The shell of a Hilbert-space operator

By CHANDLER DAVIS in Toronto (Canada)

For an arbitrary closed linear operator in Hilbert space, I will define a subset
of real 3- -space which summarizes much information about it: its point spectrum
its numerlcal range, many of its spectral sets, and more besides.

' .
1. Notations and principal ideas

Let $ be a complex Hilbert 'space. For any x€$, let the corresponding linear
functional be x*; thus y*x is the inner product of x by y.

Let 2 be a closed linear relation in §; that is, a closed linear subspace of
9.9 9,, where each $; is a replica of §. (No distinction is to be made between
$: and H, {0}, or between $H, and {0} P H,.) The most important case is that
of an operator A4, i.e. when (y, x) € means that y=Ax. The ’domain’ of U is-
{x: (A)(y, x) €A}, its ‘range’ is {y: (Ix)(y, x)€U}. (This reversalof the custom-
ary order in the notation for relations will save me, in.§ 5, from having to reverse

-order in a more troublesome way.) )
Before giving the novel ideas I must also fix the notations for stereographic

projection. Let C denote the complex plane and C =C U {es}. Define z: C =R? by

2z —1+[zf?
1+z]2° 1+z)?

an = [ ] (z€C), and 'c(oo) (0 1).

The first two co-ordinates in R are here collapsed into a single complex number;
this will be done frequently throughout. In this notation, the Riemann sphere
7(C) is the unit sphere S={({, h)€R?: [[|>+h*=1}. Letting B={(, K)cR3:
|£|> + A2 =1}, the unit ball, define n: B—~C by taking n({, h) to be that zeC for
which ({, #) is on the line joining (z, 0) to (0, 1); explicitly,

(1.2) "G = 2 G, and 20,1 = .

—h
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For any subset EC B, n(E) will be called the ‘shadow’ of E. On S, © coincides
with 771,

Defipition 1.1. The shell’ of the relation U, denoted s(QI), is deﬁned as
the set of points

3 O enw= [l

2x*y —IIxII2+l|yl|2]
X7+l + 1

in R3, where (y, x) runs over all non-zero elements of 2.

In case of an operator, I will write alternatively s(4). This is the case where
(0, 1) does not belong to the set. s(A) is void if and only if W={(0, 0)}.

One finds by direct computation that s(2)S B. Further geometric properties
of the set, in relation to spectral properties of A, will be developed below, especially
in §§2—3. Examples are treated in §4. In § 5, I will state the essential facts on the
transformation of s(2) when A is subjected to a Mdbius transformation.

Next, consider spectral sets [16], [17, § 154]. :

Let us adopt the followihg terminology: :

(i) a set of the form {z€C: |z—zo|=r} (z,€C, r=0) will be called a
“finite disk’;

(i) a set of the form {zeC: |z—20[ zr}U{oo} (zo€C, r=0) will be called
a_ ‘complementary disk’;

(iii) a set of the form {zE C: Re ({z)>a}U{oo} (i¢t=1, ac R) will be called

a ‘half-plane’;

(iv) a set of any of the types (i)—(iii) will be called a-‘disk’. Thus the disks.
are exactly those subsets X of C for which 7(X) is a proper spherical cap.

" The main result of the paper, Theorem 7. 2, may be stated roughly as follows:
A disk X is a spectral set for A if and only if s(A) is contained in the convex hull

of (X ) That is, the support planes of (the convex closure of) s(A4) correspond',' .

naturally one-one to the minimal disk spectral sets of A. This is exploited in §8
to give a description in terms of the shell of the operator classes occurring in [22].
In order to formulate my results for arbitrary closed linear relations, 1 had to
supplement the basic results of the paper [1] ') of ARENS with a study of the spectrum
(§ 2, below) and of the rational functional calculus (§ 6).
- My grateful acknowledgement is due to H. S. M. COXETER, C. Foias, G. KALISCH,
and C. A. McCartHY, for.stimulating conversations. '

1) The reader is w_arned of the uncommonly pesky misprints in the article [I]. Professor ARENS
has pointed out also that Theorem 3. 7 of {1] is not true in quite the generality claimed.
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2. The shell and the spectrum

_ It has already been remarked that s(2)< B. The shell may have points on the
boundary, the sphere §; this depends on spectral properties of 2, see Theorem 2. 2
_below. I define the spectrum in a form convenient for the purpose; cf. [13, § 2. 16],

A ~[1,§2]. (Inthe followmg definitions, recall that it is $, which contains the domaln)

Definition 2. 1. 0¢o (‘2[) the ‘point spectrum’ of 2, in'case er1532¢{(0 0)}
The ‘null-space” N(A) is the set of xesj such that (0, x) €, thus 0€0,() if and
only if 9(2) = {0}.

Definition 2.2. 0¢ o (), the ‘continuous  spectrum’ of 2, in case there -
exist x, € HON(), y,€9, such that (y,, x,)€U, |x,] =1, and y,—O0.

Definition 2.3. The ‘range’ R(A) is the set of y€H such that for some
x€9, (¥, x)€A. 0€0,(A), the ‘residual spectrum’ of A, in case R(A) =H.
According to these definitions, 0 may belong to any one of o, ac, a,, inde-
pendently of whether it belongs to the others. :
Let 3 denote the identity. relation: (y, x)€ 3 if and only if x=y.

Definition 2.4. For z€C, z¢o, () if ‘and “only if 0€0,(U—2z3J), and
similarly for o, 6,. «€0,() if and only if 0€g (A1), and similarly for o, g,.
Thus = €0,() if and only if the domain D(A) is not dense. :

Definition 2.5. The ‘approximate point spectrum’ ¢,(2).is o,(A)Ua(20).
The ‘approximate residual spectrum’ ¢,(%) is 6, (W Ua, (‘JI) The ‘spectrum’ ()
is 6, AUo (MUa, ). :

Proposition 2. 1. 06&,,(91) if and only if there exist x,, y,€9 such that
(V> X)€W, X[l =1, and y,~0. 0€ 0, () if and only if REA)#=H.

The first property is the familiar justification for the term ‘approximate point
spectrum’, cf. [10]. The second has no counterpart under the usual definitions.

Proposition 2._2. o (N) is closed.

I give only the key step in the (familiar) proof: suppose we have chosen, as we
may if 0¢ o (), numbers z,€0,(A) with z,-0, and elements (y,, ‘,,)EQI 2,3
with ||x,| =1 and | y,] 0. Then 0€0,(N) is established by using, as the sequence
in Prop. 2.1, (y,+2,x,, x,) €. '

Definition 2.6. The ‘adjoint’® A* of a relation A is (—U~1L; that is,
(w, 2) €A* if and-only if, for all (y, x) €A, w*x =z*y.

It follows easily that (a2 + b3J)* =aA*+ b3. :

The following property of ¢,, ., 6, may.justify the peculiar way I have defined
the types of spectral point. :
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Theorem 2. 1. z€o, () if and only if Z€o(U¥). z€o(N) if and only if
Z€0,(U*). Similar assertions hold for o in place of z.

Proof. The first statement follows at once from the definitions.” As for oo,
it presents-no special problem: merely consider A~! in place of . It remains to
prove the assertion concerning z€g,., and we may evidently take z=0. The proof
is essentially familiar.

Let P denote the projector of H, D H, onto H,, and let Q denote the projector
of H, 89, onto . The pairs (y,, x,) occurring in Definition 2. 2 will be sums of
(s, €D L H, and (0, x,)€9,; because x, | 9YQA), we have also (0, x,)1$H, nA;
hence (y,, x,) L H,NA. Also it is clear that both (y,, x,) and (0, x,) are orthogonal
to H,; NAL. We now confine attention for. the moment to a certain subspace |
of $,D9H,, namely, -
2D - K=, NASH; NAL)L =N(P-Q)*.

It reduces both P and Q.
‘ We have seen that (y,,,' x,) € QK and (0, x,) € PR, though both of norm =1,
satisfy [(3,, x,) — (0, x,)] =]y, ~0. It is required to prove the existence of w
such that (z,, w,)€(1 - Q)R] and (z,, 0)€(1 —P)K, both (z,, w,) and (z,, 0) have
" norm =1, and yet they satisfy Iz,, W) —(z,, )] =|lw,]l =0; for then the sequence
of pairs (~w,, z,) €UA* will show 0€(U*) from Def. 2. 2.
To prove this, deﬁne as in [7] and [14,1.4.6 and I. 6. 8],

=(P+Q-1?, S=(P-0)
(commuting operators =0). We are already restricted (see (2.1)) to K=N(S)L,

and it is easy to see that there is no loss in restrlctmg further to 8= RG‘R(C)
O =9, ﬂﬂ@ﬁzﬂﬂi ) Then

(2.2) o (CS)-*(QP — PQ)

" turns out to be a unitary operator £ > 2 taking P2 to (I'— P)Q and QL to (1 — Q)Q
‘Therefore we are able to specify (z,, w,) and (z,, 0) having the properties desired:

the images under (2 2) of (y,, X,) and 0, x,), respectlvely
The proof is complete.

Proposition 2. 3. o() is closed.

This is immediate from Prop. 2.2 and Thm. 2. 1.
The main relevance of mentioning the duality between point and residual
-spectra in the present connection is that, as will now be explained, only ¢, is involved
n matters concerning the shell. '

Theorem 2.2. The set S N s(A) consists exactly of the image of o ,(N) under
the stereographic projection T.
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Indeed, for C this follows easily from (1. 1) and (1. 3). As for eo, o€ 0, (A)
is equivalent to (y, 0) €A for some non-zero y, which has already been remarked
to be equivalent to (0, 1) €s(2).

Theorem 2. 3. The set SN s(A) consists exactly of the image of c (QI) under
the stereographzc pro;ectwn T.

- Proof. Partl. Let zeC No(A); it is to be proved that 7(z) € s(A). We can
choose (y,, x,) €U such that |x,||=1 and y,,—zx,,—»O. For such a sequence, it is
easy to compute that ¢(y,, x,)—~1(z).

Let w¢co(A); it is to be proved that r(oe)Es(?I) ‘The above paragraph
(for z=0) gives a proof by exchangmg x with y in (1. 3).

Part II. Assumé z€C, 1(z)€ s(W). This means that there exist Vs X, ,,)EQ[
~such that @(y,, x,)—(2).

If {ix,ll = o(jly.l), there is no loss of generality in assuming that no x, is 0;
replacing (y,, x;) by (Vu/lxall, X/l xal) gives still a point of A, having the same
image under ¢, so in this case there is no loss of generality in assuming that ||x,|| =1.
" Now : o '

—1+nl? | =1+
. Tyl 7T THEE
implies |y,| —|z|; then also x}y,—z. This implies that |y, —~zx,]?—~0. Hence .
z€0(N) (provided, to be sure, that x, 1 NQU —23); but if NEA—z3J) is non-tr1v1a1
then z€0,(A), which is also all rlght)

If, on the other hand, |x,|=o(||»,l), then

— sl 4yl

a2 + [l yall?
o(y,, x,)—(0, 1), and we must be in the remaining case, t(e=)€ s(). This is easily
disposed of, and the proof is complete.

b

3. The shell and the numerical range

First, the followmg key observation, -which follows immediately from the
definitions. »

. ,Theorem 3. 1. The shadow of the shell is the numerical range.
The definitions to be consulted are those in § 1; and the following
Definition 3. 1; The ‘numerical range’ of U, ~denoted w(), is
, e lxl =1, (0, X)EQI}
w1th oo adJ01ned in case ooEap(QI)
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In light of the last theorem, the following may be regarded as a sharpening of
‘the Hausdorffi—Toeplitz theorem, which asserts that the numerical range of an
-operator is convex:

Theorem 3.2. For every pair of points of s(W), there is an ellzpsozd ({ perhaps
.degenerate) containing them and lying in s(2).

Proof.  Let us normalize every vector (y, x) entering in (1. 3), [|(», x)'||2=
=|x|>+|yI> =1, so that (1.3) reads simply ¢(y, x)=@2x*y, —||xII>+]»]?).

Now 'argué as in the proof of the Hausdorff—Toeplitz theorem [9]. The two
given points of s(A) come from two unit vectors (v, X;j), (¥2, X,), spanning a
space (SCQ[ The set of points

G (Re(2x*y) Im@2x*y), —x x+y*)

in R3, as (y, X) ranges over all unit vectors in the 2- dlmenswnal space S, w111 be
shown to be an ellipsoid, and it is Ss() by definition.

Each component in (3. 1) is a hermitian form in the variable (y, x). By suitably
-choosing co-ordinates in R® we may assume all have trace zero; and then by- suitable
.choice of co-ordinates in & we may write (3. 1) as :

6.2 (e, (E2 — )+ 2Re GuE), @ (P~ D+
+2Re(baln), a(E— ) (PP =D,

with a,, a,, a; real. It is elementary to express the set of pomts (3. 2) explicitly
-as an ellipsoid, and the proof is complete.

Thus the shell is in general not convex, as the examples 1mmed1ately followmg
‘will illustrate, but it becomes convex if its “holes are filled up”. That is, the un-
bounded component of the complement of the shell, is the complement of a convex
‘set. - ’ '

Proposition 3. 1. Assume A is not densely defined. It may be extended to
B=AD(H,O0DW)) (that is, B is the zero operator on D)L). Then s(B) is a
union of (perhaps degenerate) ellipsoids joining points of s() with (0, —1).

Proof. -Of Cdurse s(B)2s(A) just because BOA. The general point of B

is (y, x+x"), where (¥, x)€U and x’€ DA)L. Now use (y, x) and (0, x) as the

‘vectors spanning &, in the construction of Thm. 3. 2.
As a corollary of Thm. 3.2, we have '

Theorem 3.3. Unless () is void, every point of s(A) lies on a (perhaps
degenerate) ellipsoid lying in s() and intersecting S. :
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Proof. Imbed $ in a space $° of approximate proper vectors of . This
" is done in the same manner as given by BERBERIAN [3] for the case of an operator.
Let A° denote the corresponding relation in $°® $°. It is easy to see that S(AY) =
=s(2). Now s(A)NS is just (o, (A%))=1(c,(2AW)), which is not empty. Given
any point of s(°), choose an arbitrary point of s(A°) N S, and invoke Thm. 3.2
to show there is an ellipsoid in s(°) joining them, as desired.

The proof could have béen accomplished by approximation without mentioning
$°, as was done in Thm. 2. 3. 4

Many theorems are known drawing conclusions on the structure of an operator
from failure of its numerical range to have a smooth boundary [9], [18], [12]. The
key seems to be the degeneracy of the ellipsoid in Thm. 3. 2, and these theorems
should have sharper forms in which the shell would figure in place of the numerical
range. There should also be theorems relating the shell with dilations. A small begin-
ning is made in § 8 of this paper. ' )

4. Examples

In this section various results are listed, illustrating the sort of shells which
occur. The justifications of the results are mostly easy, and are not given.

Example 1. Let 4 be a normal matrix with eigenvalues Ais *+*» Ay. Then
5(A) is the convex hull of the points 7(1;)€ S.

Example 2. Let A= (g (1)] Then s(A) is the set of ({, H)€R3 satiéfying
HP+t+3)P=1. This is a non-degenerate ellipsoid tangent to the unit sphere
at the point corresponding to the eigenvalue of A, viz., (0, —1)=1(0).

Example 3. Let A= [(1) (1)) Then s(A4) is the set of (&, #n, k)€ R® satisfying

E4n>—th+h>—E+h=0. This is a non-degenerate ellipsoid tangent to the
unit spere at the two points correspondmg to the eigenvalues of A, viz., (1,0)=1(1)
and (0, — 1)Y=1(0). ,

From these results, s(4) can be found for all 2X2 matrices by using the results
of § 5. In particular, the shell of a 2 X2 matrix is a degenerate ellipsoid if and only
if the matrix is normal; otherwise, a non-degenerate ellipsoid.

Example 4. Let 4 be a normal operator. Then s(4) is the convex hull of
1(0(4)), except that the points 7(c(A4)\ 6,(4)) are not in s(4). In particular, the
shell of the bilateral shift is {(¢, 0): |{|<1}.

Example 5. Let ¥ denote the unilateral shift. Then s(V) {€,0): [¢|<1},
but s(F)={({, HeB: [[|<1, h=0}. (To prove all the points with A<O are in
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s(V*), it suffices to consider sequences of the form (3, {, {2, {3, ---).)] Note that }'~1
_ is a not-everywhere-defined, bounded operator. It happens also that ¥ and V!
have the same shell. Nonetheless, the two operators are quite different: o,(V)=
={z: |z| <1}, while o,(V~')={z: |z]>1}N{eo}. This is a pleasingly simple instance
of Thm. 5.1 and Prop. 6. 4 below. Note also that ¥* happens to be the same as
the extension of ¥ ~! obtained as 1n Prop. 3. 1; the relationship between their shells
is as described there.

- The preceding examples show some empty o,, hence some shells disjoint
from S. It is easy to see from familiar results that if D() is dense then o, () is

not empty, hence s() is not disjoint from S. However we have

Example 6. In 2- -space, let Ax,=x; 1 x,, and let 4 be otherwise undefined.
Then 5(4)={(0, 0)}, 6.(4) is void, 6(4) =0,(4)=C.

5. Transformation properties of the shell

The facts to be presented will emerge as immediate consequences of the defini-
tions, once these have been expressed in the notations appropriate to the purpose.

Mébius transformatio_ns C —C are most simply expressed in terms of complex-

homogeneous co-ordinates. Parametrize C in terms of pairs (z;, z,), with z repre-
sented by (z, 1) and o by (1, 0). Then the linear transformation

5.1) (j Z] (ad—bc = 0)
of the space of pairs represents the Mobius transformation usually writfen
‘az+b
. z [l(Z) = m .

The Riemann sphere S=1(C) may also be written in a way better suited to
present purposes: :
(5.2) : 1zy, 22) = ([21]% ZIZZ’ 2,21, |2, 2).
(To give these second and third components not necessarily real but conjugate to
each other, is more convenient than the equivalent procedure of giving the corres-
" ponding real and imaginary parts. Indeed, it makes possible the especially simple
form of (5. 4) :below.). These are real-homogeneous co-ordinates (d,,d,, 63, 6,4)
for the points of S, which will be the locus of non-zero quadruples with §,=4,,
0,63=0,6,. In terms of the previous co-ordinates ({, h), S was the locus of _
|(]> +h?=1. Composing.(1.2) with (5.2) it turns out that

5.3) (¢, n) may be written (1+h,¢, C, 1—h).



The shell of a Hilbert-space operator - 71

The representation (5. 3) can be applied to. all of B, that is, to all (¢, h) with

- [¢|2+h?=1. It gives all non-zero (8, &,, 83, 6,) such that §,=0;, 6,0;=8,5,.

* Planes, in the d-co-ordinates, have homogeneous equations > A4;6;=0, subject

to Ay, A, real, and A,=4;. Halfspaces have representations A4 J_0 subject

to the same conditions, with the additional one: 8, + 6, non-negative. To handle
linear inequalities we need posmvely homogeneous co-ordinates; 4 and —4 will
not give the same half-space. : :

Now the Mobius transformation pu above gives a transformation S-S taking

(24, z,) to 'c(azl-f-bzz, ¢z, +dz,). Clearly the é-co- ordlnates are transformed by -

the matrix
aa ab ba bb)
ac ad bé bd

“|ca c¢b da db}’

A » c¢ cd dc dd
The correspondence between (5. 1) and (5. 4) is a representation of GL(2, C), viz.,
the tensor product of the natural representation and its complex conjugate. Spe01a1-
izing (5. 1) to have determinant 1 (as for present purposes we may), we give (5.4)
determinant 1 also. These matrices comprise the proper Lorentz group in its natural
representation by linear transformations- of R* (though not in the customary co-

- ordinate system). Indeed this group is well known to be 1somorph1c to the group
of Mobius transformations (e.g., [5,§ 17]).

_ We are interpreting the §; as homogeneous co-ordinates, so for us the matrices
(5. 4) give a representation ¢ of the group by non-linear transformations of R3.
The invariant cone (or half-cone!) under the Lorentz group is for us replaced by

~ S in R3, which was known to be invariant from the staft._ Now note that (correspond-
ing to the fact that the “future” is invariant under Lorentz transformations) all the
o(u) also take the ball B onto itself. : '

On B\ S this gives a group of plane-preservihg transformations — the group
of congruences of the Beltrami model [4, § 16.2] of hyperbolic 3-space. Cf. [19,
§ 15, ex. 5], [2, Abschnitt IV]. The rigid rotations of S are given in the particular
case d=a, c = —b. Since all the ¢(u) are plane-preserving, those which are rigid"
rotations of S will also be ordinary rotations of all of B.
. The one ingredient still lacking is the deﬁmtlon of a Mobius transformatlon
of a relation. For i as above, define

(-5) ) ={(ay +bx, ey +dx):(p, x) €W,

G.4)

This agrees with the usual definition u(4)= (aA—I—b)(cA +d)-! for the most im- '

portant case, that in which 4 is an everywhere defined operator and ~ d/c is not
in its spectrum. On the other hand; it agrées for all A with the usual deﬁn1t1on
~of At ={(x, y):(y, ¥) €A}.
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Theorem 5. 1. The shell of p(N) is obtained from the shell of A by the trans-
Sormation o(u). '

Proof. erte everything in the d-co-ordinates and this falls out. The shell '
of QI is
=LA, 5y, ¥, 1X1DG, %) EA}-
‘Similarly, s(u()) is :

Alllay +x%, (2y*+ dx*)(ay + bx), (@y* + bx*)(cy + dx), [ley +dx||?):(y, x) €U}

Clearly the quadruples in s(u(%[)) are got from those in s(QI) by applying the matrix
(5. 4).
This proves the theorem as stated, but leaves open the questlon whether, for
. two Mbébius transformations p,, u,, we need have p(u,(%))=p, 0 p,(A). This
is one of a whole class of questions which will be treated in the next section.

6. Rational functional calculus of relations

The main result of the paper was stated in the introduction for operators only.
Before stating it for general closed linear relations U, spectral sets must be defined
for them, and this means that we need discussion of rational functions of relatiOnS.

The definition of powers is standard: '

A2 =NWoA={(y, x): (AW)(y, w) € A& (w, x) €A},
etc. Similarly for linear combinations :
a, U, + aiﬁz = {(019’1 + a3, X):(¥1, X) EW, & (y,, ¥)€ ‘Hz}~

This defines polynomials. AReNs [1] explains their properties. In particular, it is
important to use only polynomials with leading coefficient non-zero, because 090
(say) may not be the zero relation: it may be- properly contained in it. Wlth this
understanding, ARENS proves the followmg

If pisa polynomlal

p@)=a,z"+ - +a;z+a (a,0),
then (y, x)Ep(QI‘) if and only if there exist wo=x, wy, -+, w,, With‘(wj, wj_i)EQ,[
and y= Z'ajwj If p and g are polynomials then p(ﬁI)q(QI):(pq)(QI) — this

despite the fact that the distributive law fails in general. If p and ¢ are polynomials
then p(g(A)) =poq(2). If p and ¢ are polynomials such that, in forming p+gq, the
leading terms do not cancel, then (p+ q)() = p(W) + q(2N).
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We want to extend the ideas to rational functions. Again, care is required
because (for instance) A~ need not be I, but may be a proper subset. There:
are therefore two inequivalent possible definitions, of which I choose this one:
(already used in (5. 5) in the case of a M&bius transformation):

~ Definition 6. 1. Let f=p/r be a rational function, where p and r are poly--
nomials without common factor: - p(z)=a,z"+:-+a,z+a, (a,#0), r(2)=
=b,,z™ + -+biz+by (b,#0). Then (y,x)ef () if and only if there exist w,

(k=0,1, .-, max {n, m}) with (w,, w,_,) €2, such that y= Z' a;w; and x = Z bw;.

By ARENS’s result just quoted, this gives the usual result in case fis a polynomlal.
(r= 1) For general polynomial r, the f(2) determined by Def. 6.1is © p(QI)(r(QI))“1
and the inclusion may be proper, though equality holds for 2 an operator We do-
have some of the expected relations. :

Proposition 6.1. Let p—q1r+r1, with ml—degree(r1)<n degree(p)e
Then (pr)(2)=g,(2) + (r,/r)(2).

(The hypothesis implies that m=degree (r)=n, but not that m, <m.)
Proof. Let ri(z)= jejzf, so that (q,7)(2)=2 (aj—cjw;. The general
j=0 j=0

‘pair in g, (W) + (r,/r)(Q) is expressible as (u+v, x) where (u, x)€q,(A), and
v=¢;w;, x=bw;, for some wg, -, w,, such that (w;, w;_,;)€. From:
(4, ) €q,(W) and (x, wo) €r(A) follows that (x, wo) €(q,r)(2A), by one of ARENS’s
results just cited. Indeed, by reference to the proof of that result [1, 2. 3] we see.
that we can even use :

u= 2 (a;—cpw;  (w;,w;- )€,
. 0 :

with the same w; as before as far as j=m’. But then (u+vo, x)E(p/r)(QI) This.
proves ,,=2” in the conclusion. '
: _In the other direction no subtleties are involved: we are given y= 2a;w;,.
x= Zb,w -asin Def. 6. 1, and we define u= 3(a;—c)w;, v=c;w;. By deﬁmtlon
(v, x)€(ry/r)(), it remains to prove that (u, x)€q,(2). Let ql(z) 2>dz’, then.

for each i, a,— c—Z Define xk—Z'b Wirk (k=0,1, -, degree (g0)-
so that x,=ux, (xk,xk 1)Ei’I and Z’dkxk—u Then by definition (u, X)€ g,(A)..
In the following propositions, MOblllS transformations pu(z) = azz+ P again.

play a special role.

Proposition 6. 2. _u(QI) is closed.
(We are assuming U closed throughout.)
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Proof. To say that (y,,x,)eu() is to say that y,=aw,,+bw,, and
X, =cwy, +dwy,, With (wy,, wo,) €Y. We assume in addition that y,~, x, - x.
Then solving for w,, and wy, in terms of y, and x,, we deduce that w,, ~w, and
“Wo, = W, for w; such that y =aw, + bw,, x =cw, + dw,. Srnce A is closed, (wy, wy) €9L.
This completes the proof.
' I don’t know how far this remains true when ;1 is replaced by the more general
f considered earlier; cf. 13, § 2. 16}, [1, 3.8].

Proposition 6.3. (fou)(W)=r(uN)).
Proof. This is clear when yu is just multiplication by .a constant. When u
_is-a translation, u(z)=z+b, a calculation is needed which I will only summarize: -

- . ;o o , kY, s
iny = J'a;w;change to an expression y = > a;w; by the substitution wi = > (]) b—iw;

J
(and similarly for x, of course), and make the verification that (Wis We_ )€U+
When p is recrprocatron u(z) z~1, there is again a little calculation. It is

convenient to depart from previous practice and write p(z) Z a;z’, (z)= 2 bz,

where not both g, and b, are 0 and not both g, and b,.are 0 Wrth this conventxon
"there is notational symmetry between f and fou, and reference to definitions will
verify the conclusion. :
The. observation that any Mobius transformation is obtained from these
types by composition, completes the proof. :

Proposition 6.4. (Detailed spectral mapping theorem for M&bius trans-
formations.) o,(u(¥0) = u(o, (D), (@)= (o)), 7,(1(W) = u(s,(20).
Again, we are at liberty to consider 51mp1e special Mobius transformations
and-then compose them to give the general u. a
Under linear transformation, o, ¢., and g, all behave as desired by Def, 2.4,
with the exception of o. Assume oo€0g,(U) and let us prove €, (U+b3J). The
assumption is equivalent to the existence of non-zero x such that (x, 0)€¥; but
~then (x, 0) €A+ 5T as well, and this gives the conclusion. Similarly for o€ o (20).
‘That o €0 () entails €, (A+53J) is a consequence of the remark following
Def. 2. 4. '

If we consider reciprocation, it is the A other than O and o which require
checking. Assume A€o, (), so that there are (y,, x,) € such that llxv[] =1 but
Iys—Ax,t ~0 (so that ||y,]|+0; without loss of generality, y;#0). Let x,=x,/[»l,
Yo=2lI3l. Clearly (x,, y) €A1, | ¥/l =1, and |1x,~A~1y{| -0, so A~ '€l (A~Y).
For o, it is even easier. Finally, take 1 €a,(W). This means R(A — AT) is not dense.
‘Choosen non-zero- z such that, for all (y, x)eA, z1Ly—2z. Then also for all
(%, Y)EA-L, 21 x— A1y, so KU~ 1—1 13) is not dense either. Thrs completes
the proof. S
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Agaln I don’t know how much of this result holds for more general f; I have
partial results. Of course it can’t hold in toto. For example, it is easy to construct
an operator 4 whose square is O and hence has void continuous spectrum, while
A itself has non-void continuous spectrum (For the case of operators see [13, Theorem

5.12.2])

7. The shell and spectral sets

Definition 7. 1. The ‘norm’ of a relation 9 is

llﬂll—sup{llyll/llxll (0, 0)= (y, x) €}

" Definition 7. 2 Let X be a closed subset of C. X “is a spectral set for’ A
or ‘is s.s. for’ A) in case every rational function f having modulus =1 on X has
also the property || f (QI)|| =1.

It is clear by Prop. 2. 1 that || is finite 1f and only if ¢ o (), that is, A
corresponds to an operator A which is bounded, and in this case || =]4].
Furthermore, as will appear in-the course of developing the basic properties, state-
ments about spectral sets for relations can be reduced to statements involving
operators without much trouble. However there are two closely related virtues
in the present definition: it applies to not-everywhere-defined operators; and,
secondly, it brings in ¢,-instead of o (see in particular Prop. 7. 2 below).

Proposition 7.1. X is s.s. for W if and only if W(X) is s.s. for p(N).
This follows easily from Prop. 6. 3. _
Proposition 7.2. If X is s.s. for W then o, (A)EX.

Proof. By Prop. 7.1, it is enough to consider a special point of C. Assume,
then, «€ o (A)\ X, so that X isa compact subset of C and U is not a bounded
operator. To show Def. 7. 2 is not satisfied, choose f(z) =az, for a sufﬁc1ently small
constant a=0.

Theorem 7.1. The unit disk D={zeC: [z|=1} is s.s. for W if and only if
=L | o -

Proof. Either condition implies we are dealing with a bounded operator A.
If D(4)=29, the theorem is just voN NEUMANN’s basic result, as in [17, § 154].
More generally, define 4 as the extension of 4 which is zero on D(4)L. By applying
vON NEUMANN’s theorem to A, it is easy to deduce (the non- tr1v1a1 half of) the pre-
sent theorem for A.

This, theorem, together with Prop. 7 1, tells which disks are s.s. for A. The
result is familiar in general outlines: it resembles that in [17] except that no special

6
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exemptions need to be made for functions with poles in o(2) — even in o, ().
Namely,

(i) the finite disk {z€C: |z —zy|=r} is s.s. for Wif and only if | —z,T|| =r;

(i) the complementary disk {z€C: |z—zo|=r}U{e} is s.s. for A if and
only if (U —z,3) M =r"";

(iii) the half-plane {z€C: Re (Cz)Za}U{ec-} is s.s. for QI if and only if it
contains w().

The following theorem contains all three of these, in a geometrlc form, invariant

under Mébius transformations of C.

Theorem 7.2. Let X be a disk. Then X is s.s. fbr A if and only if the shell
s() is contained in the convex hull of the stereographic projection ©(X).

Proof. Let p be the Mobius transformation such that u(X) = D, the unit disk.
" 'We have just seen that X is s.s. for 9 if and only if |u(20)|| =1. Comparing Defs.
7.1 and 1.1, this is seen to be equivalent to saying that s(u()) lies in the half-
space {({, h)€R*: h=0}; and this half-space is the convex hull of (D)= r1(u(X)).
To return from u(W) and p(X) to A and X, we want to consider the transformation
W inverse to p, and the projective transformation o(u’) of R® to which it gives rise. This
~was discussed in § 5. o(u") preserves B, and preserves planes; consequently it takes
convex hulls to convex hulls. It takes 7(p(X)) to 1(X). Finally, by Thm. 5. 1, it takes
s(u(‘lI)) to s(2). The theorem is proved.

Alternatively, I could have confined consideration to rigid rotatlons of B
(cf. § 5) with only slight modification in.the proof. Co

The set of disks which are s.s. for fixed 9 is hereby represented as a closed
convex set ()7, the dual of s(20). The convexity of this set is inherent in the follow-
ing easily proved fact, a generalization of the Lemma of [8, § 3. 1]: if two disks
are s.s. for A, then so is any disk containing their intersection. The closedness of
s(A)' is also easy to prove directly. :

However, if it was a question only of representing all disks s.s. for 2 in a simple
geometric way, the closed convex hull of s(2) would do exactly as well as s(2U),
for it has the same dual. It is like the situation for the numerical range w(2[). Only
w() is needed in criterion (iii) above, telling which half-planes are spectral sets.
Still for some purposes the richer structure of w(2) itself is interesting. The shell -
is like the numerical range with one dimension added (cf. Thm. 3. 1), and its structure
is very much richer than that of its closed convex hull.

. In spite of these remarks, Thm. 7. 2 throws emphasis on s(2)f, and this will
persist in the final section of the paper. Let me therefore say a few more words
about this set. ‘ o
It has already been pointed out in § 5 that half-spaces in R® may be for present
purposes conveniently represented by quadruples 4=(4,, 4,, 45, 4,); here
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A4,, 4,€R, Az‘—'Z €C, and if 1>0 then 14 represents the same half-space as 4.
Namely, it is the half—space of all (¢, h)€R® such that 4 1(1+h)+A2C+A3C +
+4,(1—h)=0.

Let us regard the dual Ct of .an arbxtrary set cc R3 as the convex cone of
all 4 €R* representing ‘half-spaces D C. This sort of dual has been used often .in
the theory of convex sets [23].

_ Proposition 7.3. A€B' if and only if A gives homogeneous co-ordinates
for a point of B in the 5-representation of §5, i.e., if and only if A, +4,>0 and
4, A34A A4

ThlS is just self-duality of the unit ball I will not bother translatmg the familiar
proof into this notation.

* 8. Generalization of Berger’s theorem

The most striking results relating disk spectral sets to dilation theory are the
well-known theorem of Sz.-NAGy [20] on dilations of contractions, and C. BERGER’s
theorem [11], [21] on dilations of operators with w(4) in the unit disk. Sz.-NAGy
and Forias [22] have recently given a common generalization of the two, which
I will relate to the ideas of this paper. Their theorem may be stated as follows. 2)

"~ Theorem8.1 (SZ.-NAGY——FOIAs). For a bounded, everywhere-defined operator A,
and for any @=0, consider these conditions:
(i) A€C,, that is, there exists a unitary U on a Hilbert space K29 such that
A"=g-pr U* (n=1, 2, ---), where pr denotes compression to 9;
(i) for every z with |z|<1, |zA((e —1)zA — o) ! =1;
(i) for every x€9 and every t€[0, 1], - '

20— )¢ |x*dx| = ol x|? — (2= Q)2 Ax|2.

Conclusions: Condmons (ii) and (iii) are equwalent Condmon (i) is equwalent
to (i) together with

(iv) 6(A)S D, the closed unit disk.
If 0=2, (iv) follows from (iii). .

This formulation is not quite that of Sz.-NAGyY and Foias; let me bridge the
short gap. My (i) is equivalent to their (5). My (iii) is obtained from their (7 o)
an inequality which must be assertéd for every z€ D, by rewriting it in such a . way
- that the phase of z need no longer be kept in v1ew

2) The real parametef o is not to be confused with the symbol o(x) already introdu=zd in § 5.



84 Ch. Davis

Now for each ¢, the inequality (iii) is a homogeneous linear inequality relating
the moduli of the homogeneous co-ordinates of points of s(4). As such, it is readily
interpreted geometrically: it restricts s(4) to lie in a certain solid half-cone (from
now on I will say simply ‘cone’). The cone may degenerate into a half-space, in
particular it does so for r=0. To complete the account, we must-examine the con-
sequences for s(4) of imposing the restrictions (iii) for all ¢ simultaneously.

For this purpose, here are a few special notations. Let

[:(t) = 2 — o)l Ax|?¢? + 2o — 1] - |[x*Ax]t — o] x|,

For each non-zero x, f, is a real quadratic polynomial, considered as a function
on [0, 1]; (iii) asserts that every f, is =0 on the whole interval. '

Secondly, let K, denote the cone {({, )€R®: |¢—1|-[{|=sg—1~h}. The .
assertion f,(1)=0 is readily transformed into the assertion @(dx, x)€K,. This
- can be done directly from (1. 3) (normalizing by assuming ||x||? +||4x||> =1).
The first part of the picture can now be completed. -

* Proposition 8.1. For ¢g=2, A satisfies condition (iii) above if and bnly if
S(AEK,. -

Pfodf . Refer to the deﬁnitibn of f.. We ha\?e just noted that] s(A)gK;, if and
only if £,(1)=0for all x; and f,(0)=0 in any case. But f; is a quadratic polynomial
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with leading coefficient =0; therefore it is non-positive at the endpointslof the
interval [0, 1] if and only if it is non-positive throughout. This gives the equivalence.

K, is of course symmetric about the 4-axis, and has apex at =9 —1. Its gener-
ators pass through the equatorial points (e*, 0); but for ¢<1, the equator lies
in the other nappe of the cone, and K, itself lies entirely below the equatorial plane.
For ¢=1 (Sz.-NAGY’s case), K, is the half-spacé h=0. For ¢=2 (BERGER’s case),
the apex is at the north.pole, and s(4) S K, is equivalent to w(4)< D by Thm. 3. 1.

For ¢=2, the apex of K, is above the north pole. But then further restrlctlons
on 5(A4) result from (iii).

Let E, be obtained by removing from X, all pomts lymg between the apex
and the upper half of the ellipsoid (o — 1)2|C|2V— o(e —2)(1 —h?). This ellipsoid, in
addition to being evidently symmetric with respect to the A-axis and with reSpept‘
to the {-plane, is tangent to dK,. The definition of E, requires the following inter-
pretation. The “upper half”” of the ellipsoid is the portion above the circle of tangency. -

The ellipsoid lies entlrely in B, and is tangent to S at the poles. Hence in h>0
E, has no points in common with S except (0, 1). -

Proposition 8.2. For ¢=2, 4 satzsﬁes condition (iii) above zf and only if
S(A)SE,. :

Proof. The cones to which s(A) is restricted by (iii) are as follows: for =0,
the half-space h=1; for r=1, K,; and for intermediate #; the intermediate cones
tangent to the ellipsoid. To see this, one reduces by stn‘ietry to consideration
of {>0, and then makes an elementary computation which will not be reproduced
here. Now the equivalence of s(4)S E, becomes clear.

Proposition 8.3. In Thm. 8.1, condition (iv) follows from (iii) in . case ¢ =2
also. Hence (i) and (iii) are equivalent for all values of .

'Proof. For a bounded, everywhere-defined operator, 6(4)SD is known

to follow from ¢,(4)SD. By Thm. 2.3 and the above description of E,,-any A

with s(20) S E, must have o,(A)S DU {e}: Here o is ruled out because we are

in the bounded, single-valued case. The conclusion therefore follows from Prop. 8. 2. .

‘ These ideas lead to the following question: #If s(%t)gk,_, if g=2 (or SE,

if p=>2), what can we conclude about dilations of A?’ They do not, however,

lead to an answer. The difficulties arise even for g<2; although we then know

we have to deal with operators, we do not know that they are everywhere defined.
Some new idea seems to be needed to cope with this- dilation problem. ‘
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