On the characterization of classes of functions
by their best linear approximation

By G. ALEXITS in Budapest

1. In the theory of approximation it is an attractive problem to characterize
different classes of functions by mieans of their best approximation. Denote by
{E,} a positive non-increasing number sequence. We say that the class of functions
% is characterized by {E,}, if the nth best approximation of every f€% by poly-
nomials, or another by appropriate system of functions, remains =E, for every n
(so-called direct theorem) and there exists a constant K >0 such thatevery f(x) for which
the nth best approximation is =KE, for every n belongs to ¥ (so-called inverse
theorem). A

It is well known that many important classes. of functions are characterized
.by the sequence of their best trigonometric polynomial approximation. Such are
e.g. the classes Lipy o for O<a<1 and a fixed M=>0 (Lipschitz-constant), the
characteristic sequence {E,} being {CM-n~°} where C is an absolute constant.
But, for a =1, the class Lip, 1 is no more characterized by {CM -n~1}, this sequence
being characteristic for the Zygmund class Z,, containing all 2zn-periodic functions
for which

Jmax [f(x+h)+/(x—h)—2(x) = Mh|.

In the following, we intend to investigate the nature of the classes € charac-
terizable by the sequence of their best approximation with linear combinations
of an arbitrary system of functions {f,(x)}. Our main result' can be expressed,
roughly’speaking, about so: if a class & is characterizable by a sufficiently regular
sequence {£,} of any best approximafion, then E, grants the order of magnitude of
the absolutely best possible nth linear approximation of .

One may be tempted to think that the order of the absolutely best approximation
could be essentially improved if we turned to non-linear methods of approximation.
But, it is not easy to find out what kind of a non-linear method could accomplish
this task. If we confront, for instance, the linear method of approximation by poly-
nomials with the non-linear method of approximation by rational functions, we
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shall show that, for the classes characterizable by polynomial approximation, -
the best approximation by rational functions gives no essentially better result. Hence,
only the polynomially non-characterizable classes are worth to be investigated
concerning their best approximation by rational functions.

. Approximations in a Banach space

2. Let BbeaBanach space, || x|z thenorm of x€ B and {».} a'sequence of elements

of B set in a fixed order. We form linear combinations 2 a,y, of the first # elements
k=1 .

where the @,’s are real. numbers. The non-negative number

E®(x,{y}) = i},lkf,llx*k_Z1 @ il

. is the nth best {y,}-approximation of x € B. We call {y,} the basis of this approxima-
tion. If ¢ is any subset of B, then -

EB(E, {».}) = sup EP(x,{».})
x€€

is the nth best {y,}-approximation of the set €. _
Denote by %({E.,}, {,}) the set of all those elements x¢€ B for which

CEP(x,{(p})=E,  (n=12-)

We call 4({E,}, {»,}) the {E,}-saturation set of the {y,}-approximation. This is
the set of all elements x of B for which a ““direct theorem” with the best approximation
sequence {E,} exists (referring to {y,}-approximation). Saturation sets are closely
connected with characterizable classes: a set ¥ C B is called {E,}-characterizable,
if ‘there exists a sequence {»,} and a positive absolute constant K, such that

(K E), {y)) cec e ({E), (n.)).

(K., K,, -+< will denote always positive absolute constants.) In the folloWing, we
shall suppose that {E,} is a positive non-decreasing number sequence tending
to zero. '

3. Theorem 1. A saturation set Y({E,}, {».}) is a closed and convex subset
of B, provided that the elements {y,} are independent.

First of all, %¥({E,}, {»,}) contains infinitely many elements because of a
theorem of BERNSTEIN (cf. [3], p. 332) according to which, for every p=1, there
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exists an element x, such that
. En
Er(lB)(xp: {yv}) = 7 ._

hence every x, belongs to 9({E,}, {,}). After this, let x, y be two different elements
of ¥({E,}, {»,}) and| consider the element z=(1 —1)x+ Ay where 0<A<1. Since,
for every n,

EP(z,{n}) = 1~ HEP(x, {yv}) +AE®(y, (7)) = (1 =D+ ) -E, = E,,

(n= 152, "')s

the element z belongs to %({E,}, {».}), this set is therefore convex. — As for the
closure, let x be an element of accumulation and {x;} a sequence of different ele-
ments of 4({E,}, {»,}) converging to x. By assumption, to every x; belongs at least

n
one linear combination ' a{’y, such that
k=1 -

i xi_.kg; a,gf)yk lp= E'(IB)(xj, {yv}) =E, n=1,2,--).

Then we have

E®(x,{»)) = X—2 a? yi la= llx—x;ll+E,,

hence, going over to the limitb J> oo,
ESB)(x, {yv}) = En‘ T n=1,2,--),

i.e. x€%, what we had to prove.

_ Corollary 1. A set € is characterizable only if it contains a convex continuum,
namely (g({Kl E.n}’ {yv}) .

4. The class @ of convex functions having bounded nth derivatives was, in
the last time, subject of investigations ([8], I and II) concerning its best approxima-
tion by rational functions. This class & can serve as an example for a class which
is absolutely not characterizable by linear approximations in any Banach space.
Because if, on the contrary, there were a characteristic sequence {£,} to a linear
{»,}-approximation, then ¥ would contain €({K,E,}, {y,}). So choose two convex
functions f(x) and g(x) contained in 4 and a number 0<A<1 such that A(x)=
=(1—-2)f(x)+Ag(x) should not be convex. Then K, f(x) and K, g(x) would
be contained in ¥({K, E,}, {»,}) but K, h(x) not, contrary to Corollary 1.

5. We call the number seqﬁence {E,} slowly decreasing, if it is positive, non-
increasing and tends to zero such that E,,=K,E, for every n. '
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Theorem 2. If{E,} is slowly decreasmg and the basis of approximation bounded
(Irls=Ks), then there exists a K, =0 such that

K4En'yk€(g({En}3 {yv}) (k:1)23 *tts 2na n= _ls 2, )

The boundedness of the basis {y,} implies

+ ”ym”B) = E2n'

EZn -y, E2n -y - 2
2K, 7F 2K, T™ilsT 2K

Therefore, if k=2n and m=k,

E;n
Er(nB) [Té’;'yk’ {yv}] = EZn = Em'

This estimation is the m_oré satisfied when m >k, because then we have

E;n
Er(nB) [ 2K2v yk’ {yv}} = O

So it follows .

EZn
2K,

yké%({E} ) - k=12-2mn=12)

Put K, =K,/2K;, then, by the slow decrease of {E,}, we. obtain

E2n
Koky = 21<3

~ hence the more we have K,E,-y,€ ¢({E}, {n}) for k = 1,2, v 2nandn=1,2, .-

Corollary 2. If{E,} is slowly decreasing and {y} bounded, then a set € can be
{E,}-characterisable by {yv} -approximation only lf there exists a K, such that
K,E, -y, €% for k—l 2,+,2n and n=1,2, -

» 6. It is known [4] that the best linear approxxmation in the space C of conti-

nuous functions with the basis {w,(x)} of Walsh functions provides, for the classes
Lip o with O<a <1 and Lipschitz constant 1, about the same order of magnitude
as the best polynomial approximation, namely {n=%}. Although, for the {w,(x)}-
_approximation of Lip « only direct theorems can be obtained. Because if ¥ =Lip a
were {E,}-characterizable by {w,(x)}-approximation, then by Corollary 2 the func-
tions Kyn~*wi(x) (k=2n) would belong to ¥ and this is impossible, since w,(x)
is not continuous.
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Approximation in Banach spaces contained in a Hilbert space

7. Let H be a Hilbert space, (x, y) the inner product of the elements x, y of

H and |lx|lH=V()?,_;c_) the norm of x¢ H. By B we denote now a Banach space
Bc H for which the relation ||x||p= Ks||x||, is valid for all x€B.

We prove now the counterpart of Theorem 2, a statement proved previously,
in-a somewhat less-general form, by KNAPOWSKI and myse]f [2].

Theorem 3.. Assume that for a set € B and for an orthonormal system
{¢,} © B we have :
(l) E,‘,'ka% . (k:‘l’z""’zn; n=1,2"")a

then, for any system {y,}<B, E,(%,{»)}) = KsE, (n=1,2,--).

1
First, let {#,} — B be an arbitrary orthonormal system and

sn.(ék’ {”v}) = Z; (ék, r’v) *Hy.
By the orthonormality, we have » ‘

1= ||&lg = Hék S (ék’{rlv})“H-*'HS (ék:{nv})Hﬂ

Hence, owing attention to E™ (&, {n,}) = ||&—sa (&, {nv})||,,, and summing for
k=1,2,-,2n, we get

®) 2n = E‘"’(fk,{m})+2 s (G {1} -
Applymg CAUCHY s inequality, we see that
2n . [ 2n ) % (20 n +.
Z‘ “Sn(ék’ {nv})HH = V2n {2 Hsn(éka {'h})”u} = V2n {Z Z (éka nj)z} .
k=1 K=1 X K=1.j=1
Both systems {{,} and {,} being orthonormed, by BESSEL’s inequality,
. o | .
k;; Eon)r = ”'Ij“l%l =1,
’ . . i 2n
hence we obtain the estimation® 3 ||s, (&, {n.Dllz = V2n.
. k=1

. 2n - : 4 '
Therefore (2) leads to X ES(&, {n,)) = (2—¥2)n, and consequently to
k=1 .
2— V’

@  max EP(EG, (1)) =

1sk=2n
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" By assumption, |\x[ = K] x|l for all x € B, hence also EP(x, {n.}) = KES(x, {n,}).
Thus, if we apply (3) to the elements E,-&, instead of £, we obtain
max EO(E, & (1) = Ks 212

1=k=2n
Since we assumed that, for k=2n, E,-&, is an elemeni of €, hence
@) E®(%,{n.}) = KsE,. - '

The estimation (4) shows that our theorem holds good for the best approxima-
. tions with an orthonormal basis {5,} — B. Consider, now, an arbitrary approximation
basis {y,} c B. Delete from {y,} the linearly dependent elements and denote by
{y*} the remainder system. Since there are less linear combinations of y,, y,, -+, »,
than those of y¥, %, -+, y¥, we have E®(x, {3,}) = EP(x, {y¥}). But {y}} can be
orthonormalized such that the vth element 5, of the orthonormalized system should
“be a linear combination of the elements y}, y%, ---, y¥. Thus the linear combinations
of y¥, y%, -, y¥ are the same as those of 7, i, -+, 7,, therefore

EP(x, {n}) = EP(x, (5)) = EP(x, {nv})
for all x¢B and n=1, 2, ---. Hence, by (4), EP(%, {y,})=KsE,, as we asserted.

8. For two positive number sequences {a,} and {b,}, we write {a,}~{b,},
if a,=K5b, and b,=Kga, for n=1,2, ---, ie. if {a,} and {b,} have the same order
of magmtude If there exists an orthonormal system satisfying (1) for a set ¥ B
then, by Theorem 3, it follows that the- numbers

E®N(%) = me(B)(‘g {», }) (n= 1,2,:)
are positive where the inf has to be taken for all possible basises {y,} € B. We call
E)(%) the nth absolutely best linear approximation of €. (We are not concerned
with the question whether E{¥)(%) is attained or not by a system {y,} < B.).
If {¢,} is' an orthonormal system, set E} = supe,, where the ‘sup’ has to be
taken for all e,>0 for which

e, £ €L (k—12 - 2n; n=1,2,:-).
"We shall show that, in many cases, the sequence {E;}} is equ1valent to {E, } and
{EP(B)}.

" Theorem 4. Let {&) be a bounded orthonormal system and € a closed set
{E,}- characterzzable by best {&,}-approximation. If {E,} is slowly decreasmg, then
{E} ~ {(EP(®)} ~ {E}}.

Since % is closed, we have
EX-£6%  (k=1,2,-,2n; n=1,2, ).
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By Theorem 3 it follows then E, szE* By Theorem 2, there is a K, such that
K,E, & €%({E}, {&.)) for k=1,2, -+, 2n, hence

® K1K4E,,-5k€(€({K1En},{£v})c(€ k=1,2,+,2n; n=1,2, .-

and therefore K,K,E,=E¥ ie. E,~Ef We h_aVe still to prove Ef=E®(%).
- First, we have EP(®)=KE}f by Theorem 3. But E®(¥)=E, and (5) implies

K KEP(©) 566 (k=1,2,,2m; n=1,2,-),
- hence K, K,E®(¥)=E¥, thus also Ef~E® (%) is proved.

Comparison of the best approximations by polyhomials and by rational functions

9. The mostly used linear method is the approximation by polynomials; its
simplest extension to a non-linear .approximation method consists in the sub-
stitution of the polynomials by corresponding rational functions. We intend to -
" compare efficacy of these two methods and shall see that, for classes characterizable
by best polynomial approximation, the non-linear method provides no better results
than the linear method does.

‘Denote by r,(x) a rational function of degree n, ie. r,(x) = P,(x)/Q,(x) where

,,(x) and Q,(x) are polynomials of degree <n Then, ¥ being a given class
of continuous functions, we call

0,(%) = supinf | f—rlc
fEE rn i

the .nth best rational approximation of % in the space C.

Szisz—TURAN [8), FReUD [5], and SzaBapos [7] have proved that, for some
classes, the best rational approximation in the space C may be essentially better
than the best polynomial approximation. The classes considered by these autors
are not characterizable by polynomial appfoximation. But, for the classical poly-
nomially characterizable classes, the best rational approximation is equivalent’
to the best polynomial approximation. (NEWMAN [6], SzaBADOs [7].) We shall see
that this phenomenon occurs for all polynomially characterizable classes.

Theorem 5. Let 4 be a class of continuous functions {E,}-characterizable
by polynomial approximation in the space C where {E,} is slowly decreasing. T\ hen,
Jor the best rational approximation, we have {0,(%)} ~ {E}.

Consider the function

f(x) = Ky S (Ese — Exes1) Tan(x)

where T,(x) denotes the v-th normed Chebysheff polynomial and K,, an appro-

8 A
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priate constant. Let s5,(x) be the nth partlal sum of this series. Since |T,(x)|= }/2/7r

we have
_max If(x) 53m (%) = Kyy Esm.

A result of BERNSTEIN (cf. ACHYESER [1}, p. 79) states that s3m(x) represents, for
3"=p<3"*1, the best approximating polynomial of degree n and even the best
approximating rational function of degree n. Thus, denoting by g,(f) the best
approximation of the function f(x) by rational functions of degree n, we obtain

) en<f)-=En('f:{T..})=KuEn @"=n <3 m=0,1, ).

Because of the characterxsablhty of % by polynomial approximation, there is a K
such that
%({Kl E}{T.})c¢%,

" while {E,} is slowly decreasing; therefore, by appropriate choice of K, it follows that
Ki1Eyn =K, Eymsi =K,E, (3" =n=<3"; m=0,1, ).

Thus, in accordance with (7), we see that f éfg and so 0,(%) = 0,(f) = K, E,.
This is just. our assertion. '
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