
Remarks to a paper of D. Gaier on gap theorems 
By G Á B O R H A L Á S Z in Budapest 

In his paper [1] cited, D . GAIER proved several gap theorems, including the 
high indices theorem for Borel summability. However, in its original form, his 
method is not applicable to the theory of Abel summation. In this paper wè show. 
how to eliminate this difficulty by a slight modification. At the same time we complete 
the series of the theorems of GAIER with some more, obtainable by the same modi-
fication. 

T h e o r e m 1. (HARDY—LITTLEWOOD [2].) If a series is Abel summable to 0 
and has Hadamard gaps, then it converges to its Abel sum 0. I. e., if 

f{x) = ¿a„e~^, ^ q > 1 , . > 0 ... . 

and 

then 

lim f{x) = 0, 
X-* + 0 

2 a n = 0. 
N= 1 

Or in an almost equivalent form: 

T h e o r e m V. If fix) of Theorem 1 is bounded for x > 0 , then 

sup 
JVEI 

2 "n 
N = I 

c t - s u p | /(x) | , 
x>0 

where the constant c, depends only on the sequence {A„}. 
(Such positive constants, independent of the quantities an, x, TV etc. will be denot-

ed in the sequel by c2, c3, ... .) 
Without any special difficulty, we get the following more precise information 

about the rapidity of convergence in Theorem 1: 

T h e o r e m 2. Let r(x) (x > 0 ) be an increasing positive function such that with 
some agO r(x)x~a h decreasing, fix) should satisfy, in addition to the hypotheses 
of Theorem 1, 

\fix)\^rix) ( x>0) . 
In this case 

I 2 an\ = CzriX'1). 
xn<x 
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The condition imposed on r(x) implies that it is larger than constant times 
x* near 0. As to smaller remainder terms, let us restrict ourselves to extremely small 
ones in the following connection. 

Theorem 2 suggests that 2 an and f(X~v) have approximately the same 
Xn<X (const 

implies | 2 > „ l ^ e x p ( - c o n s t . X) so that / (z) is regular in a larger half plane 
xn<x 

and by its vanishing at z = 0 of infinite order, / ( z ) = 0 . We can deduce this from 
1 

x log 2 x 
a weaker estimation, e.g. from |/(x)] g e x p | — ^ 2 J as is shown by 

T h e o r e m 3. If for the error term we have r(x) = e s(x> where s(x) is convex 
from below and 

. 1 

J i-s'{x)dx = + °o 
0 

then / ( z ) = 0 , an = 0 even if the weaker gap condition 

°° 1 

n=l U„ 

is assumed. 
Concerning absolute summability, we prove 

T h e o r e m 4. (ZYGMUND [3].) If f(x) has Hadamard gaps and is of bounded 
variation on (0, + «) , i. e. 

OO 

f I / ' ( x ) | 
o 

then 

2 k l < + - • 
n- 1 

T h e o r e m 5. Theorem 4 is valid if f(x), instead of being of bounded variation 
satisfies the condition 

" l /WI 
0 * 

P r o o f of T h e o r e m V. Suppose first 

V \an\ , 
Z - j — < 

n= 1 n 
and consider the Laplace transform 

F(s) = j f(x)exsdx (Re s < 0). 



Remarks to a paper of D. Gaier 313. 

Substituting the series representation o f f ( x ) , we get F(s) in the form 

0 0 <>= » 00 

F(s) = f 2 ane~x"x+sx dx = a„ f e(s~'-«)xdx = - ^ , 
$ « = 1 ¡1=1 £ n = i 

where the change of order of summation and integration is justified by 2 f I !<+=*=, 
•00 I 1 

a consequence of Z ~T + The sum on the right represents a continuation 
n = l K 

of F(s) into the right half plane with poles at s = A„ and corresponding residues 
— a„. An application of the residue theorem gives therefore 

N J 
= J F(s)ds, 

" = 1 | s | = i l 

provided and our task is to estimate F(s). 
On the negative real axis a bound is provided by the original integral represent-

ation : 
00 CO 

f \f(x)\e-°xdx g sup \f(x)\ f e~axdx = sup |/(x)| — „(<7>0). 
0 * > 0 0 . * > 0 a 

To be able to extend this, we form the Blaschke product for the region D obtained 
from the plane by omitting the negative real axis: 

°° VY - -
G(s) = JJ (]Is is determined by / l = l). 

iK 

By its vanishing at the poles of F(s), the function 

H(s) = F(s)G(s)s 

is regular in the whole of D, satisfying on both sides of the boundary line the 
inequality -

\H(-&)\ = |F(-<x)|cr-isup|/(*)| 
x>0 

because |C7( — <x)| = l. Well-known theorems of Lindelof type (see e. g; [4]) state 
that the same bound is valid for H(s) in the whole region D if we know in advance 
some mild estimation on a sequence of circles around 0, tending to infinity. Circles 
at a distance of at least 1 from all the A„'s can serve for such a sequence, for we 
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have on them 

^ \F(s)\\s\ ^ 2 - ¡ M r 
N= 1 P — ^NL 

2 kl+2 
L |s| ¿n 1st 2|s|=S*„ K J A„<— — SA„<2|s| 

. s M {2 ¿ - ^ + 2 1 4 2 + 
l 1=1 n |s| . . . n̂ J n=l — S.J„<2|s| 

and 0( |s |2) is well below the limit allowed in those theorems of Lindelôf type. 
Therefore, we may write 

^ sup \f(x)\ (sdD). 
x>0 

A 
Let R = 1 in the residue theorem written down above. We shall prove in a 

iq 
Lemma*), using heavily the gap condition (with its notations v„ = ]/An, p = ]fq, 

4 _ 

z=is, m=iq), that on | s |= i? we have | G | c3 , thus by the definition of H(s) 

\F(s)\ = № 1 
\G(s)\\s\ ~ c3R 7>yo 

The residue theorem then gives 

¿- J m m 

s u p \ f ( x ) \ . 

N 

2 an 
n=l 

|s|=« 
— sup |/(*)| . 
c 3 * > 0 

To get rid of the supposition 2 ^ ^ < + °° we first consider the function 
n = i 

f(x + ô) ((5>0) with the coefficients ane~lnS. For this the above argument holds 
and hence 

sup | / (x + 5)| S — sup |/(x)|, 
C3 x> 0 c3 x>0 

and we may let <5-<-0, the bound being uniform in <5, thus completing the proof 
of Theorem V. 

P r o o f of T h e o r e m 1. From Theorem V we know already that the partial 

sums, hence also the coefficients, are bounded so that + 00 and we may 
n=l n 

repeat the argument of the previous proof. The only difference is that f(x) is not 

*) See after the proof of Theorem 3. 
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only bounded but tends to 0 with x, which implies for a + °° the better estimations 
CO oo / \ 

|F(-a)| == f \f{x)\e~"dx = J o(\)e-xdx = o - , 
0 0 V^J 

\H(-a)\ = \F{-o)\o = o{\). 

Another variant of the Lindelof type theorem used states that in this case 

H(s) = o( 1) as -»+<», . . 

uniformly in s in the whole region D. Returning to F(s), this means 

1 
m = °\R 

for • |i| = R 

and by the residue theorem 

2<*n = o( 1). Q.,e.d. 
n = l 

P r o o f of T h e o r e m 2. First we remark that the constant 1 in r 

has no special significance since if 0 < c < 1 

r (cx) S r (x) = x" r (x) x'"131 m x?r (cx) (ex)"* = c*r (cx), 

r(x) being increasing, r(x)x~* decreasing. 
Now, the proof will consist of a repetition of that of Theorem 1, o(l) replaced 

everywhere by explicit estimations. 
First, 

|F(-<T)| = f r(x)e~axdx-J + J r I —1 — + #• I — \<f J x*e~axdx = 
O 0 1/<T J a • ' !/a 

i. e. 

xae~xdx \ = Ci,r I 1 1 a) fl-

owing to the properties of r(x) we can write further with a temporarily fixed R 

№ - e ) \ = c 4 r | l j for a ^ R , 

m - . ) \ s c 4 r ( l ) 0 . l s c 4 r ( l ) j l - i = c 4 r ( l ) ( | ) ' for 

The test function 
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is regular in D arid since Re -]=• S 0 there, we have on both sides of the boundary 
Vs 

\W(—<j)\ S 1 for a ^ R , 

• |wr(-ff)i-(^r=(l)"for 

On account of the estimations of H( — a) from above and those of fV( — tr) from 
below, the quotient 

H(s) 

W(s) 

(which is bounded since H(s) is bounded and | W(s) | S 1 in D) has the uniform 
bound on the negative axis 

By the much used Lindelof theorem this provides a bound in the whole region 
a n d app ly ing i t t o |S |=JR 

R is 

2a 

R — C 4 r I I 2 2 a = C S r 1 
R 

For F{s), |.v| = R this implies 

and by the residue theorem 
N 

2 a„ 
it—i 

f I ^ I f Í ^ I ^ ^ 
l^iV+lJ l̂ -iV+1 

which is only an alternative formulation of the theorem. 

P r o o f of T h e o r e m 3. The gap condition enables us (and it is its only 
use here) to form again the product 

Let further 

F»№ = J / ( * + S)e"dx, Hd(s) = Fg(s)G(s)s. 

As proved in Theorem 1', the last function is regular and bounded (uniformly 
with respect to <5) in D with boundary values 

Hs(-a) = -aG(-a) f f(x + ö)e~"x dx. 
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Since /(x)—0 as x— + 0 and 0(e_cons t*) as x — these boundary values tend 
uniformly to oo 

H(-a) = -aG(-a) J f(x)e~ ax dx^= — a G (— a)F(— a) 
o 

as ¿>—0. But then the convergence is uniform inside D and we get that Hd(s) tends 
to a regular and bounded function H(s) with the above boundary values H( — a). 
To prove / ( x ) = 0 it is enough to show that H(s) = 0. According to a well-known 
theorem*) this will follow if we can show that 

where the integration is on both sides of the boundary line. Recalling |G( —<r)| = l 
and the definition of H( — cr), we have to prove this with F( — a) in place of H( — a). 
Now, 

1 oo 1 

|F(-er)| S f \f(x)\e~nxdx + J \f(x)\e~"x dx ^ f + 0(e~"). 
o 1 o 

For a large enough the integrand attains its maximum when 

-s'(x)-a = 0. 

— s'(x) being decreasing, this value x = x(er) is a well-defined and decreasing function 
of a and with it the integral is less than 

1 . Q — s(xi — ax ^ e~ax. 

Since x(ff) tends to 0 with I/a, the second term in the estimation of F( — a) cannot 
exceed this bound and hence 

\F{-O)\=0(FI-") l o g | F ( - < r ) | AX+ 0(1), 

and it suffices to show 
CO o o 
r ax , c x , 

Introducing x as a new variable, we have, since —s'(x) = a, 

[*da = - f^a'(x)dx= f ^ £ ^ d x 
J fa J i a J ]/-5'(x) 

and partial integration shows that this is 

a 0 ( l ) + I i m x 2 | / - j ' ( x ) + 2 f i-s'(x)dx §= 0 ( l ) + 2 f i~s'(x)dx = *=o J J 
0 0 

Qu. e. d. 

*) This is JENSEN'S inequality J log \f(z)\\dj\ £ log | / ( 0 ) | , after a conformal. mapping 
M = i 

of the unit disk onto our region D. . • 



318 G. Halász 

Lemma. If {v„} is an Hadamard sequence V"+1 g j 
v v„ 

then with the definition 

p > 1 o/ positive numbers 

B{z) = E 1 - f - 1 + ^ 
V, 

we have 

for vNm < |z| m 

c 8 < | f i ( z ) | < c 9 

(m>l), uniformly in z and N. 

P r o o f . For nszN+1 

v„ 

1 + -

i + V 1«! 
— ^ < Z10^" 
1 - M . 

N nsjv+i j £_ 
v„ 

: .exp c,n z . 2 — 
nSN+1 V„. 

exp 

S exp 

z , 1 1 
Cjo—LJ- H + - 2 + 

Vjv+i I P P2 

ec". 

For n s N 

1 - -

1 + -

- + 1 

= 1 + — — + 
J f L _ i M _ i 
V„ V„ 

I - I M 
W) v„ 

vn £127-7 
S e 1*1, 

n — j exp 

s exp c 1 3 - j < 

1 -, boundedness from below follows. thus B(z) is bounded above. Since B(z) = 
z ) 

P r o o f of T h e o r e m 4. The hypotheses of Theorem Y are satisfied here' 
and we can use the results of its proof. 

Separating real and imaginary parts, we may suppose an real. If and only if 
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an and an+l are of different sign we pick out a number between /„ and Xn+1, e. g. 
their geometric mean and denote the sequence constructed this way by {/ik}. On 
the positive real axis the function 

changes sign at its simple zeros s = /ik so that according to the construction, P(Xn) 
has the same changes of sign as an, and anP(l„) is either always positive or always 
negative. Now the /^'s form an Hadamard sequence and since X„ is " fa r " from 
all of them in the sense required in the lemma, applying it to P{s), 

• \P(X„)\>c14. 
Consequently 

Z N s — z KPVJI = -1-n=l t l4»=l c14 

N 

n = 1 
Zanp{K) 

and it is enough to prove that the sum on the right is bounded. 
This is a partial sum of the residues of the function F(s)P(s) originating from 

the poles of F(s) at s = Xn. Taking into account the remaining poles s = —fik 
provided by P(s): 

Z anP{Xn) = - / F(s)P(s)ds+ Z H-Hk) Res P{S). 
A,.<R ¿Ml J ftk<R s = — fik 

Xiv Let here R = . This choice guarantees that R is far from both the 1,,'s and the 

fik's and we have 

as we proved in Theorem Y while 

by the Lemma so that the integral on the right hand side is bounded. 
To estimate the sum on the right, we return to the original integral represent-

ation of F(s): 

F(-PK) = F f(x)e~^dx, 
o 

Z F(-nk)pk = f f(x) Z Pke-""xdx. ... ^ D V - n Hk<R o l*k<R 
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Here we have introduced the notation pk = Res P(s). Integrating by parts where 
S = - / I ( T 

we may assume that l im/(x) = 0 making the integrated part vanish, 
*=o 

f f(x) 2 dx = f f (x) 2 — e~"kX dx It k<R 

S max ISO 
2 BjLe-,ikx . f \f(x)\ dx S sup 

ftk<R Vk o K 

K 

Z v k= 1 
/ l / ' W I ^ , 

the last inequality by a simple Abelian theorem. Appealing once again to the residue 
theorem, we have 

lik<Rflk ¿m\s\=R S 

where the estimation |.P(,s)| < c 1 5 assures that the integral is bounded and so are 
OO 

the partial sums of 2 ~ - Thus we proved 
k=\ f*k 

2F(~»k) Res P(s) = 0(1), 

hence 

2anP(K) = 0( 1), 
n= 1 

from which according to an earlier remark the conclusion already follows. 

P r o o f of T h e o r e m 5. We try to repeat the previous proof up to the stage 
where the boundedness of variation was exploited. 

The results of Theorem V were used there and we do not know in advance 
if its hypotheses are fulfilled here. But a simple consequence of our assumptions is 

oo 

/ \fix)\dX^+oo 
0 

and thus the primitive function 
oo 

¡f{x)dx = -
J n=l K 

is of bounded variation on (0, + =»), implying by Theorem 4 

/ 1 = 1 

This was a prerequisite for the considerations in the proof of Theorem 1'. The 
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boundedness of f ( x ) was used to deduce F{—a) = O Here we have, however, 

the same bound by 
CO oo 

|F(-<T)| / \f(.x)\e~°x dx = f y^-xe-^dx ^ 
0 0 x 

f \ m d x = ^ f m . d x . J Y n J Y ~S max xe~°x 
xmo 

Therefore the results of the proof of Theorem Y are valid, 

o - * S x 

F(s) = O (M = B) 

and the proof holds unaltered until the partial integration. This was performed 
to prove the boundedness of 

J fix) 2 Pke-"kXdx. 
0 fk<R 

Her» we proceed more roughly: 

fik<R 

— oo 

¡ f i x ) 2 pke-^xdx ^ f \f(x)\ 2\Pk\e-"kXdx. 
V ... ^ D y I 1 k- 1 

As we showed, the partial sums of 2 a r e bounded, hence \pk\ <c16/i f c and 
1 t*k 

we get further, {nk} being an Hadamard sequence, 

2\Pk\e-"kX ^ c16 2nke~»*x S cl7 ¿(Hk-Hk-Je-»"* ^ k= I 
oo VkX 

C-^2 f e~"du x k=l.J.r 1 Ilk-IX 

The integral to be estimated is, therefore, less than 

£lZ 
x 

o A 

and with this the proof is completed. 

I wish to express my thanks to Prof. Dr D. GAIER for his reading the 
manuscript and making some valuble suggestion among them calling my attention 
to a mistake in my original proof of Theorem 3 wich is corrected here. 

21 A 
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