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We shall consider operators J in a Hilbert space which admit unitary 
Q-dilations (n >0) , i. e. unitary operators U defined on some Hilbert space ft(z>§), 
such that 

(1) T"cp = QPU"(p ( < ? £ § ; « = 1,2, ...), 
where P denotes the orthogonal projection of ft onto §>. Obviously, (1) implies 
(1*) T*"cp = QPU~n(p. 
B. SZ.-NAGY and C . FOIA§ have characterized the operators T which have unitary 
^-dilations; see [4]. 

We shall denote by <J(U) the spectrum of U. In the case Q = 1, O(U) has been 
studied extensively, cf. in particular [1], [2], [3]. The purpose of this paper is to 
study the spectral properties of U for arbitrary q >0 . 

First we recall some definitions, familiar in the case o = 1, but which extend 
immediately to the general case too. 

The unitary g-dilation U of T is minimal, if 

(2) ft= V U"9>. 
n = — OO 

In this case U is uniquely determined up to isomorphism. (The proof is similar 
to that given in the special case Q = l , cf. [*] . ) 

Let Ee ( O s f l s 2 n ) be the spectral function of U. We say that the spectral 
measure of U is absolutely continuous if, for every vectors <p, i^€ft, the function 
(E9q>, i/0 of & is absolutely continuous on O^&Sln, i. e., if there exists a function 
ftp ^(9)6L(0, In) such that 

9 

(3) (&<P,<I') = f 
O 

T is called completely non-unitary, if there exists no vector (p £ cp^O, for 
which 

•••=\\T*2(p\\=\\T*(p\\=\\(p\\= II T<p\\ = |jT2(p\\ = ... • 
We shall use the following notations: 

4) 2n = Un{U-T)%, fl* = U*»(U*-T*)§> (n = 0, ± 1 , ...), 

(5) fi= V Ûn> 2* = V S*. 
« = — OO tt = — oo 
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We denote by Q the orthogonal projection of £ onto V and by Q' the 
«=l 

orthogonal projection of £* onto V Further, we set 
n = l 

(6) 93 = ß £ 0 , 93* = Q'2%, 

(7) 9B = ( / - Q) £ 0 , 9B* = (7— Q) 2%. 

L e m m a 1. 2-n±£k and £¡¡±2* if n-k^2. 

P r o o f . (4) shows that it sufficies to prove 

(8) {lT{U-T)(p,(U-T)^) = 0 | 
/ it tyt — 7 i 

(8*) (U*m{U*-T*)(f>,{U*-T*)\li) = Oj ' " " ' 

where q> and t¡/ are arbitrary vectors in 
In order to prove (8), we use. (1): 

(Um{U — T)<p,(U — T)\p) = (Umcp, ip)-(Um-1T<p,\]j)-(Um+i(p,Tilj) + (U",T<p,Tilj) = 

Similarly, using (1*) we get (8*) as follows: 

(U*m(U*-T*)(p,(U*-T*)\l/) = 

= (j/-m(p, i i / ) - ( u ~ m + i T * ( p , t /o-ct/-"1-1«?, T*ij/)+(u-mT*<p, T*\j/) = 

• T*m-lT*(p,y/J-|^-r*m+>, T*\ii +^T*mT*q>, = 0. 

L e m m a 2. 93, 93*, 9B and 933* are wandering subspaces for U. I. e., if n?±k then 

i7n2Bj_E/'i9B, unw*±uk,SB*. 

P r o o f . It .suffices to prove that 

(9) UmQ20±Q20, UmQ'2tLQ'2t, 

(10) Um(I-Q)20±(I-Q)20, Um(I-Q')2t±(I-Q')2*0. 

for m — 1, 2, ... 
In order to prove (9) choose arbitrary vectors cp — Qq>' and ip = Q\j/' (cp', i¡/' 6 £0). 

We have 

(C/>, = {U"-Q<p',Qf) - (<QU"Q<p',r). 

Now, Qcp' is an element of V hence QUmQ<p' is an element of V Thus, n= 1 n=m+1 
by Lemma 1, the last inner product equals 0. This implies the first part of (9), and 
we can prove its second part in a similar way. 

- \ — T* '"(p, ip 
u 
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Now, every vector in ( / — g ) £ 0 has the form (p = (p' — (p", where <p'££0 and 

V £„, thus we have £/><E V T h i s implies Umq> J _ ( / - 0 £ o . So we get 
n=l n=1 

the first part of (10); the second part can be proved similarly. 

L e m m a 3. If 933 =2B* = {0}, then T is a unitary operator and q = \. 

P r o o f . Let 2B = {0}. In this case (7) implies q> = Q<p for every <p = 20, con-
OO OO OO 

sequently £ 0 c V £ n - N o w we have 21 = U20<^U 2N=Y 2„, consequently 
n= 1 11=1 11 = 2 

OO OO 

£0 c V £„ holds too. On the other hand, Lemma 1 shows that £ 0 J_ V £„. So we 
n = 2 n — 2 

get £ 0 = {0}. Hence, Ucp = Tcp for We can similarly prove that SB* = {0} 
implies U*(p = T*(p for €§• Moreover, Uq> = Tip implies ||<jo|| = \\Utp\\ = \\T(p\\ = 
= \\QPU(P\\ — Q\\(p\\ for every (pconsequently g = l and we have finished the 
proof. 

T h e o r e m 1. If T is non-unitary, or if Q^ 1, then o(U) is the whole unit circle 
of the complex plane. 

P r o o f . Since U is unitary, u(U) is situated on the unite circle. On the other 
hand, by Lemma 3, there exists an element (p ^ 0 in SB or SB*. By Lemma 2, U is 

a "bilateral shift" on V U"(p. Since the spectrum of the bilateral shift coincides 
n = — oo 

with the unit circle C so we have a fortiori o([/) = C. 
A direct proof of the last statement can be given as follows: Suppose the con-

verse case, i. e. that there exists £ such that |e| = 1 and e $ a(£/). In this case ( /—eU)~ 1 

is bounded, and using the notation Sn=I+eU+... +(et/)", we have Sn(I—eU) = 
= /—(et / ) n + 1 . Hence 

IISJ = || [/-(eUy+(/-e U)-1 S2| | ( / -eU)~ 1 II -

Thus |1 *S"„ |1 ^K with K independent of n. Now choosing q> as above, 

l|5n<p||2 = ZitUfcp Z \\wk<p\\2 = (n+i)M2, 
k = 0 k = 0 

and this contradicts HS^H^AT. ' 

L e m m a 4. If T is completely non-unitary then § is a subspace of £V£* . 

P r o o f . If an element (p of § can be written as <p = (/— T*nTn)\j/ for some n, 
then we have: 

(p = U~1(U-T)il/ + U-2(U-T)TiJ/ + ...+U-n(U-T)T'>-1
ll/ + 

+ U~n+1(U* -T*)Tnij/ + U~n+2(U* -T*)T*T"tl/ + ... + (U* — T*)T*?n~1 T"\]/, 

and, by (5) and (4) this means that (p£2\J2*. In case q> = (I-TnT*n)ij/ for some n, 
we get the same result by changing the roles of T and T*, U and U*. 
~ £ V £ * is closed, consequently it contains the space spanned by the ranges 
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of (I-T*"Tn) and (I-T"T*n) for all positive integer n. Thus we only have to prove 
that if, for some 

(11) (p±(I-T*nTn)§> and <pl.(I-TnT*n)% ( » = 1 , 2 , . . . ) 

then 9 = 0. (11) implies 

(/-T*"Tn)(p = 0 and (I-T"T*n)(p = 0. 

So we have T*nTn<p,= TnT*n(p = q>, hence | | r > | | 2 = | | r *> | | 2 = ||<p||2 for « = 1,2, . . . . 
This implies that <p = 0, because T is completely non-unitary. 

L e m m a 5. If U is the minimal unitary Q-dilation of a completely non-unitary 
operator T, then ft = £V£*. 

P r o o f . Using (2), it suffices to prove that 

(12) V = £V£*. 
n= — ™ 

By Lemma 4, § is a subspace of £V£*. (4) and (5) imply, that both £ and fl* reduce 
U, consequently U"§> is a subspace of flV£* for « = 0, ± 1 , ... . So we have 

(12 ' ) V t / " § c f l V £ * . 
RI= -CO 

oo 
On the other hand, (4) implies that both 2K and ££ are contained in V Un§>> 

n= —oo 
for k = 0, ± 1 Now (5) shows that 

V £ / " $ = > £ V £ * . 
n = — co 

This relation and (12') prove (12). 

L e m m a 6. £V£* = V «7n(93V9BV93+V2B*). 
n = —OO 

P r o o f . (6) and (7) show that 

93V9B3£0 and 93*V9B*i>£S. 
So, by (5) and (4) 

(13) V i/"(»V9BV93*V2B*)3£V£*. 
N = — OO 

On the other hand, (4), (5), (6) and (7) show that 93 and 913 are contained in £ ; 
similarly 93* and 213* are contained in £*. Since both £ and £* reduce U, this 
implies 

V {/"(93V2BV93*V9!B*)cfl\/£*. 
n = —oo 

This relation and its converse (13) prove the lemma. 
Now, by Lemma 3 of [3], the following is true: If U is a unitary operator on 
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ft and S& i , •••! w are wandering subspaces of U, and the set of the finite linear 
combinations 2 <Pn,k (<Pn,k€ is dense in ft, then U has absolutely continuous 

n,k 
spectral measure. 

Thus, Lemma 6 implies 

L e m m a 7. The restriction of U to the reducing subspace £V£* has absolutely 
continuous spectral measure. 

Combining this fact with Lemma 5 we get 

T h e o r e m 2. If U is the minimal unitary Q-dilation of a completely non-unitary 
operator T, then the spectral measure of U is absolutely continuous. 

We shall use the following obvious 

L e m m a 8. If T has some unitary Q-dilation U with absolutely continuous 
spectral measure, then T" converges weakly to O as n — 

Indeed, using (3) and the Riemann—Lebesgue lemma, we get for cp, ij/ £ § 

2 rc 2 j i 

(T"(P, </0 = Q(U°(p, M = Q J e '"9d{Ef)(p, i/o = £ / 
o o * 

Thus Theorem 2 has the following 

C o r o l l a r y . If T is completely non-unitary and has some unitary Q-dilation, 
then T" converges weakly to O as 

The next theorem gives a decomposition for T. 

T h e o r e m 3. If T has some unitary Q-dilation U, then § can be decomposed 
as § =§i © < n such a way that: 

(i) and §>2 reduce T, 
(ii) Tl=T\9)l has a unitary Q-dilation with absolutely continuous spectral 

measure, 
(iii) T2 — T\9)2 is unitary. 

P r o o f . Set S 1 = S n ( f i V £ * ) . If then 

Tip = (T - U)cp + Uq> £ £0V U(2 V £ * ) c £ V £ * 

thus c § , . Similarly, T*9>1cz§>1, so reduces T. 
Since £V£* reduces U, the part £/, of U in £V£* will be a unitary g-dilation 

of T1 = r | § 1 . Now, by Lemma 7, U1 = C/|(£V£*), has absolutely continuous 
spectral measure. 

It remains to show that if §>2 = §>Q§>1, then T2 — T|fj2 is unitary. Now, the 
relations 

( / - T*T)(p = U-1(U-T)cp + (U*-T*) Tcp, 

(I-TT")(p = U(U* - T*)(p + (U-T)T*(p 
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(<p €£>) show that contains the ranges of both I-T*T and I-TT*. Thus ij/£$)2 
implies ij/ ±(I-T*T)§> and \}/ L{I- TT*)%, hence T*T\}/ = \jj and TT*\}/ = ij/. This 
means that T is unitary on § 2 » and so we have finished the proof. 
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