = \|\varrho P U\varphi\| = \varrho \|\varphi\|$ for every $\varphi \in \mathfrak{H}$, consequently $\varrho = 1$ and we have finished the proof.

Theorem 1. If T is non-unitary, or if $\varrho \neq 1$, then $\sigma(U)$ is the whole unit circle of the complex plane.

Proof. Since U is unitary, $\sigma(U)$ is situated on the unite circle. On the other hand, by Lemma 3, there exists an element $\varphi \neq 0$ in \mathfrak{W} or \mathfrak{W}^* . By Lemma 2, U is a "bilateral shift" on $\bigvee_{n=-\infty}^{\infty} U^n \varphi$. Since the spectrum of the bilateral shift coincides with the unit circle C so we have a fortiori $\sigma(U) = C$.

A direct proof of the last statement can be given as follows: Suppose the converse case, i. e. that there exists ε such that $|\varepsilon| = 1$ and $\varepsilon \notin \sigma(U)$. In this case $(I - \varepsilon U)^{-1}$ is bounded, and using the notation $S_n = I + \varepsilon U + \ldots + (\varepsilon U)^n$, we have $S_n(I - \varepsilon U) = = I - (\varepsilon U)^{n+1}$. Hence

$$||S_n|| = ||[I - (\varepsilon U)^{n+1}](I - \varepsilon U)^{-1}|| \le 2||(I - \varepsilon U)^{-1}||.$$

Thus $||S_n|| \leq K$ with K independent of n. Now choosing φ as above,

$$\|S_n \varphi\|^2 = \left\|\sum_{k=0}^n (\varepsilon U)^k \varphi\right\|^2 = \sum_{k=0}^n \|(\varepsilon U)^k \varphi\|^2 = (n+1) \|\varphi\|^2,$$

and this contradicts $||S_n|| \leq K$.

Lemma 4. If T is completely non-unitary then \mathfrak{H} is a subspace of $\mathfrak{L} \vee \mathfrak{L}^*$.

Proof. If an element φ of \mathfrak{H} can be written as $\varphi = (I - T^{*n}T^n)\psi$ for some *n*, then we have:

$$\varphi = U^{-1}(U-T)\psi + U^{-2}(U-T)T\psi + \dots + U^{-n}(U-T)T^{n-1}\psi + \dots$$

$$+ U^{-n+1}(U^* - T^*)T^n\psi + U^{-n+2}(U^* - T^*)T^*T^n\psi + \dots + (U^* - T^*)T^{*n-1}T^n\psi,$$

and, by (5) and (4) this means that $\varphi \in \mathfrak{L} \vee \mathfrak{L}^*$. In case $\varphi = (I - T^n T^{*n}) \psi$ for some *n*, we get the same result by changing the roles of *T* and *T*^{*}, *U* and *U*^{*}.

 $\mathfrak{L} \lor \mathfrak{L}^*$ is closed, consequently it contains the space spanned by the ranges

E. Durszt

of $(I - T^{*n}T^n)$ and $(I - T^nT^{*n})$ for all positive integer *n*. Thus we only have to prove that if, for some $\varphi \in \mathfrak{H}$,

(11) $\varphi \perp (I - T^{*n}T^n)\mathfrak{H}$ and $\varphi \perp (I - T^nT^{*n})\mathfrak{H}$ (n = 1, 2, ...)

then $\varphi = 0$. (11) implies

 $(I - T^{*n}T^n)\varphi = 0$ and $(I - T^nT^{*n})\varphi = 0.$

So we have $T^{*n}T^n\varphi = T^nT^{*n}\varphi = \varphi$, hence $||T^n\varphi||^2 = ||T^{*n}\varphi||^2 = ||\varphi||^2$ for n = 1, 2, This implies that $\varphi = 0$, because T is completely non-unitary.

Lemma 5. If U is the minimal unitary ϱ -dilation of a completely non-unitary operator T, then $\Re = \mathfrak{L} \lor \mathfrak{L}^*$.

Proof. Using (2), it suffices to prove that

(12)
$$\bigvee_{n=-\infty}^{\infty} U^n \mathfrak{H} = \mathfrak{L} \vee \mathfrak{L}^*.$$

By Lemma 4, \mathfrak{H} is a subspace of $\mathfrak{L} \lor \mathfrak{L}^*$. (4) and (5) imply, that both \mathfrak{L} and \mathfrak{L}^* reduce U, consequently $U^n\mathfrak{H}$ is a subspace of $\mathfrak{L} \lor \mathfrak{L}^*$ for $n=0, \pm 1, \ldots$. So we have

(12')
$$\bigvee_{n=-\infty}^{\infty} U^n \mathfrak{H} \subset \mathfrak{L} \vee \mathfrak{L}^*.$$

On the other hand, (4) implies that both \mathfrak{L}_k and \mathfrak{L}_k^* are contained in $\bigvee_{n=-\infty} U^n \mathfrak{H}$, for $k=0, \pm 1, \ldots$. Now (5) shows that

$$\bigvee_{=-\infty}^{\infty} U^n \mathfrak{H} \supset \mathfrak{L} \lor \mathfrak{L}^*.$$

This relation and (12') prove (12).

Lemma 6.
$$\mathfrak{L} \vee \mathfrak{L}^* = \bigvee_{n=-\infty}^{\infty} U^n(\mathfrak{B} \vee \mathfrak{W} \vee \mathfrak{B}^* \vee \mathfrak{W}^*).$$

Proof. (6) and (7) show that

$$\mathfrak{V} \lor \mathfrak{W} \supset \mathfrak{L}_{0}$$
 and $\mathfrak{V}^{*} \lor \mathfrak{W}^{*} \supset \mathfrak{L}_{0}^{*}$

So, by (5) and (4) (13) $\bigvee_{n \in -\infty}^{\infty} U^n(\mathfrak{B} \lor \mathfrak{W} \lor \mathfrak{W}^* \lor \mathfrak{W}^*) \supset \mathfrak{L} \lor \mathfrak{L}^*.$

On the other hand, (4), (5), (6) and (7) show that \mathfrak{V} and \mathfrak{W} are contained in \mathfrak{L} ; similarly \mathfrak{V}^* and \mathfrak{W}^* are contained in \mathfrak{L}^* . Since both \mathfrak{L} and \mathfrak{L}^* reduce U, this implies

$$\bigvee_{n=-\infty}^{\vee} U^n(\mathfrak{B} \vee \mathfrak{W} \vee \mathfrak{B}^* \vee \mathfrak{W}^*) \subset \mathfrak{L} \vee \mathfrak{L}^*.$$

This relation and its converse (13) prove the lemma.

Now, by Lemma 3 of [3], the following is true: If U is a unitary operator on

302

 \Re and $\mathfrak{A}_1, \ldots, \mathfrak{A}_N$ are wandering subspaces of U, and the set of the finite linear combinations $\sum_{n,k} \varphi_{n,k}$ ($\varphi_{n,k} \in U^n \mathfrak{A}_k$) is dense in \Re , then U has absolutely continuous spectral measure.

Thus, Lemma 6 implies

Lemma 7. The restriction of U to the reducing subspace $\mathfrak{L} \lor \mathfrak{L}^*$ has absolutely continuous spectral measure.

Combining this fact with Lemma 5 we get

Theorem 2. If U is the minimal unitary ϱ -dilation of a completely non-unitary operator T, then the spectral measure of U is absolutely continuous.

We shall use the following obvious

Lemma 8. If T has some unitary ϱ -dilation U with absolutely continuous spectral measure, then Tⁿ converges weakly to O as $n \rightarrow \infty$.

Indeed, using (3) and the Riemann–Lebesgue lemma, we get for $\varphi, \psi \in \mathfrak{H}$

$$(T^n\varphi,\psi)=\varrho(U^n\varphi,\psi)=\varrho\int_0^{2\pi}e^{in\vartheta}d(E_\vartheta\varphi,\psi)=\varrho\int_0^{2\pi}e^{in\vartheta}f_{\varphi,\psi}(\vartheta)\,d\vartheta\to 0.$$

Thus Theorem 2 has the following

Corollary. If T is completely non-unitary and has some unitary ϱ -dilation, then Tⁿ converges weakly to O as $n \rightarrow \infty$.

The next theorem gives a decomposition for T.

Theorem 3. If T has some unitary ϱ -dilation U, then \mathfrak{H} can be decomposed as $\mathfrak{H} = \mathfrak{H}_1 \oplus \mathfrak{H}_2$, in such a way that:

(i) \mathfrak{H}_1 and \mathfrak{H}_2 reduce T,

(ii) $T_1 = T | \mathfrak{H}_1$ has a unitary ϱ -dilation with absolutely continuous spectral measure,

(iii) $T_2 = T | \mathfrak{H}_2$ is unitary.

Proof. Set $\mathfrak{H}_1 = \mathfrak{H} \cap (\mathfrak{L} \vee \mathfrak{L}^*)$. If $\varphi \in \mathfrak{H}_1$, then

$$T\varphi = (T - U)\varphi + U\varphi \in \mathfrak{L}_0 \lor U(\mathfrak{L} \lor \mathfrak{L}^*) \subset \mathfrak{L} \lor \mathfrak{L}^*$$

thus $T\mathfrak{H}_1 \subset \mathfrak{H}_1$. Similarly, $T^*\mathfrak{H}_1 \subset \mathfrak{H}_1$, so \mathfrak{H}_1 reduces T.

Since $\mathfrak{L} \lor \mathfrak{L}^*$ reduces U, the part U_1 of U in $\mathfrak{L} \lor \mathfrak{L}^*$ will be a unitary ϱ -dilation of $T_1 = T | \mathfrak{H}_1$. Now, by Lemma 7, $U_1 = U | (\mathfrak{L} \lor \mathfrak{L}^*)$ has absolutely continuous spectral measure.

It remains to show that if $\mathfrak{H}_2 = \mathfrak{H} \ominus \mathfrak{H}_1$, then $T_2 = T|\mathfrak{H}_2$ is unitary. Now, the relations

$$(I - T^*T)\varphi = U^{-1}(U - T)\varphi + (U^* - T^*)T\varphi,$$

$$(I - TT^*)\varphi = U(U^* - T^*)\varphi + (U - T)T^*\varphi$$

 $(\varphi \in \mathfrak{H})$ show that \mathfrak{H}_1 contains the ranges of both $I - T^*T$ and $I - TT^*$. Thus $\psi \in \mathfrak{H}_2$ implies $\psi \perp (I - T^*T)\mathfrak{H}$ and $\psi \perp (I - TT^*)\mathfrak{H}$, hence $T^*T\psi = \psi$ and $TT^*\psi = \psi$. This means that T is unitary on \mathfrak{H}_2 , and so we have finished the proof.

References

B. Sz.-Nagy

[*] Prolongements des transformations linéaires de l'espace de Hilbert qui sortent de cet espace. Appendice au livre "Leçons d'analyse fonctionnelle" par F. RIESZ et B. Sz.-NAGY (Budapest, 1955).

- B. Sz.-NAGY-C. FOIAŞ

- Sur les contractions de l'espace de Hilbert. III, Acta Sci. Math., 19 (1958), 26-45.
 Sur les contractions de l'espace de Hilbert. IV, *ibidem*, 21 (1960), 251-259.
 Sur les contractions de l'espace de Hilbert. V. Translations bilatérales, *ibidem*, 23 (1962), 106-129.
- [4] On certain classes of power-bounded operators in Hilbert space, ibidem, 27 (1966), 17-25.

(Received March 1, 1967)

304