On the spectrum of unitary o-dilations
By E. DURSZT in'Szeged

We shall consider operators T in a Hilbert space §, which admit unitary
g-dilations (¢ =0), i. e. unitary operators U defined on some Hilbert space R(>9),
such that

) | T"p = oPU"p  (p€H;n=1,2,..),
where P denotes the orthogonal projection of & onto 9. vaiously, (1) implies
) ~ T*"¢ = oPU™"¢.

B. Sz.-NaGy and C. FoiAS have characterized the operators T which have unitary
o-dilations; see [4].

We shall denote by o(U) the spectrum of U. In the case 9 =1, ¢(U) has been
studied extensively, cf. in particular [1], [2], [3]. The purpose of this paper is to
study the spectral properties of U for arbitrary g =0.

First we recall some definitions, familiar in the case ¢=1, but which extend
immediately to the general case too.

The unitary g-dilation U of T is minimal, if

(2 K=V UH

In this case U is uniquely determined up to isomorphism. (The proof is similar

to that given in the special case g =1, cf. [¥].) ,
Let Ey (0=9=2n) be the spéctral function of U. We say that the spectral

measure of U is absolutely continuous if, for every vectors ¢, Y €K, the function

(Es 0, ¥) of 9 is absolutely continuous on 0=9=2g7, i. e., if there ex1sts a function

o (D EL(O, 2m) such that - '

3 (Es 9, ¥) = f fop(@) dr.

T is called completely non-unitary, 1f there exists no vector (pEﬁ, (p#O for
which
=T 20 =] T* ol =| o] =|| To| =| T?¢| =

We shall use the following notations:

4) = UNO=T)$, & =U"T" TN (1=0,+1,..),
©) | 2=V g, o=V g

n= —oco n=—oo
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We denote by @ the orthogonal prOJectron of £ onto \/ £,, and by Q’ the

n=1

~orthogonal projection of 53* onto V 2%, Further, we set

n=1
©) B =08, B*=0QL,
() BW=(T-0)8, W=(I-0)L.

Lemma 1. 2,18, and 18 if n—k=2.
Proof. (4) shows that it sufficies to prove

®) (U™U—~T)g, (U=T)§) =0
(8 (U™ (U*~T¥)p, (U=~ T*)y) = 0

where ¢ and  are arbitrary vectors in §.
In order to prove (8), we use. (1):

(U"(U=T)o,(U—TW) = U™, ¥)— (U™~ T, §) — (U™ ' ¢, TY) +(U"To, T})) =
o[ ms)-fras{zr)-o
Similarly, using (1*) we get (8*) as follows:
(U (U =T, (U*~T*)Y) =
= (U=, )~ (U~"*'T*g, §) ~(U="~" ¢, Ty) + (U"T*0, TY) =
fireon {tr=ras] (e firerar) o
Lemma 2. B, B*, W and W* are wandering subspaces for U. I. e., if n =k then
U8 LU*B, U B* )L UB*,
U I3 1 Uk, U+ UMW+,
Proof. It suffices to prove that

} if m=2,3..,

6)) UrQL, 108, UmQ'851Q'L5,
10 - Ur(I- Q)8 LUT-0)8y, UrI-Q)LELUT-Q)ES.
for m=1,2,.

. In order to prove (9) choose arbitrary vectors ¢ = Q¢” and ¥ = QU (¢’, Y’ € L,).
We have

Umo,¥) =-(U'"Q<P Q¥ = (QU" Q9" ¥").
Now, Q¢’ is an element of V Q,,, hence QU™Q¢’ is an element of \/ 52 Thus,

by Lemma 1, the last inner product equals 0. This implies the first part of (9), and
we can prove its second part in a similar way.
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Now, every vector in (/ — Q)ﬁo has the form ¢=¢’ —¢”, where ¢’ €L, and
@€ V L., thus we ‘have U™p¢ V 8,. This implies U™ I.(I—Q)2,. So we get
the ﬁrst part of (10); the second part can be proved similarly.

Lemma 3. If W=W*= {0} then T is a unitary operator and ¢g=1.

Proof. ‘Let W={0}. In this case (7) implies ¢ = Q(p for every 9= =2,, con-
sequently L,C V L,. Now we have g2,=U08cU V g, = V L., consequently

g,c V £, holds too. On the other hand, Lemma 1 shows that £, | V £,. So we

get 530_{0} Hence, Up=T¢p for ¢€%. We can similarly prove that mw* = {0}
implies U*gp =T*¢ for ¢ €9. Moreover, Up =T¢ implies ||¢]|=||Ugp| =|Te|=
=|lePUop|l=¢ll¢| for every @€Y, consequently g=1 and we have ﬁmshed the
proof.

Theorem 1. If T is non-unitary, or if ¢ %1, then o(U) is the whole unit circle
of the complex plane.

Proof. Since U is umtary, a(U) is situated on the unite cn‘cle On the other
hand, by Lemma 3, there exists an element ¢ 0 in I3 or 23*. By Lemma 2, U is

a “bilateral shift” on V U"¢p. Since the spectrum of the bilateral shift coincides

with the unit circle C so we have a fortiori a(U) C.

‘A direct proof of the last statement can be given as follows: Suppose the con-
verse case, i. . that there exists & such that |¢|=1 and ¢ o(U). In this case (I —eU)~ t
is bounded, and using the notation S,=7/+¢eU+... +(cU)", we have S,(I—eU)=
=I- (sU)"‘rl Hence

ISl = — €Uy + (I — eU)~ || =2|| (I —eU)~ I
Thus |S,|| =K with K mdependent of n. Now choosing ¢ as above,

2 U |2 = (n+ Dol

IS, el =
. k=0

and this contradicts ||S,|=K.
Lemma 4. If T is completely non-unitary then § is a subspace of LV 2*,

Proof. If an element’ (p of $ can be written as ¢ = — T*"T™) for some n,
then we have:

¢ =U'(U-TW+U2(U-DTY+...+U"(U—-T)T* 1y +
+U_"+1(U*_T*)T"lﬁ+U""+2(U*—T*)T*T”lﬁ+...+(U*—T*)T’?‘"'1T"lp,

and, by (5) and (4) this means that ¢ € 2V 2*, In case ¢ = — T"T*")ys for some n,
we get the same fesult by changing the roles of T and T*, U and U*. ~
— 8VE* is closed, consequently it contains the space spanned by the ranges
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of (I—T*"T") and (/— T"T*") for all positive integer n. Thus we only have to prove
that if, for some @€9,

(11) o L{I-T*T"9 and @ L(I-T"T*$H n=12.)
then ¢ =0. (11) implies
(U—T*T"p=0 and ([—T"T*")p=0.

So we have T*"T"¢ =T"T*"p =, hence ||T"(p[|2 =|T*¢|*=|¢|? for n=1,2, ....
This implies that ¢ =0, because T is completely non-unitary.

Lemma 5. If U is the minimal unitary g-dilation of a completely non- umtary
operator T, then R =LV &*,

Proof. Using (2), it suffices to prove that

(12) V U"S = evex

n=—oco

By Lemma 4, $ is a subspace of £V £*. (4) and (5) imply, that both £ and £* reduce
U, consequently U"$ is a subspace of 2Vex for n=0, *1, ... - So we have

(12) V Urscover

n=—oo

©0

On the other hand, (4) implies that both £, and 2} are contained in V U9,
for k=0, 1, .... Now (5) shows that "

V Ur$oever.

n= ~co

This relation and (12") prove (12).

Lemma 6. 8V&* = | Un(BVIBY B+VA®).

n=—oco

Proof. (6) and (7) show that

BVW>S L, and BrVW+o L.
So, by (5) and (4)

(13) V UM(BVIWBYBVW)DLY L*,
On the other hand, (4), (5), (6) and (7) show that 8 and I are contained in £;
similarly B* and IB* are contained in £*. Since both € and £* reduce U, this
implies _
V U'(BVIBY BFVIWF)C LV L*.
ThlS relation and its converse (13) prove the lemma.
Now, by Lemma 3 of [3], the following is true: If U is a unitary operator onA
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K and U, , ..., Ay are wandering subspaces of U, and the set of the finite linear
combinations 2 @On i (P, kE Uta,) is dense in &, then U has absolutely continuous

spectral measure
Thus, Lemma 6 implies

Lemma 7. The restriction of U to the reducing subspace 8V E&* has absolutely
continuous spectral measure. .

Combining this fact with Lemma 5 we get

Theorem 2. If U is the minimal unitary g-dilation of a completely non-unitary
operator T, then the spectral measure of U is absolutely continuous.

We shall use the following obvious

Lemma 8. If T has some unitary o-dilation U with absolutely continuous
spectral measure, then T" converges weakly to O as n— os.

Indeed, using (3) and the Riemann—Lebesgue lemma, we get for ¢, Yy €9

. 2n 2n
T0,¥) = oU 0, ¥) = ¢ [ €™ d(Esp, ) = ¢ [ -ef, (%) d3 0.
- 0 0 &

Thus Theorem 2 has ‘the following

Corollary. If T is completely nbn-unitary and has some unitary g-dilation,
then T" converges weakly to O as n— oo,

The next theorem gives a decomposition for 7.

Theorem 3. If T has some unitary o-dilation U, then $ can be decomposed
as H=9H,99,, in such a way that:

(i) 9, and 9, reduce T,

(i) T,=T|D, has a unitary og-dilation with absolutely continuous spectral
measure, -

(ii) T,= T|$f)2 is unitary.
Proof. Set 51=33ﬂ(2V££*). If p€$H,, then -

To=(T—U)p+ Up€ 8,V ULV L) C Ve

thus T$31<:Sj1 Similarly, T*Sslcsbl, so §, reduces 7.

Since £V £* reduces U, the part U; of U in 8V 2* will be a umtary 0- dllatlon
of T\ =T|9,. Now, by Lemma 7, U, =U|(8VE*) has absolutely continuous
spectral measure.

It remains to show that if 9,=909,, then T, =T|$, is unitary. Now, the
relatxons

(I‘—T*T)(p=U‘I(U—'T)(p+(U*—-T*)Tq),
(I—TT*)q):—" U(U*—T*)§0+(U—T)T*(p
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(@ €$) show that $, contains the ranges of both I—T*T and I — TT*. Thus y € §,
implies ¥ L (/—T*T)$ and ¢ L (I—TT*)$H, hence T*Ty =y and TT*y =y. This
means that T is unitary on $,, and so we have finished the proof.
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