The inner function in Rota's model

By J. W. MOELLER in Chicago (Illinois, U. S. A.)

Let K be a Hilbert space of dimension \aleph_{6} with inner product (\cdot, \cdot), and let $H^{2}(K)$ denote the Hardy class of vector-valued functions

$$
k(z)=\sum_{n=0}^{\infty} k_{n} z^{n} \quad\left(k_{n} \in K ; \sum_{n=n}^{\infty}\left(k_{n}, k_{n}\right)<\infty\right) .
$$

An inner product for these Hardy functions can be defined by setting

$$
\langle k(z), h(z)\rangle=\sum_{n=0}^{\infty}\left(k_{n}, h_{n}\right),
$$

and $H^{2}(K)$ becomes a Hilbert space in its own right under this new inner product. It is well known from the work of Beurling, Lax, and Halmos (see [2], pp. 115-116) that every closed subspace of $H^{2}(K)$ which is invariant under multiplication by z has a representation of the form: $G H^{2}(K)$, where

$$
G(z)=\sum_{n=0}^{\infty} G_{n} z^{n} .
$$

and the Taylor coefficients of G are linear operators from K into K. In addition, the operator norm of G is bounded from above by one, and the radial limits of G on the boundary of the unit disc are equal almost everywhere to partial isometries. (Such functions are commonly called "inner functions" in the literature.) If S^{*} designates the operation of multiplication by z in $H^{2}(K)$, a straightforward calculation reveals that the adjoint of this operation is given by

$$
(S h)(z)=z^{-1}(h(z)-h(0)) .
$$

Henceforth we will call a closed subspace of $H^{2}(K)$ which is invariant under S a left translation invariant sub̆space, and a closed subspace which is invariant under S^{*} a right translation invariant subspace. It is not difficult to show that the orthogonal complement of a right translation invariant subspace is a left translation invariant subspace, and conversely.

In [3], G. C. Rota established the following interesting result.

Theorem. Let $A: K \rightarrow K$ be a bounded linear operator whose spectrum is contain ρ in the interior of the unit disc. Then the set

$$
L_{A}=\left\{(I-z A)^{-1} k \mid k \in K\right\}
$$

is a left translation invariant subspace of $H^{2}(K)$ and S acting on L_{A} is similar to A acting on K.

According to the Beurling-Lax theorem, we may write

$$
L_{A}=H^{2}(K) \ominus G H^{2}(K)
$$

for some G whose Taylor coefficients depend only on A. Whenever $\|A\|<1$, Helson proved ([1], pp. 104-106) that G is always equal to a unitary operator on the rim of the unit disc, and he further derived the explicit formula

$$
G(z)=G_{0}+z(I-z A)^{-1} G_{1}
$$

He did not, however, relate the operators G_{1} and G_{0} to A in any way. Our aim bere is to determine this relationship.

We begin by computing the orthogonal projection of the constant functions in $H^{2}(K)$ onto L_{A} in two different ways. If $k \in K$, we have

$$
\begin{gathered}
\left\langle\left(I-G(z) G^{*}(0)\right) k, z^{n} G(z) G^{*}(0) k\right\rangle=\left\langle k, z^{n} G(z) G^{*}(0) k\right\rangle-\left\langle G(z) G^{*}(0) k, z^{n} G(z) G^{*}(0) k\right\rangle . \\
=\left\langle k, z^{n} G(z) G^{*}(0) k\right\rangle-\left\langle G^{*}(0) k, z^{n} G^{*}(0) k\right\rangle=0 \text { for } n=0,1, \ldots
\end{gathered}
$$

From this relation and the simple identity

$$
k=\left(I-G(t) G^{*}(0)\right) k+G(z) G^{*}(0) k
$$

whickly deduce that

$$
P k=\left(I-G(z) G^{*}(0)\right) k
$$

where P denotes the orthogonal projection onto L_{A}.
To complete the last part of our task, we will express P in terms of A alone. If we set

$$
\tilde{A}=\sum_{n=0}^{\infty} A^{* n} A^{n}
$$

it follows immediately that

$$
\left\langle k,(I-z A)^{-1} f\right\rangle\left\langle(I-z A)^{-1} f,(I-z A)^{-1} f\right\rangle^{-\frac{1}{2}}=(k, f)(\dot{\tilde{A} f}, f)^{-\frac{1}{2}}
$$

For fixed k, the right hand side of the preceding expression assumes its maximum when $f=\tilde{A}^{-1} k$, so we conclude that!

$$
P k=(I-z A)^{-1} \tilde{A}^{-1} k
$$

After identifying the Taylor coefficients in Helson's formula, we find
(1)

$$
I-G_{0} G_{0}^{*}=\tilde{A}^{-1} \quad \text { and } \quad G_{1} G_{0}^{*}=-A \tilde{A}^{-i}
$$

Since $G(z)$ is a unitary operator on the boundary of the unit disc,

$$
\begin{equation*}
G^{*}\left(e^{i \theta}\right) G\left(e^{i \theta}\right)=I \quad \text { and } \quad G\left(e^{i \theta}\right) G^{*}\left(e^{i \theta}\right)=I . \tag{2}
\end{equation*}
$$

Setting $\theta=0$ in the last identity gives

$$
\left(G_{0}+(I-A)^{-1} G_{1}\right)\left(G_{0}^{*}+G_{1}^{*}\left(I-A^{*}\right)^{-1}\right)=I,
$$

which, together with (1), implies

$$
G_{1} G_{1}^{*}=(I-A) \tilde{A}^{-1}\left(I \div A^{*}\right)+(I-A) \tilde{A}^{-1} A^{*}+A \tilde{A}^{-1}\left(I-A^{*}\right)^{-1} .
$$

Thus we finally have

$$
\begin{equation*}
G_{1} G_{1}^{*}=\tilde{A}^{-1}-A \tilde{A}^{-1} A^{*} \tag{3}
\end{equation*}
$$

The first equation in (2) may be rewritten in the form

$$
I=G_{0}^{*} G_{0}+G_{1}^{*} \tilde{A} G_{1}
$$

and premultiplication by G_{0} gives

$$
G_{0}=\left(G_{0} G_{0}^{*}\right) G_{0}+\left(G_{0} G_{1}^{*}\right) \tilde{A} G_{1}
$$

In other words, $\left(I-G_{0} G_{0}^{*}\right) G_{0}=\left(G_{0} G_{1}^{*}\right) \tilde{A} G_{1}$, so

$$
\begin{equation*}
G_{0}=-A^{*} \tilde{A} G_{1} \tag{4}
\end{equation*}
$$

Hence, $I=G_{1}^{*}\left(\tilde{A} A A^{*} \tilde{A}+\tilde{A}\right) G_{1}$ and we infer that the operator

$$
\begin{equation*}
U=\left(\tilde{A} A A^{*} \tilde{A}+\tilde{A}\right)^{\frac{1}{2}} G_{1} \tag{5}
\end{equation*}
$$

is an isometry.
An easy application of the identity $\tilde{A}=I+A^{*} \tilde{A} A$ reveals that

$$
\left(\tilde{A}^{-1}-A \tilde{A}^{-1} A^{*}\right)\left(\tilde{A} A A^{*} \tilde{A}+\tilde{A}\right)=I \quad \text { and } \quad\left(\tilde{A} A A^{*} \tilde{A}+\tilde{A}\right)\left(\tilde{A}^{-1}-A \tilde{A}^{-1} A^{*}\right)=I
$$

We now see from (3) and.(5) that U is actually a unitary operator and

$$
\begin{equation*}
G_{1}=\left(\tilde{A}^{-1}-A \tilde{A}^{-1} A^{*}\right)^{\frac{1}{2}} U \tag{6}
\end{equation*}
$$

Equations (4) and (6) thus determine the inner function associated with L_{A} up to multiplication on the right by a constant unitary factor.

Bibliography

[1] H. Helson, Lectures on Invariant Subspaces (New York, 1964).
[2] K. Hoffman, Banach Spaces of Analytic Functions (New Jersey, 1962).
[3] G. C. Rota, On Models for Linear Operators, Comm. Pure Appl. Math., 13 (1960), 469-472.
(Received June 9, 1967)

