
The shell of a Hilbert-space operator 
By CHANDLER DAVIS in Toronto (Canada) 

For an arbitrary closed linear operator in Hilbert space, I will define a subset 
of real 3-space which summarizes much information about it: its point spectrum, 
its numerical range, many of its spectral sets, and more besides. 

I 
1. Notations and principal ideas 

Let § be a complex Hilbert space. For any x £ § , let the corresponding linear 
functional be x*; thus y*x is the inner product of x by y. 

Let 21 be a closed linear relation in §>; that is, a closed linear subspace of 
§1 ®§2> where each is a replica of (No distinction is to be made between 

and © {0}, or between §>2 and {0}©§2.) The most important case is that 
of an operator A, i.e. when (y, x)€2I means that y = Ax. The 'domain' of 21 is 
{x: (3y) ( j , x)€3I}, its 'range' is {j>: (3x)(y, x)£2I}. (This reversal of the custom-
ary order in the notation for relations will save me, in .§ 5, from having to reverse 
order in a more troublesome way.) 

Before giving the novel ideas. I must also fix the notations for stereographic 
projection. Let C denote the complex plane and C =CU{°°}. Definer: C-+R3 by 

(1.1) T ( 2 ) = j T ^ , z i + J ? f . j ( 2 € C ) , and T(CO) = (0,1). 

The first two co-ordinates in R3 are here collapsed into a single complex number; 
this will be done frequently throughout. In this notation, the Riemann sphere 
T(C) is the unit sphere S={(C, h)£R3: \C\2 + h2 = l}. Letting £ = {(£, h)eR3: 
|C|2 + A2Sl}, the unit ball, define n: B — C by taking TT(C, h) to be that z£C for 
which (£, h) is on the line joining (z, 0) to (0, 1); explicitly, 

(1.2) ( h ^ V * a n d « ( 0 , 1 ) = « • 
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For any subset E^B, n(E) will be called the 'shadow' of E. On S, n coincides 
with T"1. 

D e f i n i t i o n l ' . l . The 'shell' of the relation 91, denoted i(U(), is defined as 
the set of points 

2x*y -W2 + M2" 
(1.3). <p(y,x) = 

M 2 + I M I 2 ' w 2 + w 2 

in R3, where (y, x) runs over all non-zero elements of 9i. 
In case of an operator, I will write alternatively s(A). This is the case where 

(0, 1) does not belong to the set. £(91) is void if and only if 91= {(0, 0)}. 
One finds 'by direct computation that s(9l) Q B. Further geometric properties 

of the set, in relation to spectral properties of 91, will be developed below, especially 
in §§2—3. Examples are treated in § 4. In § 5, I will state the essential facts on the 
transformation of J(91) when 91 is subjected to a Möbius transformation. 

Next, consider spectral sets [16], [17, §154]. s 

Let us adopt the following terminology: 
(i) a set of the form {z£C : | z - z 0 | S r } (z0£C,r>0) will be called a 

'finite disk'; 
(ii) a set of the form {z£C: \z — z0\§r}U(z0£C, r>-0) will be called 

a 'complementary disk'; 
(iii) a set of the form {z<£C: Re (iz)£ß}U {<*>} (|{| = 1, a£R) will be called 

a 'half-plane'; 
(iv) a set of any of the types (i)—(iii) will be called a 'disk'. Thus the disks 

are exactly those subsets X of C for which x(X) is a proper spherical cap. 
The main result of the paper, Theorem 7. 2, may be stated roughly as follows: 

A disk A" is a spectral set for A if and only if s(A) is contained in the convex hull 
of i(X). That is, the support planes of (the convex closure of) s(A) correspond 
naturally one-one to the minimal disk spectral sets of A. This is exploited in § 8 
to give a description in terms of the shell of the operator classes occurring in [22]. 

In order to formulate my results for arbitrary closed linear relations, I had to 
supplement the basic results of the paper [1]

 !) of A R E N S with a study of the spectrum 
(§ 2, below) and of the rational functional calculus (§ 6). 

My grateful acknowledgement is due to H . S . M. C O X E T E R , C . F O I A § , G . K A L I S C H , 

and C . A . M C C A R T H Y , for stimulating conversations. 

') The reader is warned of the uncommonly pesky misprints in the article [1]. Professor ARENS 
has pointed out also that Theorem 3. 7 of [1] is not true in quite the generality claimed. 
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2. The shell and the spectrum 

It has already been remarked that i(2I) B. The shell may have points on the 
boundary, the sphere S; this depends on spectral properties of 91, see Theorem 2. 2 
below. I define the spectrum in a form convenient for the purpose; cf. [13, § 2. 16], 
[1, § 2]. (In the following definitions, recall that it is § 2 which contains the domain.) 

Def in i t i on 2. 1. Ogff/SI), the 'point spectrum' of 21, in case 2 l f l § 2 ^{(0, 0)}. 
The 'null-space' 9i(2i) is the set of such that (0, x)£2l, thus 0£<7p(2l) if and 
only if $«(21)^ {0}. 

Def in i t ion 2.2. 0£o-c(2I), the 'continuous. spectrum' of 21, in case there 
exist xn €§091(21), yn€ such that (j„, x„)€2T, ||x„|| = 1, and y„-+ 0. 

Def in i t ion 2. 3. The 'range' 5R(2I) is the set of such that for some 
x<=%, (v, x)62t. 0€crr(2I), the 'residual spectrum' of 21, in case 9?(2I) 

According to these definitions, 0 may belong to any one of op . a c , a r , inde-
pendently of whether it belongs to the others. 

Let 3 denote the identity, relation: (y , x ) £ 3 if and only if x = y. 

Def in i t ion 2.4. For z£C, z£i7p(2I) if and only if 0 € <7p(2l - z3), and 
similarly for a c , a p . °°G(jp(2I) if and only if 0£CTp(2I-1), and similarly for a c , a r . 

Thus °°£tTr(2I) if and only if the domain X)(2l) is not dense. 

Def in i t ion 2.5. The 'approximate point spectrum' ff„(2l) is <rp(2l)U cc(2l). 
The 'approximate residual spectrum' <Te(2l) is <rc(2I) U ffr(2i). The 'spectrum' CT(2I) 
is ffP(2l) U crc(2t) U cr(2I). 

P ropos i t i on 2. 1. 0d<r„(2[) if and only if there exist xn, ynd§> such that 
(yn, x„)€2t, \\xn\\ = 1, and y„~0. 0^(21) if and only if 

The first property is the familiar justification for the term 'approximate point 
spectrum', cf. [10]. The second has no counterpart under the usual definitions. 

P ropos i t ion 2. 2. c„(2l) is closed. 

I give only the key step in the (familiar) proof: suppose we have chosen, as we 
may if 06 0^(21), numbers zn £ <t„(2[) with zn— 0, and elements (y„, x„)<E2[ -z„3 
with l lx j = 1 and ||y„|| —0. Then 0 £ ff„(2l) is established by using, as the sequence 
in Prop. 2.1, (yn + znx„, x„)£Vl. 

Def in i t ion 2.6. The 'adjoint' 21* of a relation 21 is ( - l l" 1 ) - 1 - ; that is, 
(w, z)£2I* if and only if, for all (y, x)£2I, w*x = z*y. 

It follows easily that (a2I + 63)* = 521*+ 53. 
The following property of erp, oc, aT may justify the peculiar way I have defined 

the types of spectral point. 
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Theorem 2.1. z6<rp(9I) if and only if z£<7r(91*). z£oc(S&) if and only if 
z £ C7c(9[*). Similar assertions hold for in place of z. 

Proof . The first statement follows at once from the definitions.' As for 
it presents no special problem: merely consider 91 -1 in place of 91. It remains to 
prove the assertion concerning z£ac, and we may evidently take z = 0. The proof 
is essentially familiar. 

Let P denote the projector of © § 2
 o n t o §2> a n d let Q denote the projector 

of S 1 ® § 2 onto 91. The pairs (y„, x„) occurring in Definition 2. 2 will be sums of 
0„ > 0) £ S i -L §2 and (0, xn) £ § 2 ; because x„ ± 5R(9I), we have also (0, xn) _L § 2 PI 91; 
hence (y„, x„) i .§ 2 f l9 l . Also it is clear that both (yn, x„) and (0, xn) are orthogonal 
to §1D9I J- . We now confine attention for- the moment to a certain subspace S\ 
of namely, 
( 2 . 1 ) ^ = ( § 2 n 9 I © § i n 9 I J - ) 1 = 9 i ( P - e ) J - . 

It reduces both P and Q. 
We have seen that (y„, xn)£QSt and (0, xn)£ PS\, though both of norm S i , 

satisfy ||(j>„, xn) — (0, x„)|| = 1|>'J ->-0. It is required to prove the existence of vv„, z„ 
such that (z„, w „ ) G ( l - 0 K and (z„, 0)€(1 —P)R, both (z„, vv„) and (z„, 0) have 
norm S i , and yet they satisfy ||(z„, w„) — (z„, 0)|| =||iv„|| —0; for then the sequence 
of pairs (~w„,zn)e91* will show 06ffc(9l*) from Def. -2.2. 

To prove this, define, as in [7] and [14,1. 4. 6 and I. 6. 8], 

C = ( P + 2 - l ) 2 , S = (P-Q)2 

(commuting operators SO). We are already restricted (see (2. 1)) to iv =9i(«S')±, 
and it is easy to see that there is no loss in restricting further to £ = RQ91(C). 
(Sn(C) = § i n 9 I © § 2 n 9 I - L . ) Then 

(2.2) (CS)-i(QP-PQ) 

turns out to be a unitary operator fi —2 taking Pfi to (1 — P)£ and QL to (1 — Q)2. 
Therefore we are able to specify (z„, w„) and (zn, 0) having the properties desired: 
the images under (2. 2) of (y„, xn) and (0, x„), respectively. 

The proof is complete. 

Propos i t ion 2. 3. c(9l) is closed. 

This is immediate from Prop. 2. 2 and Thm. 2. 1. 
The main relevance of mentioning the duality between point and residual 

. spectra in the present connection is that, as will now be explained, only on is involved 
n matters concerning the shell. 

Theorem 2. 2. The set SHs(2i) consists exactly of the image of cp(?l) under 
the stereographic projection r. 
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Indeed, for C this follows easily from (1. 1) and (1. 3). As for °°£<7p(2I> 
is equivalent to (y, 0)(;2I for some non-zero y, which has already been remarked 
to be equivalent to (0, l)£.s(2i). 

Theo rem 2. 3. The set SO J(2I) consists exactly of the image of c„(2I) under 
the stëreographic projection r. 

Proof . Part I. Let z£Cn<rc(2l); it is to be proved that T(Z)£ Ï(2Ï) . We can 
choose (y„, xn)£ïI such that | | x j = 1 and yn-zx„— 0. For such a sequence, it is 
easy to compute that q>(y„, X „ ) - > - T ( Z ) . 

Let °o £ <Tc(2t) ; it . is to be proved that T(°°) £ S(2I). The above paragraph 
(for z = 0) gives a proof by exchanging x with y in (1. 3). 

Part II. Assume z£C, T(Z)£ S(2I). This means that there exist (yn, xn)£21 
such that (p(yn, x„) — T(Z). 

If || x„|| 7^o(|| there is no loss of generality in assuming that no x„ is 0; 
replacing (y„, x„) by (>„/||x„||, xn/||x„||) gives still a point of 21, having the same 
image under cp, so in this case there is no loss of generality in assuming that ||x„|| = 1. 
Now 

- 1 + l b J 2 - l + |z|2 

1 + l b J I 2 ~ 1 + W 2 

implies ||j„||-^|z|; then also x%y„ — z. This implies that \\y„ — zx„\\2 —0. Hence-
z£o-c(2I) (provided, to be sure, that x„ _L 9t(U - z3) ; but if 9 i (2 t -z3) is non-trivial 
then z£iXp(2I), which is also all right). 

If, on the other hand, ||x„|| =o(||j„||), then 

- I k n f + lbnll2 , 
W P + l b J I 2 ^ ' 

(p{yn, x„)—(0, 1), and we must be in the remaining case, t(°°)£ j(2I). This is easily 
disposed of, and the proof is complete. 

3. The shell and the numerical range 

First, the following key observation, which follows immediately from the 
definitions. 

Theorem 3. 1. The shadow of the shell is the numerical range. 

The definitions to be consulted are those in § 1, and the following 

Def in i t i on 3. 1. The 'numerical rangé' of 21, denoted w(2I), is 

{x*y: ||x|| = l, (j>, x)£2l}, 

with adjoined in case Ç erp(2l). 
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In light of the last theorem, the following may be regarded as a sharpening of 
;the Hausdorff—Toeplitz theorem, which asserts that the numerical range of an 
-operator is convex : 

Theorem 3. 2. For every pair of points of 5<2I), there is an ellipsoid (perhaps 
.degenerate) containing them and lying in s(9I). 

Proof . Let us normalize every vector (y, x) entering in (1. 3), ||(y, x)||2 = 
= M 2 + M I 2 =1, so that . (1.3) reads simply (p(y, x) = (2x*y, -\\x\\2+ \\y\\2). 

Now argue as in the proof of the Hausdorff—Toeplitz theorem [9]. The two 
given points of j(2I) come from two unit vectors (y1, Xj), (y2, x2), spanning a 
space S £21. The set of points 

<3.1) (Re (2x* y), Im(2 x*y), -x*x+y*y) 

in R3, as (y, x) ranges over all unit vectors in the 2-dimensional space <5, will be 
shown.to be an ellipsoid, and it is ^5(21) by definition. 

Each component in (3. 1) is à hermitian form in the variable (y, x). By suitably 
choosing co-ordinates in R3 we may assume all have trace zero ; and then by suitable 
-choice of co-ordinates in <3 we may write (3. 1) as 

<3.2) M £ [ 2 - | # ) + 2Re(M>7), a M \ 2 - H 2 ) + 

+ 2 Re (b2 fy), a3m2-\ri\2)) (|£|2 + = 1), . 

with a1,a2,a3 real. It is elementary to express thé set of points (3.2) explicitly 
as an ellipsoid, and the proof is complete. 

Thus the shell is in general not convex, as the examples immediately following 
will illustrate, but it becomes convex if its "holes are filled up". That is, the un-
bounded component of the complement of the shell, is the complement of a convex 
set. ' . 

Propos i t ion 3. 1. Assume 21 is not densely defined. It may be extended to 
:© = 21 © (§2 Q X>(21)) (that is, © is the zero operator on Î)(2i)-L

yl. Then s(©) is a 
.union of (perhaps degenerate) ellipsoids joining points of 5(21) with (0, —1). 

Proof . Of course s(23)jj?s(2l) just because S321 . The general point of S 
is {y, x + x'), where (y, x) Ç 21 and x'ÇÎ>(2I)-L. Now use (>', x) and (0, x') as the 
vectors spanning <3, in the construction of Thm. 3. 2. 

As a corollary of Thm. 3. 2, we have 

Theorem 3. 3. Unless 0^(21) is void, every point of i(2i) lies on a (perhaps 
•degenerate) ellipsoid lying in J(2I) and intersecting S. 
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Proof . Imbed § in a space of approximate proper vectors of 21. This 
is done in the same manner as given by B E R B E R I A N [3] for the case of an operator. 
Let 21° denote the corresponding relation in § ° © § ° . It is easy to see that 5(21°) = 
= Now I(2l°) n 5 is just I(crp(2l0)) = T(CT„(20), which is not empty. Given 
any point of i(2l°), choose an arbitrary point of i(2I°)n S, and invoke Thm. 3. 2 
to show there is an ellipsoid in j(2t°) joining them, as desired. 

The proof could have been accomplished by approximation without mentioning 
as was done in Thm. 2. 3. 
Many theorems are known drawing conclusions on the structure of an operator 

from failure of its numerical range to have a smooth boundary [9], [18], [12]. The 
key seems to be the degeneracy of the ellipsoid in Thm. 3. 2, and these theorems 
should have sharper forms in which the shell would figure in place of the numerical 
range. There should also be theorems relating the shell with dilations. A small begin-
ning is made in § 8 of this paper. 

4. Examples 

In this section various results are listed, illustrating the sort of shells which 
occur. The justifications of the results are mostly easy, and are not given. 

Example 1. Let A be a normal matrix with eigenvalues /.,, •••, Xn. Then 
s(A) is the convex hull of the points T(/1;) 6 S. 

Example 2. Let A= ^ . Then is the set of (£,/;)£ I?3 satisfying 

^|C|2 + (/i + i )2 = i . This is a non-degenerate ellipsoid tangent to the unit sphere 
at the point corresponding to the eigenvalue of A, viz., (0, — 1) = T(0). 

Example 3. Let A= ^ . Then s(A) is the set of (£, >], h)£R3 satisfying 

(,1 + t]1 — £h + h2— £ + / :=0. This is a non-degenerate ellipsoid tangent to the 
unit spere at the two points corresponding to the eigenvalues of A, viz., (l,0) = r(l) 
and (0, - 1 ) = T(0). 

From these results, s(A) can be found for all 2 X 2 matrices by using the results 
of § 5. In particular, the shell of a 2X2 matrix is a degenerate ellipsoid if and only 
if the matrix is normal; otherwise, a non-degenerate ellipsoid. 

Example 4. Let A be a normal operator. Then s(A) is the convex hull of 
i(a(/!)), except that the points t(<j(A)\uP(A)) are not in s(A). In particular, the 
shell of the bilateral shift is {(£, 0): |£| < 1}. 

Example 5. Let V denote the unilateral shift. Then = 0): |C|<1}, 
but = h)£B: |C |< l , / !^0} . (To prove all the points with /z<0 are in 
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j(K*), it suffices to consider sequences of the form (<5, i, (2 , £3, "•)•)] Note that F _ 1 

is a not-everywhere-defined, bounded operator. It happens also that V and V~l 

have the same shell. Nonetheless, the two operators are quite different: ar(V) = 
= {z: |z |<l}, while <rr(V^l) — {z: |z |>l}n{°°}. This is a pleasingly simple instance 
of Thm. 5. 1 and Prop. 6. 4 below. Note also that V* happens to be the same as 
the extension of F - 1 obtained as in Prop. 3.1; the relationship between their shells 
is as described there. 

The preceding examples show some empty ap , hence some shells disjoint 
from S. It is easy to see from familiar results that if S(2l) is dense then o-„(2l) is 
not empty, hence is not disjoint from S. However, we have 

Example 6. In 2-space, let Ax1 = xl _Lx2, and let A be otherwise undefined. 
Then s(A) = {(0, 0)}, an(A) is void, a(A) = a,(A) =C. 

5. Transformation properties of the shell 

The facts to be presented will emerge as immediate consequences of the defini-
tions, once these have been expressed in the notations appropriate to the purpose. 

Möbius transformations C-«-C are most simply expressed in terms of complex-
homogeneous co-ordinates. Parametrize C in terms of pairs (zL, z2), with z repre-
sented by (z, 1) and °o by (1, 0). Then the linear transformation 

(5.1) J ) (ad-bc^ 0) 

of the space of pairs represents the Möbius transformation usually written 

az + b 

The Riemann sphere S = x(C) may also be written in a way better suited to 
present purposes: 
(5.2) T ( Z 1 , Z 2 ) = ( | Z 1 | 2 , 2^2, z2zr, |zx|2). 

(To give these second and third components, not necessarily real but conjugate to 
each other, is more convenient than the equivalent procedure of giving the corres-
ponding real and imaginary parts. Indeed, it makes possible the especially simple 
form of (5. 4) below.) These are real-homogeneous co-ordinates (<51; <52, <53, <54) 
for the points of S, which will be the locus of non-zero quadruples with 52 = S3, 
S2S3 = <5,<54. In terms of the previous co-ordinates (C,h), S was the locus of 
\Q2+'h2 = l. Composing (1. 2) with (5.2) it turns out that 

(5. 3) (C, h) may be written (1 + h, C, I, 1 - h). 
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The representation (5. 3) can be applied to all of B, that is, to all (£, h) with 
%\2 + h 2 ^ l . It gives all non-zero ö2, <53, <54) such that ö2 = ö3, ö2ö3^ö1ö4 . . 
Planes, in the ¿-co-ordinates, have homogeneous equations 2 2 j — 0> subject 
to A±, AA real, and Ä2 = A3. Halfspaces have representations 22J<>J = ®, subject 
to the same conditions, with the additional one: <5L +<54 non-negative. To handle 
linear inequalities we need positively homogeneous co-ordinates; A and —A will 
not give the same half-space. 

Now the Möbius transformation /x above gives a transformation S—S taking 
T(z1,z2) to x(azl + bz2, cz1 + dz2). Clearly the ¿-co-ordinates are transformed by 

aä ab bä bB 
ac ad be bd 
cä cb dä db 

kcc cd de dd. 

The correspondence between (5. 1) and (5. 4) is a representation of GL(2, C), viz., 
the tensor product of the natural representation and its complex conjugate. Special-
izing (5. 1) to have determinant 1 (as for present purposes we may), we give (5. 4) 
determinant 1 also. These matrices comprise the proper Lorentz group in its natural 
representation by linear transformations of (though not in the customary co-
ordinate system). Indeed this group is well known to be isomorphic to the group 
of Möbius transformations (e.g., [5, § 17]). 

We are interpreting the Sj as homogeneous co-ordinates, so for us the matrices 
(5. 4) give a representation g of the group by non-linear transformations of R3. 
The invariant cone (or half-cone!) under the Lorentz group is for us replaced by 
S in R\ which was known to be invariant from the start. Now note that (correspond-
ing to the fact that the "future" is invariant under Lorentz transformations) .all the 
Q(H) also take the ball B onto itself. 

On S this gives a group of plane-preserving transformations — the group 
of congruences of the Beltrami model [4, § 16. 2] of hyperbolic 3-space. Cf. [19, 
§ 15, ex. 5], [2, Abschnitt IV]. The rigid rotations of S are given in the particular 
case d=a, c= —5. Since all the g(p) are plane-preserving, those which are rigid' 
rotations of S will also be ordinary rotations of all of B. 

The one ingredient still lacking is the definition of a Möbius transformation 
of a relation. For /i as above, define 

(5.5) /i(3I) = {(ay + bx, cy + dx) : (y, x) € 21}. 

This agrees with the usual definition fi(A) = (aA + b)(cA +d)~1 for the most im-
portant case, that in which A is an everywhere defined operator and —die is not 
in its spectrum. On the other hand, it agrees for'all 21 with the usual definition 
of 21-1={(x,j0:0; ,x)e2i}. ' , . . . 

the matrix 

(5.4) 
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Theorem 5. 1. The shell of ^(21) is obtained from the shell of 21 by the trans-
formation Q(JU). 

P r o o f . Write everything in the ¿-co-ordinates and this falls out. The shell 
of 21 is 

my\\2,x*y,y*x,\\x\\2y:(y,x)eA}. 
Similarly, s(//(2l)) is 

{(||ay + Z>x||2, (cy* + dx*)(ay + bx), (äy* + 5x*)(cy + dx), ||cy + dx\2):(y, x) € 21}. 

Clearly the quadruples in i(/i(2i)) are got from those in j(2I) by applying the matrix 
(5.4). 

This proves the theorem as stated, but leaves open the question whether, for 
two Möbius transformations Hi ,f i 2 , w e need have ^i(jU2(21)) = ^o/¿2(2l) . This 
is one of a whole class of questions which will be treated in the next section. 

6. Rational functional calculus of relations 

The main result of the paper was stated in the introduction for operators only. 
Before stating it for general closed linear relations 21, spectral sets must be defined 
for them, and this means that we need discussion of rational functions of relations. 

The definition of powers is standard: 

2I2 = 2 I o 2 I = { ( j , x):(3w)(y, w ) £ 2 i & ( w , x ) £ 2 I } , 

etc. Similarly for linear combinations: 

ai'üi + a2<$i2 = {(aiyi + a2y2, x):(y1; x)€2I1 &(j2, x)€2I2}. 

This defines polynomials. A R E N S [ 1 ] explains their properties. In particular, it is 
important to use only polynomials with leading coefficient non-zero, because 021 
(say) may not be the zero relation: it may be properly contained in it. With this 
understanding, A R E N S proves the following: 

If p is a polynomial 

p(z) = anz" + ---+alz + a0 (an^ 0), 

then (y, x)£p(W) if and only if there exist w 0 = x , wlt •••, w„ with (vvy, vvJ_1)C;2i 
n 

and y=2ajwj- If P a r |d q are polynomials then p (21) <7(21) = (pq) (21) — this 
J=° 

despite the fact that the distributive law fails in general. If p and q are polynomials 
thenj?(#(2l)) =/? o #(21). If p and q are polynomials such that, in forming p + q, the 
leading terms do not cancel, then (p + ijr)(2l) =/>(9I) + <7(2i). 
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We want to extend the ideas to rational functions. Again, care is required 
because (for instance) 2I2I - 1 need not be 3 , but may be a proper subset. There; 
are therefore two inequivalent possible definitions, of which I choose this one 
(already used in (5. 5) in the case of a Möbius transformation): 

D e f i n i t i o n 6. 1. Let f=pjr be a rational function, where p and r are poly- • 
nomials without common factor: p(z) = a„zn +—haiZ + a0 (an^0), r(z) = 
=bmzm-\ hb^ + bo (bm^0). Then (y, x) £f (21) if and only if there exist wk 

n m 
(k = 0, 1, •••, max {n, m}) with (wk, such that y = 2 ajwj and x = 2 bjWj. 

j=o j=o 
By A R E N S ' S result just quoted, this gives the usual result in case/is a polynomial. 

( r = 1). For general polynomial r, the/(21) determined by Def. 6- 1 is ^^(2l)(/-(2I))_1 

and the inclusion may be proper, though equality holds for 21 an operator. We do 
have some of the expected relations. 

P ropos i t i on 6.1. Let p = qir + ri, with m1 =degree (r^^n = degree (/?).. 
Then ( p i r ) m = g m + ( r j r ) m 

(The hypothesis implies that m = degree (r) S n, but not that m ^ m . ) 
mi n 

Proof . Let r1(z)= 2cjzi> so that (qlr)(z) = 2 (aj~cJ)wJ• The general! 
j=0 J = 0 

pair in ?i(2l) + (r1/r)(2t) is expressible as (u + v,x) where («, x)£ ^(21), and 
v=2cjwj> x = 2bjWj> for some w0, •••, wm, suchthat (wj, W y ^ ) ^ ! . From 
(w, x ) 6 ? i ( 2 L ) and (x, Wq) £ R ( 2 ( ) follows that (u, w0)£(qir)(Vl), by one of A R E N S ' S 

results just cited. Indeed, by reference to the proof of that result [1, 2. 3] we see-
that we can even use 

n 

u = 2 (a J - Cj) Wj (Wj,Wj_1)£% j= o 

with the same Wj as before as far as j = m'. But then (u + v, x)£(p/r)(21). This, 
proves „ 3 " in the conclusion. 

In the other direction no subtleties are involved: we are given y — 2ajwj> 
x= 2bjwj a-s ID Def. 6. 1, and we define u = 2(aj~cj)wj' v = 2cjwj- By definition-, 
(u, x)6('"i/'')(^i)> it remains to prove that (u, x)£ql(iH). Let q^z) — then. 
for each i, ai-ci = 2di-pj- Define xk = 2bjWj+k (k = 0, 1, •••, degree (qj),. 

i j 
so that x0 = x, (xk, xfc_1)62I, and 2dkXk = u. Then by definition (u, x)6?i(2I)... 

In the following propositions, Möbius transformations /i(z) again. 

play a special role. 

P r o p o s i t i o n 6. 2. /i(2I) is closed. 

(We are assuming 21 closed throughout.) 



•84 
Ch. Davis 

Proof . To say that (j>v, xv)6/j(2I) is t o saY t^at yv = awiv + bw0v and 
-*v = cwlv + ifM>0v, with (w lv, iv0v)£2i. We assume in addition that yv —.y, xv—x. 
Then solving for wlv and u>0v in terms of yv and xv, we deduce that w^ — Wj and 
Wov-Wofor Wi such that y = aw±+ bw0, x = cwi+dwQ. Since 2f is closed, (h'1s iv0) £21. 
This completes the proof. 

I don't know how far this remains true when p is replaced by the more general 
/ considered earlier; cf. [13, § 2. 16], [1, 3. 8]. 

Propos i t ion 6.3. (fop)(21) =/(/¿(21)). 

P roof . This is clear when p is just multiplication by a constant. When p 
. is a translation, p(z) = z + b, a calculation is needed which I will only summarize: 

in y = 2ajwj change to an expression y = 2a'kw'k by the substitution w'k — ¿ " (^ j bk~JWj 

{and similarly for x, of course), and make the verification that (\v'k, +A3. 
When p is reciprocation, p(z) = z~l, there is again a little calculation. It is 

n n 
'convenient to depart from previous practice and write p(z) = 2 ajzJ> riz) — 2 bjZJ, 

j=0 j—O 
-where not both a„ and b„ are 0 and not both a0 and b0. are 0. With this convention 
there is notational symmetry between / and fop, and reference to definitions will 
verify the conclusion. 

The observation that any Möbius transformation is obtained from these 
•types by composition, completes the proof. 

Propos i t ion 6. 4. (Detailed spectral mapping theorem for Möbius trans-
formations.) <rp(K2I)) = Kcrp(2r)), = t7r(At(2l)) = /i(ffr(3I)). 

Again, we are at liberty to consider simple special Möbius transformations 
and then compose them to give the general p. 

Under linear transformation, ap, ac, and ar all behlave as desired by Def. 2. 4, 
-with the exception of Assume °° £ crp(2I) and let us prove £ <rp(2l + ¿3). The 
assumption is equivalent to the existence of non-zero x such that (x, 0) £ 21; but 
then (x, 0)£2i + Z>3 as well, and this gives the conclusion. Similarly for °°£o-c(2l). 
That °°6<7r(2I) entails °° £ <rr(2l + b3) is a consequence of the remark following 
Def. 2. 4. 

If we consider reciprocation, it is the X other than 0 and °° which require 
checking. Assume Ag£7c(2I), so that there are (yv, xv) 6 21 such that ||xv[| = l but 
Jy^-Xxy|| —0 (so that IbJ-t-O; without loss of generality, y ^ 0 ) . Let xv = xv/||jv||, 
y',=yjIW-. Clearly (x'v ,X)€21-S | | / , | = 1, and l l ^ - A - ^ n - 0 , so A"1 e ^ " 1 ) . 
For ap, it is even easier. Finally, take X £ err(2l). This means 91(21 — A3) is not dense. 
Choosen non-zero z such that, for all (y, x)£2I, z±y — Xz. Then also for all 
(x, j )€2 I _ 1 , z_Lx — X~ly, so 5R(2l_1 — A_13) is not dense either. This completes 
the proof. 
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Again, I don't know how much of this result holds for more general / ; I have 
partial results. Of course it can't hold in toto. For example, it is easy to construct 
an operator A whose square is O and hence has void continuous spectrum, while 
A itself has non-void continuous spectrum. (For the case of operators see [13, Theo rem 
5.12.2].) 

7. The shell and spectral sets 

D e f i n i t i o n 7. 1. The 'norm' of a relation 21 is 

' m =sup {\\y\\IM :(0, 0 )* (y , *)69Q. 

D e f i n i t i o n 7. 2. Let X be a closed subset of C. X 'is a spectral set for' 91 
or 'is s.s. for' 91) in case every rational funct ion/having modulus s i on I has 
also the property | | / ( 2 l ) | | ^ l . 

. It is clear by Prop. 2. 1 that ||9I|| is finite if and only if oo$ffj[(2l), that is, 91 
corresponds to an operator A which is bounded, and in this case ||9l|| =H^||. 
Furthermore, as will appear in the course of developing the basic properties, stater 
ments about spectral sets for relations can be reduced to statements involving 
operators without much trouble. However there are two closely related virtues 
in the present definition: it applies to, not-everywhere-defined operators; and, 
secondly, it brings in a,, instead of a (see in particular Prop. 7. 2 below). 

P r o p o s i t i o n 7. 1. X is s.s. for 91 if and only if ¡i(X) is s.s. for /x(2i). 

This follows easily from Prop. 6. 3. 

P r o p o s i t i o n 1.2. If X is s.s. for 21 then oJW)QX. 

P r o o f . By Prop. 7. 1, it is enough to consider a special point of C. Assume, 
then, <xn(2l)\.3f, so that X is a compact subset of C and 21 is not a bounded 
operator. To show Def. 7. 2 is not satisfied, choose /(z) = az, for a sufficiently small 
constant 

T h e o r e m 7. 1. The unit disk D = {z£C: \z\ s 1} is s.s. for 21 if and only if 
№ 2 1. 

% 

P r o o f . Either condition implies we are dealing with a bounded operator A. 
If D ( , 4 ) = § , the theorem is just V O N N E U M A N N ' S basic result, as in [17, § 154]. 
More generally, define A as the extension of A which is zero on D ^ ) 1 . By applying 
V O N N E U M A N N ' S theorem to A, it is easy to deduce (the non-trivial half of) the pre-
sent theorem for A. 

This, theorem, together with Prop. 7. 1, tells which disks are s.s. for 21. The 
result is familiar in general outlines: it resembles that in [17] except that no special 
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exemptions need to be made for functions with poles in a(2I) — even in ff„(2[). 
Namely, 

(i) the finite disk {zgC: |z — z 0 | S r } is s.s. for 21 if and only if ||2l — z03|| S r ; 
(ii) the complementary disk {z£C: |z — z01 = /"}U{<=°} is s.s. for 21 if and 

only if | | ( 2 I -z 0 3) - 1 | | ^ ' - " 1 ; 
(iii) the half-plane {z£C: Re(£z)Sa}U{«>} is s.s. for 21 if and only if it 

contains w(2I). 
The following theorem contains all three of these, in a geometric form, invariant 

under Möbius transformations of C. 

Theorem 7. 2. Let X be a disk. Then X is s.s. for 21 if and only if the shell 
j(2l) is contained in the convex hull of the stereographic projection x(X). 

Proof . Let p be the Möbius transformation such that p(X) ~ D, the unit disk. 
We have just seen that X is s.s. for 21 if and only if ||/i(2l)|| S l. Comparing Defs. 
7. 1 and 1.1, this is seen to be equivalent to saying that s(/i(2l)) lies in the half-
space {(£, h)£R3: A s 0}; and this half-space is the convex hull of r(D) = -z(p(X)). 
To return from /j(2() and p(X) to 21 and X, we want to consider the transformation 
p' inverse to p, and the projective transformation o(p') of R3 to which it gives rise. This 
was discussed in § 5. e(p') preserves B, and preserves planes; consequently it takes 
convex hulls to convex hulls. It takes %(p(X)) to T(X). Finally, by Thm. 5. 1, it takes 
¿'(/¡(21)) to 5(21). The theorem is proved. 

Alternatively, I could have confined consideration to rigid rotations of B 
(cf. § 5) with only slight modification in the proof. 

The set of disks which are s.s. for fixed 21 is hereby represented as a closed 
convex set i'(2I)t, the dual of ,5(21). The convexity of this set is inherent in the follow-
ing easily proved fact, a generalization of the Lemma of [8, §3. 1]: if two disks 
are s.s. for 21, then so is any disk containing their intersection. The closedness of 

is also easy to prove directly. 
However, if it was a question only of representing all disks s.s. for 21 in a simple 

geometric way, the closed convex hull of s(21) would do exactly as well as s(2I), 
for it has the same dual. It.is like the situation for the numerical range w(2l). Only 
w(2I) is needed in criterion (iii) above, telling which half-planes are spectral sets. 
Still for some purposes the richer structure of w(2t) itself is interesting. The shell 
is like the numerical range with one dimension added (cf. Thm. 3. 1), and its structure 
is very much richer than that of its closed convex hull. 

In spite of these remarks, Thm. 7. 2 throws emphasis on £(21)*, and this will 
persist in the final section of the paper. Let me therefore say a few more words 
about this set. 

It has already been pointed out in § 5 that half-spaces in ii3 may be.for present 
purposes conveniently represented by quadruples A =(AT, A2, A3, A4); here 
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Ai, zl4 £ R, A2=A3£C, and if A>0 then A A represents the same half-space as A. 
Namely, it is the half-space of all (£, h)£R3 such that A^l + h) + A2C + A^Z + 
+ J 4 ( 1 - A ) S 0 . 

Let us regard the dual C* of an arbitrary set CQR3 as the convex cone of 
all A £ R* representing ¡half-spaces 3 C. This sort of dual has been used often in 
the theory of convex sets [23]. 

Propos i t ion 7.3. A £B^ if and only if A gives homogeneous co-ordinates 
for a point of B in the b-representation of § 5, i.e., if and only if Ax + A4 > 0 and 
A2A3^A1A4. 

This is just self-duality of the unit ball; I will not bother translating the familiar 
proof into this notation. 

8. Generalization of Berger's theorem 

The most striking results relating disk spectral sets to dilation theory are the 
well-known theorem of S Z . - N A G Y [ 2 0 ] on dilations of contractions, and C . B E R G E R ' S 

theorem [ 1 1 ] , [ 2 1 ] on dilations of operators with w(A) in the unit disk. S Z . - N A G Y 

and F O I A § [ 2 2 ] have recently given a common generalization of the two, which 
I will relate to the ideas of this paper. Their theorem may be stated as follows. 2) 

Theorem 8 .1 ( S Z . - N A G Y — F O I A § ) . For a bounded, everywhere-defined operator A, 
and for any ¡?>0, consider these conditions: 

(i) A£CE, that is, there exists a unitary U on a Hilbert space 5\ 2 § such that 
A" = Q -pr U" («=1,2 , •••)> where pr denotes compression to 

(ii) for every z with \z\-=: 1, \\ZA((Q — l)zA — g)_1|l ^ 1; 
(iii) for every x£§i and every t£[0, 1], 

2jg - l i t - lx*Axl S e||jc||2 - ( 2 - e)t2\\Ax\\2. 

Conclusions: Conditions (ii) and (iii) are equivalent. Condition (i) is equivalent 
to (iii) together with 

(iv) a(A)QD, the closed unit disk. 
If Q = 2, (iv) follows from (iii). 

This formulation is not quite that of S Z . - N A G Y and FOIA§; let me bridge the 
short gap. My (ii) is equivalent to their (5). My (iii) is obtained from their (/„), 
an inequality which must be asserted for every z£D, by rewriting it in such a way 
that the phase of z need no longer be kept in view. 

2) The real parameter p is not to be confused with the symbol Q(/I) already introdu?;d in § 5. 
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Now for each t, the inequality (iii) is a homogeneous linear inequality relating 
the moduli of the homogeneous co-ordinates of points of .?C4). As such, it is readily 
interpreted geometrically: it restricts s(A) to lie in a certain solid half-cone (from 
now on I will say simply 'cone'). The cone may degenerate into a half-space, in 
particular it does so for t = 0. To complete the account, we must examine the con-
sequences for s(A) of imposing the restrictions (iii) for all t simultaneously. 

For this purpose, here are a few special notations. Let 

. fx(t) = (2-g)\\Ax\\2t2 + 2\g-l\.\x*Ax\t-g\\x\\2. 

For each non-zero x, fx is a real quadratic polynomial, considered as a function 
on [0, 1]; (iii) asserts that every fx is SO on the whole interval. 

Secondly, let Ke denote the cone {(Ç,h)£R3: ¡ g - 1 | . | £ | s g - 1 -h). The . 
assertion / 3 ( l ) s 0 is readily transformed into the assertion <p(Ax, x)ÇK„. This 
can be done directly from (1. 3) (normalizing by assuming ||x||2 + ||,4x||2 = l). 

The first part of the picture can now be completed. 

Propos i t ion 8. 1. For g s 2 , A satisfies condition (iii) above if and only if 
s(A)gXe. 

Proof . Refer to the definition of fx. We have just noted that] s(A)QKe if and 
only if / x ( l ) s 0 for all x; and fx(0) = 0 in any case. But fx is a quadratic polynomial 
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with leading coefficient SO; therefore it is non-positive at the endpoints of the 
interval [0, 1] if and only if it is non-positive throughout. This gives the equivalence. 

Kg is of course symmetric about the A-axis, and has apex at h = Q — 1. Its gener-
ators pass through the equatorial points (eie, 0); but for £?< 1, the equator lies 
in the other nappe of the cone, and Ke itself lies entirely below the equatorial plane. 
For (? = 1 ( S Z . - N A G Y ' S case), Ke is the half-space hSO. For Q — 2 ( B E R G E R ' S case), 
the apex is at the north pole, and s(A)QKe is equivalent to w(A)QD by Thm. 3- 1-

For 2, the apex of Ke is above the north pole. But then further restrictions 
on s(A) result from (iii). 

Let Ee be obtained by removing from KB all points lying between the apex 
and the upper half of the ellipsoid (Q -1 ) 2 | £ | 2 = Q(Q - 2 ) ( 1 — A2). This ellipsoid, in 
addition to being evidently symmetric with respect to the h-axis and with respect 
to the C - p l a n e , is tangent to dK„. The definition of Ee requires the following inter-
pretation. The "upper half" of the ellipsoid is the portion above the circle of tangency. 

The ellipsoid lies entirely in B, and is tangent to S at the poles. Hence in / ;>0 , 
Ee has no points in common with S except (0, 1). 

P r o p o s i t i o n 8.2. For Q >2 , A satisfies condition (iii) above if and only if 
s(A)QEe. 

P r o o f . The cones to which s(A) is restricted by (iii) are as follows: for / = 0, 
the half-space h^ 1; for t = \, Ke; and for intermediate t; the intermediate cones 
tangent to the ellipsoid. To see this, one reduces by symmetry to consideration 
o f C > 0 , and then makes an elementary computation which will not be reproduced 
here. Now the equivalence of s(A) £ Ee becomes clear. 

P r o p o s i t i o n 8. 3. In Thm. 8. 1, condition (iv) follows from (iii) in case Q >2 
also. Hence (i) and (iii) are equivalent for all values of Q. 

P r o o f . For a bounded, everywhere-defined operator, is known 
to follow from a„(A)QD. By Thm. 2. 3 and the above description of Ee,- any 21 
with ¿(SO^jiTj must have <T„(2I)£DU{•»}; Here » is ruled out because we are 
in the bounded, single-valued case. The conclusion therefore follows from Prop. 8. 2. 

These ideas lead to the following question: "If j(2I)EKB if q^2 (or 
if 2), what can we conclude about dilations of 21?" They do not, however, 
lead to an answer. The difficulties arise even for Q< 2; although we then know 
we have to deal with operators, we do not know that they are everywhere defined. 
Some new idea seems to be needed to cope with this dilation problem. 



86 Ch. Davis: The shell of a Hilbert-space operator 

References 

{1] R. ARENS, Operational calculus of linear relations, Pacific J. Math., 11 (1961), 9—23. 
[2] R. BALDUS, Nichteuklidische Geometrie. Hyperbolische Geometrie der Ebene, Sammlung Göschen 

970 (Berlin—Leipzig, 1927). 
13] S. K. BERBERIAN, Approximate proper vectors, Proc. Amer. Math. Soc., 13 (1962), 111—114. 
[4] H. S. M. COXETER, Introduction to geometry (New York, 1961). 
[5] The inversive plane and hyperbolic space, Abh. Math. Sem. Univ. Hamburg, 29 (1966), 

2 1 7 — 2 4 2 . 
[6] C. W. CURTIS and I. REINER, Representation theory of finite groups and associative algebras 

( N e w Y o r k , 1962) . 
{7] CH. DAVIS, Separation of two linear subspaces, Acta Sei. Math., 19 (1958), 172—187. . 
[8] CH. DAVIS and D. G. RIDER, Spectral sets and numerical range, Revue Roumaine de Math. 

Pures et Appl., 10 (1965) , 125—131 . 

[9] W. F. DONOGHUE, On the numerical range of a bounded operator, Michigan Math. J., 4 (1957), 
2 6 1 — 2 6 3 . , 

[10] P. R. HALMOS, Introduction to Hilbert space and the theory of spectral multiplicity (New York, 
1951). 

[11] Positive definite sequences and the miracle of w. Mimeographed lecture notes, 
University of Michigan, 1965. 

[12] S. HILDEBRANDT, Über den numerischen Wertebereich eines Operators, Math. Ann., 163 (1966), 
2 3 0 — 2 4 7 . 

[13] E. HILLE and R. S. PHILLIPS, Functional analysis and semigroups, American Mathematical 
Society Colloquium Publications, Vol. 31 (Providence, R. I., 1957). 

[14] T. KATO, Perturbation theory for linear operators (Berlin, 1967). 
[15] J. VON NEUMANN, Über adjungierte Funktionaloperatoren, Annals of Math., 33 (1932;, 294—310. 
[16] Eine Spektraltheorie für allgemeine Operatoren eines unitären Raumes, Math. Nachr., 

4 (1950 /51) , 2 5 8 — 2 8 1 . 
[17] F. RIESZ and B. SZ.-NAGY, Leçons d'analyse fonctionnelle, 2nd ed. (Budapest, 1953). 
[18] M. SCHREIBER, Numerical range and spectral sets, Michigan Math. J., 10 (1963), 283—288. 
[19] H. SCHWERDTFEGER, Geometry of complex numbers (Toronto, 1962). 
[20] B. SZ.-NAGY, Sur les contractions de l'espace de Hilbert, Acta Sei. Math., 15 (1953), 87—92. 
[21] — ^ Positiv-definite, durch Operatoren erzeugte Funktionen, Wiss. Zeitschrift Techn. 

Univ. Dresden, 15 (1966) , 2 1 9 — 2 2 2 . 
[22] B. SZ.-NAGY and C. FOIAÇ, On certain classes of power-bounded operators in Hilbert space, 

Acta Sei. -Math., 2 7 (1966) , 17—25 . 
[23] F. A. VALENTINE, Convex sets (New York, 1964). 

(Received May 9, 1967) 


